The multiplier effect
The "multiplier" tells us the change in equilibrium GDP from a given change in desired spending, for example, a change in desired investment spending brought about by either a shift of the investment demand curve or a change in real interest rates. Mathematically, we desire a formula for $\frac{\Delta Y_{e}}{\Delta I_{g}}$ where $Y_{e}$ is equilibrium GDP.

Suppose GDP is given by the formula $Y=C+I_{g}$ where $C$ takes the linear formula $C=\mathrm{a}+b Y$. As in math notes 27.1, "Consumption and saving," $a$ is autonomous consumption spending and $b$ is the MPC. Solving for equilibrium GDP, we obtain the general result $Y_{e}=\left(\frac{1}{1-b}\right) \times\left(a+I_{g}\right)$.

If $I_{g}$ changes by some amount $\Delta I_{g}$, then $Y_{e}$ will change by some amount $\Delta Y_{e}$ :
$Y_{e}+\Delta Y_{e}=\left(\frac{1}{1-b}\right) \times\left(a+I_{g}+\Delta I_{g}\right)=\left(\frac{1}{1-b}\right) \times\left(a+I_{g}\right)+\left(\frac{1}{1-b}\right) \times \Delta I_{g}$. We can simplify this by subtracting $Y_{e}$ and its equivalent $\left(\frac{1}{1-b}\right) \times\left(a+I_{g}\right)$ from both sides to obtain $\Delta Y_{e}=\left(\frac{1}{1-b}\right) \times \Delta I_{g}$. Now divide $\Delta I_{g}$ on both sides to obtain our desired result: $\frac{\Delta Y_{e}}{\Delta I_{g}}=\left(\frac{1}{1-b}\right)$.

Since $b$ is the MPC and $(1-b)$ is the MPS, this can be expressed alternatively as $\frac{\Delta Y_{e}}{\Delta I_{g}}=$ $\left(\frac{1}{1-\mathrm{MPC}}\right)=\left(\frac{1}{\text { MPS }}\right)$. For example, if the MPC is .75, the multiplier is $\left(\frac{1}{1-.75}\right)=\left(\frac{1}{.25}\right)=4$, so that if $\Delta I_{g}=\$ 5$ billion, $\Delta Y_{e}=\$ 20$ billion.

Incidentally, the term $\left(\frac{1}{1-b}\right)$ has an alternate interpretation. Suppose we have an infinite sum of the form $1+b+b^{2}+b^{3}+b^{4}+\ldots$. We don't yet know what, if anything, this sum is equal to, but suppose it converges to some value $Z$. That is, $Z=1+b+b^{2}+b^{3}+b^{4}+\ldots$. If we multiply each side of this equation by $b$, we would have $b Z=b+b^{2}+b^{3}+b^{4}+b^{5}+\ldots$. Next, subtract $b Z$ from $Z$. We are left with $Z-b Z=1$, as every term except the first term of $Z$ cancels out. We can factor out $Z$ from the term on the left and as long as $b$ does not equal 1 , divide both sides by $1-b$ to obtain $Z=\left(\frac{1}{1-b}\right)$. That is, if the infinite sum converges at all, it will converge to $\left(\frac{1}{1-b}\right)$. Note that for $b>1$ the sum is infinite. However, if $b<1$ it can be shown that the sum converges to the value $\left(\frac{1}{1-b}\right)$ which you will recognize as the multiplier. This has an economic interpretation: the change in equilibrium GDP from a given change in investment can be seen as the sum of successive "rounds" of additional spending, with the amount at each round a constant proportion (equal to the MPC) of the prior round.

