As stated in the text, the "Rule of 70" says that real GDP will double in 70/r years, where r is the annual rate of growth expressed as a percentage. For example, real annual GDP growth of 5% will cause real GDP to double in (70/5) = 14 years. More generally, whether it be real GDP, the price level, or the value of your Individual Retirement Account (IRA), any initial value growing at $r \%$ per year will double in $70 / r$ years. Why does this formula work?

For the remainder of this note, it will be convenient to work with a growth rate of $\mathrm{g}=r / 100$. For example, if $r=5 \%$, then $g=.05$. Suppose we start with some initial amount, say V_{0}. Growing at a rate of g, an additional amount of $g V_{0}$ will be added to its value at the end of the first year. If V_{1} is the value at the end of the first year, then $V_{1}=V_{0}+g V_{0}=V_{0}(1+g)$. Using similar reasoning, its value at the end of the second year will be $V_{2}=V_{1}(1+g)$. But since $V_{1}=V_{0}(1+g)$, we can substitute for V_{1} to obtain $V_{2}=$ $V_{0}(1+g)^{2}$. By induction, we can see that after T years, the initial value will have grown to $V_{T}=V_{0}(1+g)^{T}$.

The question at hand is this: at what value of T will $V_{T}=2 V_{0}$? Substituting $2 V_{0}$ for $V_{T}, 2 V_{0}=$ $V_{0}(1+g)^{T}$, or upon dividing by $V_{0}, 2=(1+g)^{T}$. Our task now is to solve this for T in terms of g. If we take the natural logarithm of both sides, we get $\ln (2)=T \ln (1+g)$. Next we make use of an important result: for very small values of g, as we might find for reasonable rates of real GDP growth, inflation or returns on investments, $\ln (1+g)$ is approximately equal to g. (You may recall that $\ln (1)=0$.) Making this substitution, and noting that $\ln (2)=0.693147 \ldots \approx .70$, we have our result: $T \approx .70 / g$. If growth is expressed as a percentage, simply multiply both top and bottom by 100: $T \approx 70 /(g \cdot 100 \%)$ or $T \approx 70 / r$.

Incidentally, the rough approximation inherent in $\ln (1+g) \approx g$ disappears when there is continuous exponential compounding of the growth, rather than annual compounding. With continuous compounding, it can be shown that after T years, an initial value of V_{0} will grow to $V_{T}=V_{0} e^{g T}$ where e is the base of natural logarithms. As before, we wish to know the value of T for which $V_{T}=2 V_{0}$, or equivalently, solve for T in the equation $2=e^{g T}$. Taking the natural logarithm of both sides, we obtain $\ln (2)=g T$, or $T=0.693147 \ldots / g \approx 70 / r$ as before.

