The money multiplier

The money multiplier tells us the maximum amount of new demand-deposit money that can be created by a single initial dollar of excess reserves. This multiplier, m, is the inverse of the reserve requirement, R: m = 1/R. This note will demonstrate that result.

Suppose some initial amount, d_1 , is deposited into the banking system. With a reserve requirement of R, this deposit creates initial excess reserves equal to $E_1 = (1 - R) \cdot d_1$. Assuming this entire amount is lent out and redeposited within the system, these excess reserves become new money: $\Delta M_1 = E_1 = (1 - R) \cdot d_1$. This second deposit creates its own excess reserves equal to $E_2 = (1 - R) \cdot \Delta M_1 = (1 - R) \cdot E_1$. As before, E_2 is new money, so that $\Delta M_2 = (1 - R) \cdot E_1$. Continuing on like this indefinitely, we see a pattern develop:

$$\Delta M_1 = E_1$$

$$\Delta M_2 = E_2 = (1 - R) \cdot E_1$$

$$\Delta M_3 = E_3 = (1 - R) \cdot E_2 = (1 - R)^2 \cdot E_1$$

$$\Delta M_4 = E_4 = (1 - R) \cdot E_3 = (1 - R)^3 \cdot E_1$$

and so on ad infinitum.

The total increase in new money (call this "D") can be found by adding up all the successive changes in new money, $D = \Delta M_1 + \Delta M_2 + \Delta M_3 + \dots$ Then substituting $(1 - R)^{i-1}$ for ΔM_i , $D = E_1 \cdot [1 + (1 - R) + (1 - R)^2 + (1 - R)^3 + \dots]$.

Suppose we multiply both sides by the term (1-R) and subtract the resulting product from D. $D-(1-R)\cdot D=E_1\cdot [1+(1-R)+(1-R)^2+(1-R)^3+\ldots]-E_1\cdot [(1-R)+(1-R)^2+(1-R)^3+\ldots].$ All terms on the right-hand side with the exception of the initial $E_1\cdot 1$ would cancel out, leaving $D-(1-R)\cdot D=E_1$. Then, simplifying the left-hand side, we are left with $D\cdot [1-(1-R)]=D\cdot R=E_1$. Finally, divide both sides by R to obtain the desired result: $D=E_1\cdot \frac{1}{R}$. That is, an initial amount of excess reserves equal to E_1 creates new money equal to this amount multiplied by the inverse of the reserve requirement, or $m=\frac{1}{R}$.