Glencoe McGraw-Hill

Study Notebook

Ma

The McGraw-Hill companies

Copyright © by The McGraw-Hill Companies, Inc. All rights reserved. Except as permitted under the United States Copyright Act, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without prior written permission of the publisher.

Send all inquiries to:
Glencoe/McGraw-Hill
8787 Orion Place
Columbus, OH 43240

ISBN: 978-0-07-890870-5
MHID: 0-07-890870-1

Printed in the United States of America

Contents

Chapter 1
Before You Read 1
Key Points 2
1-1 Expressions and Formulas 3
1-2 Properties of Real Numbers 5
1-3 Solving Equations 7
1-4 Solving Absolute Value Equations 9
1-5 Solving Inequalities 11
1-6 Solving Compound and Absolute Value Inequalities 13
Tie It Together. 15
Before the Test 16
Chapter 2
Before You Read 17
Key Points 18
2-1 Relations and Functions 19
2-2 Linear Relations and Functions 21
2-3 Rate of Change and Slope 23
2-4 Writing Linear Equations 25
2-5 Scatter Plots and Lines of Regression 27
2-6 Special Functions 29
2-7 Parent Functions and Transformations 31
2-8 Graphing Linear and Absolute Value Inequalities 33
Tie It Together. 35
Before the Test 36
Chapter 3
Before You Read 37
Key Points 38
3-1 Solving Systems of Equations by Graphing 39
3-2 Solving Systems of Equations Algebraically 41
3-3 Solving Systems of Inequalities by Graphing 43
3-4 Optimization with Linear Programming 45
3-5 Systems of Equations in Three Variables 47
Tie It Together. 49
Before the Test 50
Chapter 4
Before You Read 51
Key Points 52
4-1 Introduction to Matrices 53
4-2 Operations with Matrices 55
4-3 Multiplying Matrices 57
4-4 Transformations with Matrices 59
4-5 Determinants and Cramer's Rule 61
4-6 Inverse Matrices and Systems of Equations 63
Tie It Together 65
Before the Test 66
Chapter 5
Before You Read 67
Key Points 68
5-1 Graphing Quadratic Functions 69
5-2 Solving Quadratic Equations by Graphing 71
5-3 Solving Quadratic Equations by Factoring. 73
5-4 Complex Numbers 75
5-5 Completing the Square. 77
5-6 The Quadratic Formula and the Discriminant 79
5-7 Transformations with Quadratic Functions 81
5-8 Quadratic Inequalities 83
Tie It Together 85
Before the Test 86
Chapter 6
Before You Read 87
Key Points 88
6-1 Operations with Polynomials 89
6-2 Dividing Polynomials 91
6-3 Polynomial Functions 93
6-4 Analyzing Graphs of Polynomial Functions 95
6-5 Solving Polynomial Equations 97
6-6 The Remainder and Factor Theorems 99
6-7 Roots and Zeros 101
6-8 Rational Zero Theorem 103
Tie It Together 105
Before the Test 106
Chapter 7
Before You Read 107
Key Points 108
7-1 Operations on Functions 109
7-2 Inverse Functions and Relations 111
7-3 Square Root Functions and Inequalities 113
7-4 nth Roots 115
7-5 Operations with Radical Expressions 117
7-6 Rational Exponents 119
7-7 Solving Radical Equations and Inequalities 121
Tie It Together 123
Before the Test 124
Chapter 8
Before You Read 125
Key Points 126
8-1 Graphing Exponential Functions 127
8-2 Solving Exponential Equations and Inequalities 129
8-3 Logarithms and Logarithmic Functions 131
8-4 Solving Logarithmic Equations and Inequalities 133
8-5 Properties of Logarithms 135
8-6 Common Logarithms 137
8-7 Base e and Natural Logarithms. 139
8-8 Using Exponential and Logarithmic Functions 141
Tie It Together 143
Before the Test 144
Chapter 9
Before You Read 145
Key Points 146
9-1 Multiplying and Dividing Rational Expressions 147
9-2 Adding and Subtracting Rational Expressions 149
9-3 Graphing Reciprocal Functions 151
9-4 Graphing Rational Functions 153
9-5 Variation Functions 155
9-6 Solving Rational Equations and Inequalities 157
Tie It Together 159
Before the Test 160
Chapter 10
Before You Read 161
Key Points 162
10-1 Midpoint and Distance Formulas 163
10-2 Parabolas 165
10-3 Circles. 167
10-4 Ellipses 169
10-5 Hyperbolas 171
10-6 Identifying Conic Sections 173
10-7 Solving Quadratic Systems 175
Tie It Together 177
Before the Test 178
Chapter 11
Before You Read 179
Key Points 180
11-1 Sequences as Functions 181
11-2 Arithmetic Sequences and Series 183
11-3 Geometric Sequences and Series 185
11-4 Infinite Geometric Series 187
11-5 Recursion and Iteration 189
11-6 The Binomial Theorem 191
11-7 Proof by Mathematical Induction 193
Tie It Together. 195
Before the Test 196
Chapter 12
Before You Read 197
Key Points 198
12-1 Experiments, Surveys, and Observational Studies 199
12-2 Statistical Analysis 201
12-3 Conditional Probability. 203
12-4 Probability Distributions 205
12-5 The Normal Distribution 207
12-6 Hypothesis Testing 209
12-7 Binomial Distributions 211
Tie It Together. 213
Before the Test 214
Chapter 13
Before You Read 215
Key Points 216
13-1 Trigonometric Functions in Right Triangles 217
13-2 Angles and Angle Measure 219
13-3 Trigonometric Functions of General Angles 221
13-4 Law of Sines 223
13-5 Law of Cosines 225
13-6 Circular Functions 227
13-7 Graphing Trigonometric Functions 229
13-8 Translations of Trigonometric Graphs 231
13-9 Inverse Trigonometric Functions 233
Tie It Together 235
Before the Test 236
Chapter 14
Before You Read 237
Key Points 238
14-1 Trigonometric Identities 239
14-2 Verifying Trigonometric Identities 241
14-3 Sum and Difference of Angles Formulas 243
14-4 Double-Angle and Half-Angle Formulas 245
14-5 Solving Trigonometric Equations 247
Tie It Together 249
Before the Test 250

Note-Taking Tips

Your notes are a reminder of what you learned in class. Taking good notes can help you succeed in mathematics. The following tips will help you take better classroom notes.

- Before class, ask what your teacher will be discussing in class. Review mentally what you already know about the concept.
- Be an active listener. Focus on what your teacher is saying. Listen for important concepts. Pay attention to words, examples, and/or diagrams your teacher emphasizes.
- Write your notes as clear and concise as possible. The following symbols and abbreviations may be helpful in your note-taking.

Word or Phrase	Symbol or Abbreviation	Word or Phrase	Symbol or Abbreviation
for example	e.g.	not equal	\neq
such as	i.e.	approximately	\approx
with	w/	therefore	\therefore
without	w/o	versus	vs
and	+	angle	\angle

- Use a symbol such as a star (\star) or an asterisk (*) to emphasis important concepts. Place a question mark (?) next to anything that you do not understand.
- Ask questions and participate in class discussion.
- Draw and label pictures or diagrams to help clarify a concept.
- When working out an example, write what you are doing to solve the problem next to each step. Be sure to use your own words.
- Review your notes as soon as possible after class. During this time, organize and summarize new concepts and clarify misunderstandings.

Note-Taking Don'ts

- Don't write every word. Concentrate on the main ideas and concepts.
- Don't use someone else's notes as they may not make sense.
- Don't doodle. It distracts you from listening actively.
- Don't lose focus or you will become lost in your note-taking.
\qquad DATE \qquad
\qquad

Equations and Inequalities

Before You Read

Before you read the chapter, respond to these statements.

1. Write an \mathbf{A} if you agree with the statement.
2. Write a \mathbf{D} if you disagree with the statement.

Before You Read	Equations and Inequalities
- Real numbers include rational and irrational numbers.	
	- The Symmetric Property states that for any real number $a, a=a$.
	Substitution is one way to check if the solution for an equation is correct.
	- $\|y\|$ means the absolute value of y.
	The graph of a compound inequality with "and" is union of the solution set of the two inequalities.

FOLDABLS Study Organizer Construct the Foldable as directed at the beginning of this chapter.

Note Taking Tips

- When you take notes, it may be helpful to sit as close as possible to the front of the class.
There are fewer distractions and it is easier to hear.
- If your instructor points out definitions or procedures from your text, write a reference page in your notes.
You can then write these referenced items in their proper place in your notes after class.
\qquad
\qquad

CHAPTER
 Equations and Inequalities

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on expressions and formulas, one fact might be that a formula is a mathematical sentence that expresses the relationship between certain qualities. After completing the chapter, you can use this table to review for your chapter test.

Lesson	Fact
1-1 Expressions and Formulas	
1-2 Properties of Real Numbers	
1-3 Solving Equations	
1-4 Solving Absolute Value Equations	
1-5 Solving Inequalities	

\qquad
\qquad

1-1 Expressions and Formulas

What You'll Learn

Skim the lesson. Write two things you already know about expressions and formulas.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

Review Vocabulary Identify the four grouping symbols used in the following expression. (Prerequisite Skill)

$$
\left(\frac{3 \sqrt{3 \cdot 6-2}}{5(2-3)}\right)^{2}
$$

New Vocabulary Write the correct term beside each definition.
letters used to represent unknown quantities
expressions that contain at least one variable
a mathematical sentence that expresses the relationship between certain quantities
a set of rules which outline the order in which calculations must be performed in a mathematical expression

Vocabulary Link Putting on socks and then shoes is an example of a real life situation in which following a prescribed order of operations is crucial to a successful outcome. Describe two other such situations.
\qquad
\qquad
Lesson 1-1 (continued)

Main Idea

Order of Operations
pp. 5-6

Formulas
p. 6

Details

Write a title for each step and complete the operations in order for the expression $3 x-4(y+2)^{2}$ when $x=-2$ and $y=3$.

Calculate the amount of medicine to give an eight-year-old child if the adult dosage is 1500 milligrams. Use the formula $d=0.08 a D$ where d is the child's dosage, a is the child's age, and D is the adult dosage.

Helping You Remember

Think of a phrase or sentence to help you
remember the order or operations.

\qquad
\qquad

1-2 Properties of Real Numbers

What You'll Learn
 Skim the Examples for Lesson 1-2. Predict two things you think you will learn about the properties of real numbers.

1. \qquad
2.

Active Vocabulary

integers

real numbers
natural numbers
the set of numbers which represent all points on a number line
rational numbers
numbers than cannot be expressed as a ratio of two integers; the decimal form neither terminates, nor repeats
whole numbers
irrational numbers

New Vocabulary Match the term with its definition by drawing a line to connect the two.
numbers that can be expressed as a ratio of two integers; the decimal form either terminates or repeats
numbers used for counting $\{1,2,3, \ldots\}$
the counting numbers plus zero $\{0,1,2,3, \ldots\}$
the whole numbers and their opposites

Vocabulary Link Explain each of the mathematical representations of properties in your own words.

1. $a+b=b+a$
2. $(a \cdot b) \cdot c=a \cdot(b \cdot c)$
3. $a+(-a)=0$
\qquad
\qquad
Lesson 1-2 (continued)

Main Idea

Real Numbers

p. 11

Details

Write each of the following numbers into the appropriate location in the Venn diagram.
$\left\{\sqrt{2}, 4,0, \frac{2}{3}, 1000, \pi, 2.25,-22,2 . \overline{6541}\right\}$

Real Numbers

Rational Numbers

State the property represented in each equation.

1. $6.72+(-6.72)=0$
2. $3 b+2 b=(3+2) b$ \qquad
3. $-3(2 \cdot 5)=(-3 \cdot 2) 5$ \qquad
4. $5 \cdot a=a \cdot 5$
5. $\frac{6}{11} \cdot \frac{11}{6}=1$

Helping You Remember

How can the words commuter, association, and distribution help you remember the difference between the commutative, associative and distributive properties?
\qquad
\qquad
\qquad
\qquad

1-3 Solving Equations

What You'll Learn Scan the text in Lesson 1-3. Write two facts you learned about equations as you scanned the text.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

New Vocabulary Define the following terms from this lesson.
equation
solution
\qquad

\qquad
\qquad

- \qquad
- \qquad
\qquad

Vocabulary Link Properties of Equality can be explained in non-mathematical terms. For each description, name the Property of Equality that is described.

The word "little" means the same as the word "small". Therefore, when I read the word "small" I can replace it with the word "little."

The word "little" means the same as the word "small." The word "small" means the same as the word "tiny." Therefore, the word "little" means the same as the word "tiny."
\qquad
\qquad
Lesson 1-3 (continued)

Main Idea

Verbal Expressions and Algebraic Expressions p. 18

Properties of Equality pp. 19-21

Details

List verbal expressions that would translate into each operation.

Solve the equation using the steps listed as a guide.

Equation	Step
$2(q-3)+5 q=8(q-1)$	Original equation
	Distributive Property
	Simplify.
	Addition Property of Equality
	Addition Property of Equality
	Division Property of Equality
	Check.

Helping You Remember
 How can the words reflection and symmetry

help you remember and distinguish between the reflexive and symmetric properties of equality? Think about how these words are used in geometry.
\qquad
\qquad

1-4 Solving Absolute Value Equations

What You'll Learn Scan the text under the Now heading. List two things you will learn about in the lesson.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

Review Vocabulary Describe the importance of grouping symbols to the order of operations. (Lesson 1-1)
\qquad
\qquad
\qquad

New Vocabulary Fill in the blank with the correct term or phrase.
absolute value \quad The \qquad of a number from \qquad on a number line.
empty set \quad The term used to describe when an equation is \qquad true and thus has no solution. The symbols used to denote the empty set are \qquad and \qquad .
extraneous solution The term used to describe a solution to an \qquad which is found when solving the equation but is determined to be invalid when \qquad the solution in the original equation.
\qquad
\qquad

Details

Absolute Value Expressions

p. 27

3. $5-|4 u+7|-v$
4. $\frac{|2 u-1|}{|v-6|}$
5. $|u-v|$
6. $3|u|-4|v|$

Absolute Value Equations pp. 28-29

Complete the diagram to solve the equation $|2 x-9|=23$.

Helpling You Remember How can the number line model for absolute

 value, shown in your textbook help you remember that many absolute value equations have two solutions?\qquad
\qquad
\qquad

1-5 Solving Inequalities

What You'll Learn

Skim Lesson 1-5. Predict two things that you expect to learn based on the headings and the Key Concept box.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

Review Vocabulary Write a word description for each inequality symbol and write a true mathematical sentence using the symbol. (Prerequisite Skill)

1. $>$ \qquad
\qquad
2. $<$ \qquad
\qquad
3. \geq \qquad
\qquad
4. \leq \qquad
\qquad

New Vocabulary Label the parts of the set builder notation below using the phrases given at the left. Show the set builder notation on the number line.

\qquad
\qquad

Lesson 1-5 (continued)

Main Idea

Details

One-Step Inequalities

pp. 33-35

Identify the reason for each step in solving the inequality. Graph the solution set on a number line.

$$
\begin{aligned}
& 6 x+12<8 x-8 \\
& 6 x+12-12<8 x-8-12 \\
& 6 x<8 x-20 \\
& 6 x-8 x<8 x-8 x-20 \\
& -2 x<-20 \\
& \frac{-2 x}{-2}<\frac{-20}{-2} \\
& x>10 \\
& \underset{-22-20-18-16-14-12-10-8-6-4-2}{|c|} \mid
\end{aligned}
$$

Multi-Step Inequalities pp. 35-36

Describe the similarities and differences between solving an equation and solving an inequality.
Similarities Differences

Helping You Remember

A common error in solving inequalities is forgetting to reverse the equality symbol when multiplying or dividing both sides of an inequality by a negative number. How could you explain this rule to a classmate who is having trouble remembering this rule?
\qquad
\qquad
\qquad

1-6 Solving Compound and Absolute Value Inequalities

What You'll Learn
 Scan Lesson 1-6. List two headings you would use to make an outline of this lesson.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary
 New Vocabulary Write the definition next to each term.

 compound inequalityunion \qquad
\qquad

Vocabulary Link Shade the intersection of sets A and B in Diagram I. Shade the union of sets A and B in Diagram II.
(Alencoe Algebra 2
\qquad
\qquad

Main Idea

Compound Inequalities

 pp. 41-42
Details

Write a compound inequality that says " x is greater than -3 and x is less than or equal to 4." Graph the inequality.

Write a compound inequality that says " x is less than 2 or \boldsymbol{x} is greater than or equal to 6." Graph the inequality.

Complete the chart below for solving absolute value inequalities.

Helping You Remember

Describe a way to remember whether an absolute value inequality should be translated into an and or an or compound inequality.
\qquad DATE \qquad
\qquad

Expressions and Formulas

The It Together

Complete each table concerning real numbers. Provide two important details in each graphic organizer concerning variables.

\qquad
\qquad

cown

 Equations and Inequalities

Before the Test

Now that you have read and worked through the chapter, think about what you have learned and complete the table below. Compare your previous answers with these.

1. Write an \mathbf{A} if you agree with the statement.
2. Write a \mathbf{D} if you disagree with the statement.

Equations and Inequalities	After You Read
- Real numbers include rational and irrational numbers.	
- The Symmetric Property states that for any real number a, $a=a$.	
- Substitution is one way to check if the solution for an equation is correct.	
- $\|y\|$ means the absolute value of y.	
- The graph of a compound inequality with "and" is union of the	
solution set of the two inequalities.	

Math Online Visit glencoe.com to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 1.

Are You Ready for the Chapter Test?

Use this checklist to help you study.
\square I used my Foldable to complete the review of all or most lessons.I completed the Chapter 1 Study Guide and Review in the textbook.I took the Chapter 1 Practice Test in the textbook.I used the online resources for additional review options.I reviewed my homework assignments and made corrections to incorrect problems.I reviewed all vocabulary from the chapter and their definitions.

Study Tips

- Set goals and priorities before studying. Then study the most difficult material first and complete assignments that have due dates before others.
\qquad
\qquad
\qquad

Linear Relations and Functions

Before You Read

Before you read the chapter, respond to these statements.

1. Write an \mathbf{A} if you agree with the statement.
2. Write a \mathbf{D} if you disagree with the statement.

Before You Read	Linear Relations and Functions
	- A relation is always a function, but a function is not always a relation.
	- Rate of change is the slope.
	The slope-intercept form of a linear equation is used when there is an ordered pair and slope is given.
	- A line of regression is the change of y over the change of x.
	In the graph of a linear inequality, the line is the boundary.

 chapter.

5 Note Taking Tips

- When you take notes, listen or read for main ideas.

Then record concepts, define terms, write statement in if-then form, and write paragraph proofs.

- When taking notes, writing a paragraph that describes the concepts, the computational skills, and the graphics will help you to understand the math in the lesson.
\qquad
\qquad

anuper
 2 Linear Relations and Functions

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson.
For example, in the lesson on rate of change and slope, one fact might be that the slope of a line is the same as its rate of change. After completing the chapter, you can use this table to review for your chapter test.

Lesson	Fact
2-1 Relations and Functions	
2-2 Linear Relations and Functions	
2-3 Rate of Change and Slope	
2-4 Writing Linear Equations	
2-5 Scatter Plots and Lines of Regression	
2-8 Special Functions	
Inequalities	
2-7 Parent Functions and Transformations	

\qquad

2-1 Relations and Functions

What You'll Learn Scan Lesson 2-1. List two headings you would use to make an outline of this lesson.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary New Vocabulary Write the definition next to each term.
continuous function
dependent variable \qquad
\qquad
discrete function \qquad

function notation

\qquad
\qquad
independent variable \qquad
\qquad
one-to-one function \qquad
\qquad
onto function \qquad
\qquad
vertical line test \qquad
\qquad
\qquad
\qquad

Lesson 2-1 (continued)

Relations and Functions

 pp. 61-63Describe a method of visual inspection for determining if a given relation is an onto function, a one-to-one function or neither.

Match each domain element to the correct range element by drawing a line between the two. Use the function $f(x)=3 x^{2}+x-5$.

Helping You Remember

Look up the words dependent and independent in a dictionary. How can these words help you distinguish between independent and dependent variables?
\qquad
\qquad
\qquad
\qquad
\qquad

2-2 Linear Relations and Functions

What You'll Learn

Scan the text in Lesson 2-2. Write two facts you learned about linear functions and relations as you scanned the text.

1. \qquad
\qquad
2. \qquad

Active Vocabulary

Review Vocabulary Label the diagram using the words at the left. (Lesson 2-1)
independent variable
dependent variable
constant

linear relation linear equation

New Vocabulary Fill in each blank with the correct term or phrase.
a relation in which the graph of the relation is a
\qquad
an equation with exponents no greater than \qquad and which does not contain the operation of \qquad of a constant by a variable
linear function
a function whose \qquad satisfy a linear function of the form $f(x)=$ \qquad $x+$ \qquad

standard form

 y-interceptthe \qquad of the point at which a graph crosses the x-intercept
the \qquad of the point at which a graph crosses the
\qquad
\qquad
\qquad
Lesson 2-2 (continued)

Main Idea

Linear Relations and Functions

pp. 69-70

Standard Form
pp. 70-71

Details

Circle the characteristic of each function that makes it nonlinear. Sketch the graph of each function to show that it is nonlinear.

$$
f(x)=3 x^{2}-1 \quad f(x)=\frac{1}{x}+2
$$

$$
f(x)=\sqrt{x+2}
$$

Compare and contrast finding the x-intercept and the \boldsymbol{y}-intercept for an equation by filling in the chart below.

	Finding x-intercept	Finding y-intercept
What is the same?		
What is different?		

Helping You Remember

Your friend thinks that she should let $x=0$ to find the x-intercept. How would you explain to her how to remember the correct method?
\qquad
\qquad

2-3 Rate of Change and Slope

What You'll Learn Skim the lesson. Write two things you already know about rate of change and slope.

1. \qquad
\qquad
2. \qquad
\qquad

Review Vocabulary Write the definition of the word ratio and list three ways that a ratio can be expressed. By scanning ahead, how are ratios expressed in this lesson?
\qquad
\qquad
\qquad
\qquad

New Vocabulary Write the definition next to each term.
rate of change \qquad
slope
\qquad
\qquad
Lesson 2-3 (continued)

Main Idea

Rate of Change

pp. 76-77

Details

Complete the tables so that Table A has a rate of change of 30 people per year and Table B has a rate of change of -3.2 inches per minute.

Table A

Year	People
0	
4	125
5	
8	

Minutes	Inches
1	
2	
4	38.6
7	

Use each of the indicated methods to calculate the slope of the line described.

Did you get the same slope all three times?

Helping You Remember
 Label the

 shaded boxes in the diagram as a pictorial reminder of negative, positive, zero, and undefined slope.
\qquad
\qquad

2-4 Writing Linear Equations

What You'll Learn

2.

Skim the Examples for Lesson 2-4. Predict two things you think you will learn about writing linear equations.

1. \qquad
\qquad
\qquad
\qquad

Active Vocabulary

Review Vocabulary Write the slope formula, and then write a verbal description of how to use the slope formula. (Lesson 2-3)
\qquad
\qquad
\qquad

New Vocabulary Label the equations with the correct terms.
point-slope form
slope-intercept form
y-coordinate of point on
the line
slope
y
y-coordintercept
\qquad
\qquad

Lesson 2-4 (continued)

Main Idea

Details

Forms of Equations

pp. 83-85

The directions "Write the equation of the line given . . ." can take on many variations. List three situations when using the Slope-Intercept Form would be appropriate and two situations when using the Point-Slope Form would be appropriate.

> Slope Intercept Form $$
y=m x+b
$$

> Point Slope Form
> $y-y_{1}=m\left(x-x_{1}\right)$

Parallel and Perpendicular Lines

 pp. 85-86Write an equation for each of the three following lines.

1. a line which has an x-intercept of 4 and a y-intercept of -2
2. a line parallel to the line in Exercise 1
3. a line perpendicular to the line in Exercise 1
\qquad
\qquad

2-5 Scatter Plots and Lines of Regression

What You'll Learn

Skim Lesson 2-5. Predict two things that you expect to learn based on the headings and the Key Concept box.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

\qquad the equation for a line of best fit
when a scatter plot resembles a line which falls from left to right
\qquad - a set of data which contains two variables
a line which closely approximates the scatter plot for a set of data
New Vocabulary Write the correct term beside each definition. data
a set of bivariate data graphed as order pairs on a coordinate plane
\qquad when a scatter plot resembles a line which rises from left to right
a line of best-fit which is calculated mathematically so that the distance of all data points to the line of fit are minimized
a measure of how well data are modeled by a line of best fit

Vocabulary Link Circle each word which would likely describe the given statistical relationship.
the number of absences and the final grades of seven students randomly selected from an algebra class
negative positive no weak strong correlation correlation correlation correlation correlation
\qquad
\qquad
Lesson 2-5 (continued)

Scatter Plots and Prediction Equations pp. 92-93

Lines of Regression

 pp. 94-95
Details

Make a scatter plot and give a verbal description of the correlation. Determine a line of best fit for the data.

The table shows the number of sick days taken and the ages of seven random employees from a retail store.

Age	18	26	39	48	53	58
Days	16	12	9	5	6	2

Make detailed notes about the keystrokes necessary to perform linear regression on your graphing calculator.

Making the Scatter Plot	Performing Regression

Helping You Remember

Look up the word scatter in a dictionary. How can its definition help you to remember the difference between a scatter plot and the graph of a linear equation?
\qquad
\qquad

2-6 Special Functions

What You'll Learn Scan the text under the Now heading. List two things you will learn about in the lesson.

1. \qquad
\qquad
2. \qquad
\qquad

Review Vocabulary Graph each on a number line. (Lesson 1-6)

New Vocabulary Write the definition next to each term.
\qquad
piecewise-defined function
absolute value function
piecewise-linear function
\qquad
\qquad
Lesson 2-6 (continued)

Main Idea

Piecewise-Defined Functions
pp. 101-102

Details

Provide either the graph or the function notation for each piecewise-defined function. Identify the domain and range for each.

Step Functions and
Absolute Value Functions
pp. 102-104

1. 【4.5】
2. $|\llbracket-8.2 \rrbracket|$
3. $|\llbracket 12.9 \rrbracket-15|$
4. $3|15-7|$

Evaluate each expression.

Helping You Remember

Many students find the greatest integer function confusing. Explain how you can use a number line to find the value of this function for any real number.
\qquad
\qquad

2-7 Parent Functions and Transformations

What You'll Learn

Skim the Examples for Lesson 1-2. Predict two things you think you will learn about transformations.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

New Vocabulary Write the correct term beside each definition.
\qquad - the simplest graph in a family of similar graphs
\qquad $f(x)=x$
a group of graphs which display similar characteristics
the straight line which an image is reflected over
$f(x)=x^{2}$
\qquad movement of an image vertically or horizontally
\qquad - $f(x)=a$
\qquad when an image is flipped over a straight line
a transformation which shrinks or enlarges a figure

Review Vocabulary Write the name of each transformation.

\qquad
\qquad

Main Idea

Parent Graphs

pp. 109-110

Transformations

pp. 110-112

Details

Complete the table below.

Function Name	Function Notation	General Shape	Domain and Range
Constant			
Absolute Value		"V" shape	
Quadratic		"U" shape	

Compare and contrast the transformations for each pair of functions below by completing the chart.

Pair of Functions	How are the transformations the same?	How are the transformations different?
$f(x)=\|x\|+4$ and $g(x)=\|x+4\|$		
$f(x)=(3 x)^{2}$ and $g(x)=3 x^{2}$		
$f(x)=-\|x\|$ and $g(x)=\|-x\|$		

Helping You Remember

Describe how grouping symbols affect
\qquad

2-8 Graphing Linear and Absolute Value Inequalities

What You'll Learn
 Scan the text in Lesson 2-8. Write two facts you learned about graphing inequalities as you scanned the text.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

Review Vocabulary Explain how the solution set for $3 x-4=8$ differs from the solution set of $3 x-4>8$ and the solution set of $3 x-4 \geq 8$.
\qquad
\qquad
\qquad

boundary

\qquad
\qquad
Lesson 2-8 (continued)

Main Idea

Graph Linear

 Inequalitiespp. 117-118

Details

Sequence the steps for graphing a linear inequality by placing one step in each box.

Describe how the graphs of $y>|x+2|$ and $y \leq|x+2|$ are similar. How are they different?

Similarities	Differences

Helping You Remember

How can what you know about graphing inequalities on a number line help you graph inequalities in a coordinate plane?
\qquad
\qquad
\qquad DATE \qquad
\qquad

CHAPTER
 2 Linear Relations and Functions

Tie It Together

Provide details in each graphic organizer.

\qquad
\qquad
\qquad

cmapter
 2 Linear Relations and Functions

Before the Test

Now that you have read and worked through the chapter, think about what you have learned and complete the table below. Compare your previous answers with these.

1. Write an \mathbf{A} if you agree with the statement.
2. Write a \mathbf{D} if you disagree with the statement.

Linear Relations and Functions	After You Read
- A relation is always a function, but a function is not always a relation.	
- Rate of change is the slope.	
- The slope-intercept form of a linear equation is used when there is an ordered pair and slope is given.	
- A line of regression is the change of y over the change of x.	
- In the graph of a linear inequality, the line is the boundary.	

Math Online Visit glencoe.com to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 2.

Are You Ready for the Chapter Test?

Use this checklist to help you study.I used my Foldable to complete the review of all or most lessons.I completed the Chapter 2 Study Guide and Review in the textbook.I took the Chapter 2 Practice Test in the textbook.I used the online resources for additional review options.I reviewed my homework assignments and made corrections to incorrect problems.I reviewed all vocabulary from the chapter and their definitions.

- Review information daily to keep it fresh and to reduce the amount of last minute studying before test day. Look over the notes from class, readings, and corrected homework to review. If you have confusion about any concepts get them cleared up before test day.
\qquad
\qquad

3

 Systems of Equations and Inequalities

 Systems of Equations and Inequalities}

Before You Read

Before you read the chapter, think about what you know about systems of equations and inequalities. List three things you already know about them in the first column. Then list three things you would like to learn about them in the second column.

K	W
What I know...	

OLDA A^{\prime} LS Study Organizer

Construct the Foldable as directed at the beginning of this chapter.

Note Taking Tips

- Before each lesson, skim through the lesson and write any questions that come to mind in your notes.
As you work through the lesson, record the answer to your question.
- When you take notes, always write clear and concise notes so they can be easily read when studying for a quiz or exam.
\qquad

anurter
 3 Systems of Equations and Inequalities

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on optimization with linear programming, one fact might be that to optimize means to seek the best price or amount to minimize costs or maximize profits. After completing the chapter, you can use this table to review for your chapter test.

Lesson	Fact		
3-1Solving Systems of Equations by Graphing			
			3-2Solving Systems of Equations Algebraically
:---			
3-3Solving Systems of Inequalities by Graphing			
3-4Optimization with Linear Programming			
3-5Systems of Equations in Three Variables			

\qquad
\qquad

3-1 Solving Systems of Equations by Graphing

What You'll Learn

2.

Scan the text under the Now heading. List two things you will learn about in the lesson.

1. \qquad
\qquad
\qquad
\qquad
\qquad

Active Vocabulary

consistent inconsistent break-even point
system of equations
independent
dependent

Review Vocabulary Make a table of values which satisfy the equation $x+y=6$. Graph the equation using the table of values. (Lesson 2-1)

\boldsymbol{x}					
\boldsymbol{y}					

How many ordered pairs would satisfy the equation? Justify your answer.

New Vocabulary Match the term with its definition by drawing a line to connect the two.
a set of two or more equations that contain the same variables
a system of equations that has at least one solution
a system of equations that has an infinite number of solutions
in business applications, the point at which the income equals the cost
a system of equations that has exactly one solution
a system of equations that has no solutions
\qquad
\qquad
Lesson 3-1 (continued)

Main Idea

Details

Solve Systems Using Tables and Graphs pp. 135-136

Classify Systems of Equations
pp. 137-138

Find the solution for the system of equations first by making a table of values and then by graphing.

\[

\]

\qquad
\qquad

\boldsymbol{x}				
\boldsymbol{y}				

solution

Sketch one or two systems of equations which satisfy each description.

Helping You Remember

Look up the words consistent and inconsistent in a dictionary. How can these words help you distinguish between consistent and inconsistent systems of equations?
\qquad
\qquad
\qquad
\qquad

3-2 Solving Systems of Equations Algebraically

What You'll Learn
 Scan the text in Lesson 3-2. Write two facts you learned about solving systems of equations algebraically as you scanned the text.

1. \qquad
\qquad
2. \qquad

Active Vocabulary

Review Vocabulary Write the property of equality which is represented by each example. (Lessons 1-2 and 1-3)
$3 x+2 y=12$ is equivalent to $6 x+4 y=24$
$-3 x+3 x=0$
\qquad

New Vocabulary Write the definition next to each term.
substitution method
elimination method
\qquad
\qquad

Main Idea

Substitution

pp. 143-144

Elimination

pp. 144-146

Details

Solve the system of equations twice using the substitution method. In the first column, solve for x initially. In the second, solve for y initially.

Transform each system of equations such that a variable will be eliminated when the equations are added.

\qquad
\qquad
\qquad

3-3 Solving Systems of Inequalities by Graphing

What You'll Learn

Scan Lesson 3-3. List two headings you would use to make an outline of this lesson.

1. \qquad
2.

Active Vocabulary

New Vocabulary Label the boundary lines and the solution region for the system of inequalities shown.

Main Idea

Systems of Inequalities pp. 151-152

Fill in the diagram below to compare and contrast solving a system of equations by graphing with solving a system of inequalities by graphing.

\qquad
\qquad
Lesson 3-3 (continued)

Main Idea

Details

Finding Vertices of an Enclosed Region
pp. 152-153

Determine the three systems of equations that you would solve in order to determine the vertices of the triangle formed by the system of inequalities. For each system, select an appropriate method for solving and justify your selection.
$2 y \leq x+8$
$y+2 x>-5$
$y-4 x<-5$

System \#1	System \#2	System \#3
Method?	Method?	Method?

When you graph the boundary lines for a system of inequalities, how can the inequality symbols help you remember whether to use a dashed or solid line?
\qquad
\qquad
\qquad

Helping You Remember

\qquad
\qquad

3-4 Optimization with Linear Programming

What You'll Learn

Skim Lesson 3-4. Predict two things that you expect to learn based on the headings and the Key Concept box.

1. \qquad
\qquad
2. \qquad

Active Vocabulary

\qquad -
the region bounded by the constraints that are represented by the graphs of the inequalities
\qquad - to seek the price that will minimize costs and/or maximize profits

- the process of finding maximum or minimum values of a function given constraints
\qquad
\qquad - a feasible region which is enclosed by constraints
- business limitations on production caused by various business variables
a feasible region which is not completely enclosed by constraints

Vocabulary Link Evaluate the function $f(x)=-2 x+1$ for $x=-2,-1$ and 0 . Evaluate the function $g(x, y)=2 x+4 y$ given $(x, y)=(3,2),(4,-1)$ and $(5,8)$.
$f(-2)=$ \qquad $g(3,2)=$ \qquad
$f(-1)=$ \qquad

$$
g(4,-1)=
$$

$$
f(0)=
$$

\qquad
\qquad
\qquad

Maximum and Minimum Values
pp. 160-161

Complete the chart below with the steps for completing a linear programming problem. Write the steps on the slanted lines and fill in details on the horizontal lines. Step 4 is for unbounded regions only.

Optimization

p. 162

Write a system of inequalities and an optimization function to represent the following business application. Describe how you would use the inequalities and the function to solve the problem.

At Burger Barn, a double contains 2 meat patties and 6 pickles, and a triple contains 3 meat patties and 3 pickles. At the end of a shift, only 24 meat patties and 48 pickles remain. If a double burger sells for $\$ 1.20$ and a triple burger sells for $\$ 1.50$, then how many of each should be made to maximize revenue?

Revenue Function	Description of Solution Process
System of Inequalities	

\qquad

3-5 Systems of Equations in Three Variables

What You'll Learn

Skim the Examples for Lesson 3-5. Predict two things you think you will learn about systems of equations in three variables.

1. \qquad
\qquad
2. \qquad

Active Vocabulary
 ordered triple

New Vocabulary Fill in each blank with the correct term or phrase.

The solution to a system of equations in \qquad
variables is written in the form of \qquad The graphs of a system in three variables form a system of \qquad .

Planes can intersect in a \qquad in the same \qquad or in a single \qquad —.

Vocabulary Link Provide a real world example for each of the following situations. Look around your classroom for examples.

1. three planes which intersect in one point
\qquad
2. three planes which intersect in a line
\qquad
3. three planes which are parallel
\qquad
4. three planes which intersect in two lines
\qquad
\qquad
Lesson 3-5 (continued)

Main Idea

Systems in Three Variables

pp. 167-169

Real-World Problems

pp. 169-170

Details

Solve the system of equations by completing the diagram.

$$
\begin{aligned}
& x-2 y+4 z=3 \\
& x+3 y-2 z=6 \\
& x-4 y+3 z=-5
\end{aligned}
$$

Pick the first variable to eliminate. \square

Pick 2 equations and eliminate x.

Pick 2 equations and eliminate x.

Substitute the two variables found above to find the third variable.

Write a word problem which could be identified by the following system of equations. Identify each variable.
$x+y+z=13 ; 0.05 x+0.10 y+0.25 z=1.75 ; y=2 x$

\qquad
\qquad
\qquad
3 Systems of Equations and Inequalities

Tie It Together

Fill in each graphic organizer paying attention to the depicted relationships between the organizers. Add details if space permits.

\qquad

anurter
 Systems of Equations and Inequalities

Before the Test

Review the ideas you listed in the table at the beginning of the chapter. Cross out any incorrect information in the first column. Then complete the table by filling in the third column.

K	W	L
What I know...	What I want to find out...	What I learned...

Math Online Visit glencoe.com to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 3.

Are You Ready for the Chapter Test?

Use this checklist to help you study.I used my Foldable to complete the review of all or most lessons.I completed the Chapter 3 Study Guide and Review in the textbook.I took the Chapter 3 Practice Test in the textbook.I used the online resources for additional review options.I reviewed my homework assignments and made corrections to incorrect problems.I reviewed all vocabulary from the chapter and their definitions.

- If possible, rewrite your notes. Not only can you make them clearer and neater, rewriting them will help you remember the information.
\qquad
\qquad

Before You Read

Before you read the chapter, think about what you know about matrices. List three things you already know about them in the first column. Then list three things you would like to learn about them in the second column.

K	W
What I know...	

OLDA \int^{\prime} LES
Study Organizer
Construct the Foldable as directed at the beginning of this chapter.

\int Note Taking Tips

- A visual study guide like the Foldable shown above helps you organize what you know and remember what you have learned.
You can use them to review main ideas or keywords.
- When you take notes, draw a visual (graph, diagram, picture, chart) that presents the information introduced in the lesson in a concise, easy-to-study format.
\qquad
\qquad

cowne
 Matrices

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on transformations with matrices, one fact might be that a translation occurs when a figure is moved from one location to another without changing its size, shape, or orientation. After completing the chapter, you can use this table to review for your chapter test.

Lesson	Fact
4-1 Introduction to Matrices	
4-2 Operations with Matrices	
4-3 Multiplying Matrices	
4-4 Transformations with Matrices	

\qquad
\qquad

4-1 Introduction to Matrices

What You'll Learn

2.

Scan the text under the Now heading. List two things you will learn about in the lesson.

1. \qquad
\qquad
. \qquad
\qquad

New Vocabulary Write the term next to its definition.
 $m \times n$, where m is the number of rows and n is the number of columns
\qquad
\qquad - a rectangular array of variables or constants in horizontal rows and columns
\qquad
\qquad
a matrix which has the same number of rows as columns
\qquad two matrices which has the same dimensions and which have equivalent corresponding elements
\qquad
$\xrightarrow{\longrightarrow}$ a matrix in which every element is zero
\qquad
\qquad

Lesson 4-1 (continued)

Main Idea

Details

Organize and Analyze Data

pp. 185-187

Use matrix \boldsymbol{A} to answer the following questions.

$$
A=\left[\begin{array}{rrrrr}
3 & 2 & -6 & 1 & 5 \\
12 & 4 & -6 & 3 & 8 \\
11 & 0 & 0.5 & 9 & -1 \\
-25 & \frac{3}{4} & -2 & 7 & 15
\end{array}\right]
$$

What are the dimensions of Matrix A ? \qquad
What is the value of a_{31} ? \qquad of a_{43} ? \qquad
What is the value of a_{14} ? \qquad of a_{53} ? \qquad
What is the sum of the elements in column $3 ?$ \qquad

What is the average of the elements in row 2 ? \qquad

Provide an example matrix for each of the given descriptions.

| Equivalent |
| :---: | :---: |
| Square Matrices | | Square Matrix |
| :---: |
| With 4 Rows | | Non- |
| :---: |
| Equivalent Row |
| Matrices |

Helping You Remember

Some students have trouble remembering which number comes first in writing the dimensions of a matrix. Think of an easy way to remember this
\qquad
\qquad
\qquad

4-2 Operations with Matrices

What You'll Learn

2.

Skim Lesson 4-2. Predict two things that you expect to learn based on the headings and the Key Concept box.

1. \qquad
\qquad
\qquad
\qquad

Active Vocabulary

New Vocabulary Write the definition next to each term.

scalar

scalar multiplication
\qquad
\qquad
\qquad

Vocabulary Link The table below records the distance between Chicago and other major cities on a map which uses a scale of $1 \mathrm{~cm}=100$ miles.

	St. Louis	Seattle	Atlanta	Cleve- land	Orlando
Actual Mileage					
Distance on Map	2.62	17.33	5.85	5.47	9.94

Describe how the distances between the cities on the map can be converted to the actual mileages between the cities. Complete the table to show the actual mileages between the cities.
\qquad
\qquad

Main Idea

Add and Subtract Matrices
p. 193

Details

Decide if matrix addition and subtraction are commutative using matrices $A=\left[\begin{array}{rr}-3 & -2 \\ 1 & 4\end{array}\right]$ and $B=\left[\begin{array}{rr}9 & 6 \\ 0 & -7\end{array}\right]$.

Addition	Subtraction
Commutative? Yes or No	Commutative? Yes or No

Provide an example for each of the matrix properties listed in the table below.

Commutative Property of Addition	
Associative Property of Addition	
Left Scalar Distributive Property	
Right Scalar Distributive Property	

The mathematical term scalar is related to the word scale as used in a scale of miles on a map. How can this usage of the word scale help you remember the meaning of scalar?
\qquad
\qquad
\qquad

4-3 Multiplying Matrices

What You'll Learn

Skim the lesson. Write two things you already know about multiplying matrices.

1. \qquad
\qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

Review Vocabulary Write the dimension of each of the matrices shown below. (Lesson 4-1)
$A=\left[\begin{array}{cc}4 & -7 \\ 6 & 5 \\ 0 & 0.5\end{array}\right]$
Dimension of A : \qquad
$B=\left[\begin{array}{r}4 \\ 2 \\ \frac{1}{2} \\ -7\end{array}\right]$
Dimension of B : \qquad
$C=\left[\begin{array}{ccc}3 & 5 & 7 \\ -3 & 6 & 0\end{array}\right]$
Dimension of C : \qquad
$D=\left[\begin{array}{rccc}3 & -1 & 0.75 & 6 \\ -5 & 2 & 8 & 1\end{array}\right] \quad$ Dimension of $D: \square$

Circle the pairs of matrices in which the number of columns in the first matrix is equal to the number of rows in the second matrix.
A and B
A and C
A and D
B and C
B and D
C and D
B and A
C and A
D and A
C and B
D and B
D and C
\qquad
\qquad
Lesson 4-3 (continued)

Main Idea

Multiply Matrices
pp. 200-202

Multiplicative

 Propertiespp. 202-204

Details

Multiply $B=\left[\begin{array}{rrr}1 & 2 & 8 \\ 5 & -7 & 4\end{array}\right]$ by $A=\left[\begin{array}{rr}2 & 4 \\ -1 & 0 \\ 5 & 6\end{array}\right]$ to get matrix C.

Explain why the matrices $A=\left[\begin{array}{ll}2 & 4 \\ 3 & 1\end{array}\right]$ and $B=\left[\begin{array}{cc}-\frac{1}{10} & \frac{2}{5} \\ \frac{3}{10} & -\frac{1}{5}\end{array}\right]$
cannot be used as a counterexample for the Commutative Property of Multiplication.

Calculations

Explanation

\qquad
\qquad

4-4 Transformations with Matrices

What You'll Learn

Scan Lesson 4-4. List two headings you would use to make an outline of this lesson.

1. \qquad
\qquad
2. \qquad
\qquad

Review Vocabulary Match each function to a description of a transformation of the parent graph $f(x)=|x|$. (Lesson 2-7)

$$
\begin{aligned}
f(x)=3|x| & \text { a translation } \\
f(x)=|x-4| & \text { a reflection } \\
f(x)=-|x| & \text { a dilation }
\end{aligned}
$$

New Vocabulary Write the correct term beside each definition.
when a geometric figure is moved without changing its size, shape, or orientation
a matrix in which each column represents the coordinates of a polygon drawn on a coordinate plane
when a geometric figure is enlarged or reduced
a geometric figure prior to undergoing a transformation
when the points of geometric figure are mapped to new points across a line of symmetry
a geometric figure which has undergone a transformation
\qquad functions which map points of a preimage onto its image
when points of a geometric figure are mapped to new points which are rotated about a center point
\qquad
\qquad

Translations and Dilations

pp. 209-211

Reflections and Rotations

pp. 212-213

Complete the chart with detail about translations and dilations.

Trans- formation	Description of Transfor- mation	Matrix Operation Used	Example
Translation			
Dilation			

Describe the transformation that will occur if a vertex matrix is multiplied on the left by each of the following matrices.

$$
\left[\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right] \square\left[\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right]
$$

\qquad
\qquad

4-5 Determinants and Cramer's Rule

What You'll Learn

2.

Skim the Examples for Lesson 4-5. Predict two things you think you will learn about determinants and Cramer's Rule.

1. \qquad
\qquad
\qquad

Active Vocabulary

Review Vocabulary Solve each system of equations using either the substitution method or the elimination method. (Lesson 3-2)

$2 x+y=5$	$y=2 x+5$
$3 x-5 y=-25$	$x+3 y=8$

New Vocabulary Fill in the blank with the correct term or phrase.
determinant - Every \qquad matrix has a determinant. Determinants can be used to calculate the \qquad of a triangle. They can also be used to determine if a \qquad of equations has a \qquad .
second-order determinant
third-order determinant

Cramer's Rule

When the determinant of a \qquad matrix is calculated, it is called a second-order determinant. The value of a second-order determinant is the \qquad of the \qquad of the two \qquad .

When the determinant of a \qquad matrix is calculated, it is called a third-order determinant. The value of a thirdorder determinant is calculated using the \qquad rule.

You can use Cramer's Rule to solve systems of \qquad . If the determinant of the \qquad matrix is zero, then the system does not have a \qquad solution.
\qquad
\qquad

Determinants

pp. 220-222

Cramer's Rule

pp. 223-224

Complete the following steps to find the area of triangle $A B C$ with vertices $A(-2,5), B(4,1)$ and $C(0,6)$.

Substitute the vertices of $\triangle A B C$ into the formula.
$A=\frac{1}{2}\left|\begin{array}{lll}a & b & 1 \\ c & d & 1 \\ e & f & 1\end{array}\right|$

$$
\left.\begin{aligned}
& 1 \\
& 1 \\
& 1
\end{aligned} \right\rvert\,
$$

Apply the Diagonal Rule.
Sum of products 1st Diagonals \qquad of 2nd Diagonals \qquad

$$
\left(\frac{1}{2}\right)[\square-\square]=\square
$$

Simplify the formula.

Use Cramer's Rule to show that the system of equations below does not have a unique solution. Graph the system of equations to show graphically that there is not a unique solution.
$3 x-4 y=12 ;-6 x+8 y=-24$

Helping You Remember

A good way to remember a complicated procedure is to break it down into steps. Write a list of steps for evaluation of a third-order determinant using the diagonal rule.
\qquad
\qquad

4-6 Inverse Matrices and Systems of Equations

Scan the text in Lesson 4-6. Write two facts you learned about inverse matrices and systems of equations as you scanned the text.

1. \qquad
\qquad
\qquad
2. \qquad

Active Vocabulary

Review Vocabulary Given an example of each property.
(Lesson 1-2)

1. Identity Property of Addition \qquad
2. Inverse Property of Multiplication \qquad
3. Inverse Property of Addition \qquad
identity matrix New Vocabulary Label the following matrices and diagrams using the terms on the left.
matrix equation
variable matrix
constant matrix
coefficient matrix $\triangle=\xrightarrow{\left[\begin{array}{rr}3 & -5 \\ -2 & 6\end{array}\right] \text { and } B=\left[\begin{array}{ll}\frac{3}{4} & \frac{5}{8} \\ \frac{1}{4} & \frac{3}{8}\end{array}\right]}$ and $A \cdot B=B \cdot A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
\qquad
\qquad
Lesson 4-6 (continued)

Main Idea

Details

Identity and Inverse Matrices
pp. 229-231

Fill in the empty boxes below to provide a verbal description of how to use the definition of an inverse.

Use a matrix equation and the elimination method to solve the system of equations below.

$$
\begin{gathered}
x-3 y=25 \\
3 x+2 y=-2
\end{gathered}
$$

$x-3 y=25$ $3 x+2 y=-2$	
Matrix Equation Elimination Method 	

Helping You Remember

What advice would you give a classmate who is having trouble remembering how to find the inverse of a 2×2 matrix?

Matrix Equations

pp. 231-232
\qquad
\qquad
\qquad

Matrices

The It Together

Fill in each graphic organizer paying attention to the depicted relationships between the organizers.

\qquad

CHAPTER
 4
 Matrices

Before the Test

Review the ideas you listed in the table at the beginning of the chapter. Cross out any incorrect information in the first column. Then complete the table by filling in the third column.

K	W	L
What I know...	What I want to find out...	What I learned...

Math Online Visit glencoe.com to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 4.

Are You Ready for the Chapter Test?

Use this checklist to help you study.
\square I used my Foldable to complete the review of all or most lessons.I completed the Chapter 4 Study Guide and Review in the textbook.I took the Chapter 4 Practice Test in the textbook.I used the online resources for additional review options.I reviewed my homework assignments and made corrections to incorrect problems.I reviewed all vocabulary from the chapter and their definitions.

Study Tips

- To prepare to take lecture notes, make a column to the left about 2 inches wide. Use this column to write additional information from your text, place question marks, and to summarize information.
\qquad
\qquad
\qquad

CHAPTER
 5
 Quadratic Functions and Relations

Before You Read

Before you read the chapter, respond to these statements.

1. Write an \mathbf{A} if you agree with the statement.
2. Write a \mathbf{D} if you disagree with the statement.

Before You Read	Quadratic Functions and Relations
- The graph of a quadratic function is called the discriminate.	
	- Quadratic equations can be solved by graphing, factoring, or using the Square Root Property.
	- Sometimes there are imaginary solutions to equations that have no real number solutions.

OLD $\left.{ }^{\prime}\right]^{\prime} \mathrm{B}^{\prime}$ LS Study Organizer

Construct the Foldable as directed at the beginning of this chapter.

Note Taking Tips

- In addition to writing important definitions in your notes, be sure to include your own examples of the concepts presented.
- Take notes in such a manner that someone who did not understand the topic will understand after reading what you have written.
\qquad
\qquad

curvite
 Quadratic Functions and Relations

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on complex numbers, one fact might be that pure imaginary numbers are square roots of negative real numbers. After completing the chapter, you can use this table to review for your chapter test.

Lesson	Fact	
5-1 Graphing Quadratic Functions		
5-2 Solving Quadratic Equations by Graphing		
5-3 Solving Quadratic Equations by Factoring		
5-4 Complex Numbers		
5-5 Completing the Square		
5-6 The Quadratic Formula and the Discriminant		
5-7 Transformations with Quadratic Functions		
5-8 Quadratic Inequalities		
Chapter 5		Glencoe Algebra 2

\qquad
\qquad

5-1 Graphing Quadratic Functions

What You'll Learn

Scan the text under the Now heading. List two things you will learn about in the lesson.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

quadratic function
quadratic term
linear term
constant term
parabola
axis of symmetry
vertex
maximum value
minimum value

New Vocabulary Label each box with the terms at the left.

\qquad
\qquad

Main Idea

Graph Quadratic Functions

pp. 249-251

Maximium and

 Minimum Valuespp. 252-253

Details

Graph $f(x)=2 x^{2}+2+8 x$. Fill in missing verbal and mathematical steps.

Find the domain and range for the function $f(x)=-2 x^{2}+12 x-5$.

Find x-coordinate of vertex.	Domain $=\square$
Find y-coordinate of vertex.	Range $=$

Helping You Remember

How can you remember the way to use the x^{2} term of a quadratic function to tell whether it has a maximum or a minimum value?
\qquad
\qquad

5-2 Solving Quadratic Equations by Graphing

What You'll Learn

2.

Scan the text in Lesson 5-2. Write two facts you learned about solving quadratic equations by graphing as you scanned the text.

1. \qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Review Vocabulary Graph the linear function and solve the related linear equation. (Lesson 1-3)

$y=2 x-5$						$2 x-5=0$	How is the graph related to the solution of the equation?
			$4{ }^{4}$		\square		
					-		
					\longrightarrow		
		0			\vec{x}		
			\downarrow				

New Vocabulary Write the correct term beside each definition.
the solution of a quadratic equation
quadratic functions that are set equal to zero
the x-intercepts of the graph of a function
$a x^{2}+b x+c=0$, where $a \neq 0$, and a, b, and c are integers
\qquad
\qquad
Lesson 5-2 (continued)

Solve Quadratic

 Functionspp. 259-261

Estimate Solutions

pp. 261-262

Details

Show that the zeros of the function $f(x)=2 x^{2}+5 x-3$ are the roots of the equation $2 x^{2}+5 x-3=0$.

Helping You Remember
Think of a memory aid that can help you recall what is meant by the zeros of a quadratic function.
\qquad
\qquad
\qquad

5-3 Solving Quadratic Equations by Factoring

What You'll Learn

Scan Lesson 5-3. List two headings you would use to make an outline of this lesson.

1. \qquad
\qquad
2. \qquad
\qquad
Active Vocabulary

New Vocabulary Fill in each blank with the correct term or phrase.
factored form -A form of a quadratic equation written as $y=$ \qquad
where p and q represent the \qquad of the
\qquad of the equation.
FOIL method A method for changing a quadratic equation from
\qquad form to \qquad form. The foil method
uses the \qquad Property to multiply \qquad .

Vocabulary Link Make a table of values for $y=x^{2}-x-6$ and $y=(x-3)(x+2)$. Graph the equations.

\boldsymbol{x}	-5	-2	0	3	5
\boldsymbol{y}					

\boldsymbol{x}	-5	-2	0	3	5
\boldsymbol{y}					

What can you determine about the two equations?
\qquad
\qquad

Main Idea

Factored Form

p. 268

Solve Equations by

 Factoringpp. 269-271

Details

Factor each trinomial using the steps listed.

Explain the error made in the solution to the quadratic equation.

Solutions: $x^{2}-4 x-12=5$

$$
\begin{array}{lll}
(x-6)(x+2)=5 & \\
x-6=5 & \text { or } & x+2=5 \\
x=11 & & x=3
\end{array}
$$

Error: \qquad
\qquad
\qquad
\qquad
\qquad
\qquad

5-4 Complex Numbers

What You'll Learn

Active Vocabulary

Skim Lesson 5-4. Predict two things that you expect to learn based on the headings and the Key Concept box.

1. \qquad
\qquad
2. \qquad
\qquad

New Vocabulary Place each number in a box. All numbers should be used once: $-4,0,5, \frac{1}{2}, \pi, \sqrt{2}, 0.5$. (Lesson 1-2)

Real Numbers

Vocabulary Link Match the term with its definition by drawing a line to connect the two.
square root of a negative real number
\boldsymbol{i}, which is defined as $\boldsymbol{i}^{2}=-1$
a property which says that if $x^{2}=a$, then $x= \pm \sqrt{\text { a }}$
any number which can be written in the form $a+b i$, where a and b are real numbers and \boldsymbol{i} is the imaginary unit two complex numbers of the form $a+b \boldsymbol{i}$ and $a-b \boldsymbol{i}$
imaginary unit pure imaginary number
complex number
\qquad
\qquad

Main Idea

Pure Imaginary Numbers

pp. 276-277

Operations with Complex Numbers pp. 277-279

Details

Simplify the expression by completing each empty box.

Write each listed number under each category that applies.
$-7,12 i, 3+4 i, \sqrt{-12}, 0,2+i, i^{5}, \sqrt{5}, \frac{2}{3}, \frac{1}{2}+\frac{3}{2} i,-\frac{1}{3} i$

Complex	Real	Imaginary

How can you use what you know about the factors of a polynomial that is a difference of two squares to help you remember how to simplify fractions with imaginary numbers in the denominator?
\qquad
\qquad
\qquad
\qquad

5-5 Completing the Square

What You'll Learn

Skim the Examples for Lesson 5-5. Predict two things you think you will learn about completing the square.

1. \qquad
\qquad
2. \qquad

Active Vocabulary

Review Vocabulary Solve the equation using each method.
(Lessons 5-2, 5-3, and 5-4)

Factoring$x^{2}-9=0$	Graphing			
			4	
Square Root Property$x^{2}-9=0$		0		x
			\downarrow	\square

Which method do you prefer. Explain your answer.

New Vocabulary Fill in the blanks with the correct terms.
completing the square a method used to manipulate a \qquad
\qquad so that one side is a perfect
\qquad ; Once one side is a perfect square,
the \qquad Property can be used to solve the equation.
\qquad
\qquad

Lesson 5-5 (continued)

Details

Square Root Property pp. 284-285

Complete the Square pp. 285-287

Solve each equation using the Square Root Property, if possible. If not possible, explain why.

| $x^{2}-25=36$ |
| :---: | :---: |
| $x^{2}+6 x+36=100$ |
| |

Solve the equation by completing the square.
$x^{2}-8 x-25=0$
Does $\left(-\frac{8}{2}\right)^{2}=-25$? No.
\qquad
\qquad
\qquad
\qquad
\qquad

Add 25 to each side.
$\left(-\frac{8}{2}\right)^{2}=16$. Add 16 to each side.
Factor the left and simplify the right.
Solve using the Square Root Property.
Add 4 to each side.

Helping You Remember

How can you use the rules for squaring a binomial to help you remember the procedure for changing a binomial into a perfect square trinomial?
\qquad

5-6 The Quadratic Formula and the Discriminant

Skim the lesson. Write two things you already know about the quadratic formula and the discriminant.

1. \qquad
\qquad
2. \qquad

Active Vocabulary

Review Vocabulary Complete the square to solve each equation. (Lesson 5-5)

$x^{2}-2 x-15=0$	$2 x^{2}-x-3=0$

New Vocabulary Complete the Quadratic Formula and discriminant by filling in each box with the missing constant, variable or operation.

Quadratic Formula	Discriminant
$x=\frac{-b \square \sqrt{\square^{2}-4 a \square}}{\square a}$	$b^{2} \square 4 \square \square \square$

Vocabulary Link Explain how the non-mathematical meaning of the word discriminate can help you to remember the mathematical meaning of this word.
\qquad
\qquad

Lesson 5-6 (continued)

Details

Quadratic Formula

 pp. 292-295Roots and the Discriminant
pp. 295-297

Solve the quadratic equation by completing the square and by using the Quadratic Formula.

| Completing the Square |
| :---: | :---: |
| $x^{2}-4 x+12=0$ | | Quadratic Formula |
| :---: |
| $x^{2}-4 x+12=0$ |
| $a=\quad b=\quad c=$ |
| |
| |
| |
| |
| |
| |

Complete the chart about discriminants below in your own words.

Helping You Remember
Based on what you know about the discriminant, explain why it is not possible to have only one complex root.
\qquad
\qquad
\qquad

5-7 Transformations with Quadratic Functions

What You'll Learn

Skim the Examples for Lesson 5-7. Predict two things you think you will learn about transformations with quadratic functions.

1. \qquad
\qquad
2. \qquad

Active Vocabulary

Review Vocabulary Label each graph with a function.
(Lesson 2-7)

$$
\begin{array}{r}
f(x)=|x|-4 \\
f(x)=2|x| \\
f(x)=|x| \\
f(x)=|x-2|
\end{array}
$$

\qquad

\qquad
\qquad
New Vocabulary Write the definition next to the term.
vertex form
\qquad
\qquad
Lesson 5-7 (continued)

Main Idea

Details

Write Quadratic Functions in Vertex Form
pp. 305-306

Write the equation of the parabola shown to the right. Vertex Form

$$
y=a(x-h)^{2}+k
$$

Fill in known information.

Solve for a :

Write in vertex form.

$$
y=2(x-3)^{2}-4
$$

Describe how each characteristic of the quadratic function affects the graph of the quadratic function. Graph the function.

\qquad
\qquad
\qquad

5-8 Quadratic Inequalities

What You'll Learn

2.

Scan the text under the Now heading. List two things you will learn about in the lesson.

1. \qquad
\qquad
\qquad
\qquad

Active Vocabulary

quadratic inequalities

Review Vocabulary Graph the inequalities in two variables.
(Lesson 3-3)

New Vocabulary Fill in each blank with the correct term or phrase.

A quadratic inequality in two \qquad can be
graphed in the same way that you graph linear
\qquad . A quadratic inequality in two variables
that is graphed consists of a \qquad and
\qquad . A quadratic inequality in one variable can be solved using the \qquad of the related
\qquad function. The solution set is given in
\qquad
\qquad notation.
\qquad
\qquad
Lesson 5-8 (continued)

Details

Graph Quadratic Inequalities

p. 312

Solve Quadratic Inequalities
pp. 313-315

Graph the quadratic inequality $y<x^{2}+6 x+7$. Use the boxes on the left to show and explain any work.

Graph the parabola $y=-(x-2)^{2}+4$. Circle the sections of the parabola in which the y-value is greater than zero.

Write the x-values in this section of the parabola using set-builder notation.
\qquad DATE \qquad
\qquad

CHAPTER
 5 Quadratic Functions and Relations

Te It Together

Fill in the graphic organizer. Add details when possible.

\qquad
\qquad
\qquad

cupror
 5 Quadratic Functions and Relations

Before the Test

Now that you have read and worked through the chapter, think about what you have learned and complete the table below. Compare your previous answers with these.

1. Write an \mathbf{A} if you agree with the statement.
2. Write a \mathbf{D} if you disagree with the statement.

Quadratic Functions and Relations	After You Read		
- The graph of a quadratic function is called a discriminate.			
- Quadratic equations can be solved by graphing, factoring, or using the Square Root Property.			
- Sometimes there are imaginary solutions to equations that			
have no real number solutions.		\quad	- There are no real solutions when there are no x-intercepts in
:---			
the graph of a quadratic.			

Math Online Visit glencoe.com to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 5.

Are You Ready for the Chapter Test?

Use this checklist to help you study.
\square I used my Foldable to complete the review of all or most lessons.
\square I completed the Chapter 5 Study Guide and Review in the textbook.
\square I took the Chapter 5 Practice Test in the textbook.
\square I used the online resources for additional review options.I reviewed my homework assignments and made corrections to incorrect problems.
\square I reviewed all vocabulary from the chapter and their definitions.

- When studying for tests create and use graphic organizers to show relationships between concepts.
\qquad

Polynomials and Polynomial Functions

Before You Read

Before you read the chapter, think about what you know about polynomials and polynomial functions. List three things you already know about them in the first column. Then list three things you would like to learn about them in the second column.

K	W
What I know...	

Construct the Foldable as directed at the beginning of this chapter.
\int Note Taking Tips

- When you take notes, write a summary of the lesson, or write in your own words what the lesson was about.
- When taking notes, place a question mark next to anything you do not understand.
Then be sure to ask questions before any quizzes or tests.
\qquad

cuprer 6
 Polynomials and Polynomial Functions

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on solving polynomial equations, one fact might be that when factoring a polynomial, always look for a common factor first. After completing the chapter, you can use this table to review for your chapter test.

Lesson	Fact
6-1 Operations with Polynomials	
6-2 Dividing Polynomials	
6-3 Polynomial Functions	
6-4 Analyzing Graphs of Polynomial	
Functions	
6-5 Solving Polynomial Equations	
6-6 Rational Zero Theorem	
6-7 Roots and Zeros	

\qquad
\qquad

6-1 Operations with Polynomials

Mhat You't Learn

2.

Skim Lesson 6-1. Predict two things that you expect to learn based on the headings and the Key Concept box.

1. \qquad
\qquad
\qquad
\qquad

Active Vocabulary

Review Vocabulary Evaluate each expression. (Lesson 1-1)

$3 a^{2} b^{4}$, given $a=3, b=2$	$2^{a} \cdot 2^{b} \cdot 2^{c}$
	given $a=1, b=2$, and $c=3$
$\frac{2 a^{3} b}{6 a^{2} b}$, given $a=2, b=4$	$\frac{3^{a} \cdot 3^{b}}{3^{a-1} \cdot 3^{b-1}}$, given $a=3, b=1$

New Vocabulary Write the definition next to each term.
simplify
degree of a polynomial
\qquad
\qquad
\qquad
\qquad

Vocabulary Link Look up the prefixes mono and poly in the dictionary. Explain how their definitions apply to the terms monomial and polynomial.
\qquad
\qquad
\qquad
Lesson 6-1 (continued)

Main Idea

Multiply and Divide Polynomials
pp. 333-334

Operations with Polynomials
pp. 335-336

Details

Simplify each expression on the left using the given property. Use the definition of exponents on the right to check each property.

Multiply the polynomials using the diagram as a guide.

$$
\begin{aligned}
& =\quad \square \\
& =\quad \square
\end{aligned}
$$

Helping You Remember

You can always find the degree of a polynomial by remembering to look at the monomial with the greatest degree. Write two polynomials of degree 3 , two polynomials of degree 2 , and two polynomials of degree 1 .
\qquad
\qquad

6-2 Dividing Polynomials

What You'll Learn

Scan the text under the Now heading. List two things you will learn about in the lesson.

1. \qquad
\qquad
2. \qquad
\qquad

Review Vocabulary Find the quotient and the remainder in the left box. Show how to check your work using multiplication in the right box. (Prerequisite Skill)

Divide	Check
$6 \longdiv { 7 3 5 }$	

New Vocabulary Fill in the blanks with the correct term or phrase.

A process for \qquad a polynomial by a
\qquad that is simpler than \qquad
division. Instead of writing the entire polynomial for the division, only the \qquad of each \qquad is used.

Vocabulary Link If necessary, look up the word synthesizer as it pertains to music. Write a sentence that describes how a synthesizer is related to a real musical instrument.
\qquad
\qquad
\qquad
\qquad
\qquad
Lesson 6-2 (continued)

Details

Use long division to find $\left(2 x^{2}-5 x-3\right) \div(x-4)$ in the left box. Use multiplication to check your work in the right box.

Divide	Check
$x - 4 \longdiv { 2 x ^ { 2 } - 5 x - 3 }$	

Determine the quotient and remainder using synthetic division.

Quotient: \qquad Remainder: \qquad

Helping You Remember
 When you translate the numbers in the last row

of a synthetic division into the quotient and remainder, what is an easy way to remember which exponents to use in writing the terms of the quotient?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

6-3 Polynomial Functions

What You'll Learn
 Scan Lesson 6-3. List two headings you would use to make an outline of this lesson.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

polynomial in one variable
polynomial in one variable

New Vocabulary Match the term with its definition by drawing a line to connect the two.
leading coefficient
polynomial function power function end behavior quartic function
the simplest polynomial functions of the form $f(x)=a x^{b}$ where a and b are real numbers
a polynomial function of degree 5
the behavior of a graph as x approaches positive infinity or negative infinity
a polynomial function of degree 4
the coefficient of the first term of a polynomial written in standard form

a continuous function that can be described by a polynomial equation in one variable
an expression of the form $a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots a_{2} x^{2}+a_{1} x+a_{0}$, where $a_{n} \neq 0, a_{n-1}, a_{2}, a_{1}$, and a_{0} are real numbers, and n is a nonnegative integer
\qquad
\qquad
Lesson 6-3 (continued)

Polynomial Functions
pp. 348-349

Provide a polynomial function in standard form for each of the following descriptions.

1. a cubic polynomial with a lead coefficient of 4
2. a quintic polynomial with 3 terms
3. a quartic power function
4. a quadratic polynomial without a linear term

Complete the diagram with details about graphing polynomial functions.

\qquad
\qquad

6-4 Analyzing Graphs of Polynomial Functions

What You'll Learn

Skim the lesson. Write two things you already know about graphs of polynomial functions.

1. \qquad
\qquad
2. \qquad

Active Vocabulary

Review Vocabulary Place a different number in each box.
(Lesson 1-2)

Real Numbers

New Vocabulary Label the diagram with the terms listed at the left.
relative maximum
turning points
zeros
relative minimum
extrema

\qquad
\qquad
\qquad

Details

Graphs of Polynomial Functions

pp. 357-358

Maximum and Minimum Points

pp. 358-359

Determine if $f(x)=x^{3}+x^{2}-4$ has at least one real zero between $x=1$ and $x=2$.

Find $f(1)$.	Is the graph of $f(x)$ above or below the x-axis at $x=1 ?$	There is at least one zero, could be more.
Find $f(2)$.	Is the graph of $f(x)$ above or below the x-axis at $x=2 ?$	Is one above and the other below?
Cannot be sure if there is a zero or not.		

The graph of $f(x)$ is shown below. Answer the following questions based on the graph.

- Label each turning point as a maximum or a minimum and with the approximate ordered pair.
- What is the least possible degree of $f(x)$? \qquad

Helping You Remember

The origins of words can help you remember their meaning and to distinguish between similar words. Look up maximum and minimum in a dictionary and describe their origins (original language and meaning).
\qquad
\qquad

6-5 Solving Polynomial Equations

What You'll Learn

Scan the text in Lesson 6-5. Write two facts you learned about solving polynomial functions as you scanned the text.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

Review Vocabulary Explain how to recognize and factor a difference of two squares polynomial. Provide two examples. (Lesson 5-3)
\qquad
\qquad
\qquad
\qquad
\qquad

Example 1:	Example 2:

New Vocabulary Write the correct term beside each definition.
a polynomial in x rewritten in the form $a u^{2}+b u+c$
a polynomial that cannot be factored
\qquad
\qquad

Lesson 6-5 (continued)

Main Idea

Details

Factor Polynomials
pp. 368-370

Solve Polynomial Equations
pp. 370-371

Factor using the formulas for the sum and difference of two cubes. Multiply to check the factors.

Factor: $c^{3}-64 d^{3}$	Factor: $8 x^{3}-1$

Solve $x^{6}+7 x^{3}=8$.

|l|l| \begin{tabular}{|l|l|}

\hline | Rewrite the equation so that |
| :--- |
| the first term is squared, the |
| second term is linear, and the |
| third term is a constant. |

\hline
\end{tabular}

	Factor and use the Zero Product Property.

Helping You Remember

Some students have trouble remembering the correct signs in the formulas for the sum and difference of cubes. What is an easy way to remember the correct signs?
\qquad
\qquad
\qquad
\qquad

6-6 The Remainder and Factor Theorems
 (Space for State Standard)

What You'll Learn
 Skim the Examples for Lesson 6-6. Predict two things you think you will learn about the Remainder and Factor Theorems.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

Review Vocabulary Find the quotient and remainder using long division and synthetic division. (Lessons 6-3 and 6-5)

$$
\left(x^{2}+10 x+16\right) \div(x+8)
$$

Long Division	Synthetic Division

New Vocabulary Write the definition next to each term.
synthetic substitution \qquad
\qquad
\qquad
depressed polynomial \downarrow
\qquad
\qquad
\qquad
Lesson 6-6 (continued)

Details

Synthetic Substitution

pp. 377-378

Use synthetic substitution to determine the value of $f(3), f(-2)$ and $f(5)$ given $f(x)=3 x^{3}-4 x^{2}+7 x+5$.

1. $f(3)$
2. $f(-2)$
3. $f(5)$

Factors of Polynomials p. 379

Write a true statement using given and the provided vocabulary term.

Helping You Remember

Think of a mnemonic for remembering the sentence, "Dividend equals quotient times divisor plus remainder."
\qquad
\qquad

6-7 Roots and Zeros

What You'll Learn \quad Scan Lesson 6-7. List two headings you would use to make an outline of this lesson.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

Review Vocabulary Explain how you can use the graph of the function $f(x)=x^{2}-7 x+12$ to find the solutions to the equation $x^{2}-7 x+12=0$. (Lesson 5-2)

Vocabulary Link Look up and provide a definition for the terms fundamental, theorem, and algebra. Using these definitions, write a conjecture sentence about a Fundamental Theorem of Algebra.

fundamental

theorem
\qquad
\qquad
\qquad
\qquad
algebra
\qquad
\qquad

Details

Write a true statement using the given and the provided vocabulary term.

Rewrite each false statement below so that it will be a true statement.

1. If $6+5 i$ is a zero of a function, then $-6+5 i$ is also a zero of the function.
2. If the function $f(x)$ has zeros of $3,-4$, and $6 i$, then the function of least degree in factored form might be: $f(x)=(x+3)(x-4)(x+6 i)(x-6 i)$.
3. The number of positive real zeros for $f(x)=x^{4}+3 x^{3}-2 x^{2}+x-4$ is 3 .
\qquad
\qquad

6-8 Rational Zero Theorem

What You'll Learn

Scan Lesson 6-8. Predict two things you think you will learn about the Rational Zero theorem.

1. \qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad

Active Vocabulary

Review Vocabulary Identify the parts of the polynomial function below. (Lesson 6-3).
$6 x^{5}+17 x^{4}-8 x^{3}+7 x-9$

The leading coefficient is \qquad .

The constant is \qquad .

The degree of the polynomial is \qquad .

New Vocabulary Fill in each blank to complete the Rational Zero Theorem.

Rational Zero Theorem If $P(x)$ is a polynomial function with integral coefficients, then every rational \qquad of $P(x)=0$ is of the form
\qquad , a rational number in simplest form, where p is a factor of the \qquad and q is a factor of the
\qquad _.
\qquad
\qquad
\qquad

Lesson 6-8 (continued)

Main Idea

Details

Identify Rational Zeros

p. 391

List all of the possible zeros of each function.

1. $3 x^{3}+20 x-6$
2. $8 x^{4}-3 x^{3}-2 x^{2}-2 x+1$
3. $5 x^{7}+9 x^{4}-3 x^{2}-2$
4. $x^{7}-x^{6}+x^{5}+x^{4}-x^{3}+x^{2}-x+1$

Complete the graphic organizer to show the steps for finding rational zeros.

Once a zero is found, find zeros of the remaining polynomial.

Helping You Remember

How can you use the linear equation $a x+b=0$ to help you remember which numbers go in the numerator and which go in the denominator when listing the possible zeros of a polynomial function?
\qquad DATE \qquad
\qquad

6 Polynomials and Polynomial Functions

Tie It Together

Fill in the graphic organizer.

\qquad
\qquad
\qquad

chaptex
 Polynomials and Polynomial Functions

Before the Test

Review the ideas you listed in the table at the beginning of the chapter. Cross out any incorrect information in the first column. Then complete the table by filling in the third column.

K	W	L
What I know...	What I want to find out...	What I learned...

Math Online Visit glencoe.com to access your textbook, more examples, self-check quizzes,

 personal tutors, and practice tests to help you study for concepts in Chapter 6.
Are You Ready for the Chapter Test?

Use this checklist to help you study.I used my Foldable to complete the review of all or most lessons.I completed the Chapter 6 Study Guide and Review in the textbook.I took the Chapter 6 Practice Test in the textbook.I used the online resources for additional review options.I reviewed my homework assignments and made corrections to incorrect problems.I reviewed all vocabulary from the chapter and their definitions.

Study Tips

- While note-taking use abbreviations to use less time and room. Write neatly and place a question mark by any information that you do not understand.
\qquad
\qquad
\qquad

Inverses and Radical Functions and Relations

Before You Read

Before you read the chapter, respond to these statements.

1. Write an \mathbf{A} if you agree with the statement.
2. Write a \mathbf{D} if you disagree with the statement.

Before You Read	Inverses and Radical Functions and Relations
- An inverse relation is the set of ordered pairs when positive values become negative and negative values become positive.	
	- A square root function is a type of radical function.
	- The graph of an inequality on a coordinate plane has a boundary and shaded region.
	- Operations like addition and subtraction can not be performed on radicals.
	To undo an nth root, raise the radical expression to the nth power.

FOLDABLES Study Organizer Construct the Foldable as directed at the beginning of this chapter.

Note Taking Tips

- When you take notes in geometry, be sure to make comparisons among the different formulas and concepts.
For example, how are pyramids and cones similar? different? This will help you learn the material.
- When you take notes, it is often a good idea to use symbols to emphasize important concepts.
\qquad

cuptre
 7 Inverses and Radical Functions and Relations

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on solving radical equations and inequalities, one fact might be that you can solve a radical equation by raising each side of the equation to a power. After completing the chapter, you can use this table to review for your chapter test.

Lesson	Fact
7-1 Operations on Functions	
7-2 Inverse Functions and Relations	

\qquad
\qquad
\qquad

7-1 Operations on Functions

What You'll Learn Scan the text in Lesson 7-1. Write two facts you learned about operations on functions as you scanned the text.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

Review Vocabulary Write the set-builder notation for the intersection of set A and B. (Lesson 1-5)
$A=\{x \mid x>8\} \quad B=\{x \mid-5<x<15\}$

New Vocabulary Fill in each blank with the correct term or phrase.
\qquad functions in which the
\qquad of one function are used to
\qquad a second function

Vocabulary Link How does the definition of a composite number relate to the definition of a composite function? How is it different than the definition of a composite function?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Lesson 7-1 (continued)

Main Idea

Details

Given $f(x)=3 x^{2}+2$ and $g(x)=3 x-1$, find each function.

Find $[f \circ g](a)$ and $[g \circ f](a)$ for the pair of functions:

$$
f(x)=2 x^{2}-1 \text { and } g(x)=x+7
$$

Helping You Remember

Write three sentences that explain how to remember the correct order in which to apply the two original functions when evaluating a composite function. Use the word closest in the first sentence, the words inside and outside in the second, and the words left and right in the third.
\qquad
\qquad
\qquad

7-2 Inverse Functions and Relations

What You'll Learn

Skim Lesson 7-2. Predict two things that you expect to learn based on the headings and the Key Concept box.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

Review Vocabulary Solve each equation for the indicated variable. (Lesson 1-3)

$d=r \cdot t$		
Solve for t.	$y=m x+b$ Solve for m.	$a^{2}+b^{2}=c^{2}$ Solve for a.

New Vocabulary Write the definition next to each term.
\qquad

Vocabulary Link Inverses can be related to real-world situations. Explain how the function "reverse directions" is an inverse for the function "get driving directions" on an Internet-mapping program.
\qquad
Lesson 7-2 (continued)

Main Idea Details

Find the inverse of $f(x)=3 x+1$.

Verifying Inverses p. 419

Determine if $f(x)=x^{2}+1$ and $g(x)=\sqrt{x-1}$ are inverses.

Find $[f \circ g](x)$	Find $[g \circ f](x)$

Yes or No? Justify:

Helping You Remember

A good way to remember something new is to relate it to something you already know. How are the vertical and horizontal line tests related?
\qquad
\qquad
\qquad
\qquad
\qquad

7-3 Square Root Functions and Inequalities

What You'll Learn

2.

Skim the Examples for Lesson 7-3. Predict two things you think you will learn about square root functions and inequalities.

1. \qquad
\qquad
\qquad

Review Vocabulary Describe how each component of this quadratic function transforms the graph of the parent quadratic function $y=x^{2}$. (Lesson 5-7)

New Vocabulary Write the correct term beside each definition.
an inequality involving square roots
a function that contains the root of a variable
a function that contains a square root of a variable
\qquad
\qquad
Lesson 7-3 (continued)

Details

Square Root Functions

pp. 424-426

Identify the domain and range for the function $f(x)=\sqrt{2 x+6}-3$.

Square Root Inequalities p. 426

The graph of $y \geq \sqrt{x+2}$ is shown below. Justify each characteristic of the graph in the box provided.

\qquad
\qquad
\qquad

7-4 nth Roots

What You'll Learn Skim the lesson. Write two things you already know about nth roots.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

Review Vocabulary Explain how the solutions to the equation $x^{2}=16$ differ from the solutions to the equation $x^{2}=-16$. (Lesson 5-6)
\qquad
\qquad
\qquad

New Vocabulary Label the diagram with the terms listed at the left.

\qquad
\qquad

Main Idea
Simplify Radicals
pp. 431-432

Approximate Radicals with a Calculator p. 433

Details

Translate each radical expression to a verbal description and then simplify.

Choose the correct symbol of equality to express the relationship between $\sqrt{29}$ and 5.385. Describe similarities and differences between the numbers.

Helping You Remember
What is an easy way to remember that a negative number has no real square roots but has one real cube root?
\qquad
\qquad
\qquad
\qquad
\qquad

7-5 Operations with Radical Expressions

What You'll Learn Scan the text under the Now heading. List two things you will learn about in the lesson.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

Review Vocabulary Explain why the expressions below are not in simplified form. Simplify each expression. (Lesson 5-4)

Expression 1: $\frac{15}{-2 i}$	Example 2: $\frac{-2 i}{6-i}$

New Vocabulary Write the definition next to each term.

rationalizing the

 denominator\qquad
\qquad
like radical expressions \qquad
\qquad
conjugate
\qquad
\qquad
Lesson 7-5 (continued)

Main Idea

Simplify Radicals

pp. 439-441

Details

Using your own words, list conditions that must be met for a radical expression to be simplified. Provide details concerning how to achieve each condition.

Add the radical expressions.

\qquad
\qquad

7-6 Rational Exponents

What You'll Learn Scan the text in Lesson 7-6. Write two facts you learned about rational exponents as you scanned the text.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

Review Vocabulary Write the definition for a rational number. Using the definition, explain why the numbers $0.25,-3$, and 5 are all rational numbers. (Lesson 1-2)
\qquad
\qquad
\qquad

Review Vocabulary Simplify each of the following expressions. (Lesson 6-1)

1. $\left(x^{3}\right)^{2}$
2. $x^{3} y^{2} \cdot x^{5} y^{-5}$
3. $\frac{16 a^{3} b^{5}}{8 a^{5} b^{-2}}$

Vocabulary Link Using the terms inverse functions and equivalent functions, describe how the functions $f(x)=x^{3}$, $g(x)=x^{\frac{1}{3}}$, and $h(x)=\sqrt[3]{x}$ are related to each other.
\qquad
\qquad

Lesson 7-6 (continued)

Main Idea

Details

Rational Exponents and Radicals

pp. 446-447

Draw a line to match the equivalent radical and exponential forms.

| $x^{\frac{3}{2}}$ | $x^{\frac{8}{2}}$ $x^{\frac{2}{3}}$ $x^{\frac{1}{2}}$
 $x^{\frac{3}{1}}$ $\boxed{x^{\frac{1}{3}}}$ $x^{\frac{2}{1}}$
 $\sqrt[3]{x^{9}}$ $\sqrt{x^{4}}$ $\sqrt[3]{x^{2}}$
 \sqrt{x} $\sqrt{x^{8}}$ $\sqrt{x^{3}}$
 $\sqrt[3]{x}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

Write an example expression which would require simplification in order to meet the stated condition.

Helping You Remember

 help you remember which part of the fraction in a rational exponent gives the power and which part gives the root.How can your knowledge of integer exponents
action in a rational exponent gives the power and
\qquad
\qquad
pp. 448-449
\qquad

7-7 Solving Radical Equations and Inequalities

What You'll Learn

Scan Lesson 7-7. List two headings you would use to make an outline of this lesson.

1. \qquad
\qquad
2. \qquad

Active Vocabulary

Review Vocabulary Solve each equation using the Square Root Property. Complete the square, if necessary.
(Lesson 5-5)

$x^{2}-16 x+64=81$	$x^{2}+7 x-8=-20$

New Vocabulary Match the term with its definition by drawing a line to connect the two.
radical equation
extraneous solution radical inequality
a solution found when solving a radical equation which does not satisfy the original equation
equations which include radical expressions
inequalities which include radical expressions

Vocabulary Link Look up the word extraneous in the dictionary. Use the word extraneous in a sentence along with the words clue, crime, and suspect.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Main Idea

Details

Solve Radical Equations

 pp. 453-455 solve the equation.Write the missing verbal and mathematical steps to

$(\sqrt{x+2})^{2}=(\sqrt{x}+2)^{2}$

Choose three x-values to test $-3 \leq x \leq 13$ as the solution set for the inequality $\sqrt{x+3} \leq 4$.

x-value \#1	x-value \#2	x-value \#3	Is $-3 \leq x \leq 13$ part of the solution set? Yes No

Helping You Remember

How can you explain to a friend to check every proposed solution in the original radical equation?
\qquad
\qquad DATE \qquad
\qquad

CHAPTER 7
 Inverses and Radical Functions and Relations

The It Together

Fill in details in each graphic organizer.

\qquad

cuprite
 Inverses and Radical Functions and Relations

Before the Test

Now that you have read and worked through the chapter, think about what you have learned and complete the table below. Compare your previous answers with these.

1. Write an \mathbf{A} if you agree with the statement.
2. Write a \mathbf{D} if you disagree with the statement.

Inverses and Radical Functions and Relations

- An inverse relation is the set of ordered pairs when positive values become negative and negative values become positive.
- A square root function is a type of radical function.
- The graph of an inequality on a coordinate plane has a boundary and shaded region.
- Operations like addition and subtraction can not be performed on radicals.
- To undo an nth root, raise the radical expression to the nth power.

Math Online
Visit glencoe.com to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 7.

Are You Ready for the Chapter Test?

Use this checklist to help you study.
\square I used my Foldable to complete the review of all or most lessons.
\square I completed the Chapter 7 Study Guide and Review in the textbook.I took the Chapter 7 Practice Test in the textbook.I used the online resources for additional review options.I reviewed my homework assignments and made corrections to incorrect problems.
\square I reviewed all vocabulary from the chapter and their definitions.

Study Tips

- Make up an invented sentence (acrostic) to remember lists or sequences. Please Excuse My Dear Aunt Sally is one acronym for remembering the order of operations (parentheses, exponents, multiply and divide, add and subtract).
\qquad

CHAPTER
 Exponential and Logarithmic Functions and Relations

Before You Read

Before you read the chapter, think about what you know about exponential and logarithmic functions and relations. List three things you already know about them in the first column. Then list three things you would like to learn about them in the second column.

K	W
What I know...	

Construct the Foldable as directed at the beginning of this chapter.

Note Taking Tips

- When taking notes, make annotations.

Annotations are usually notes taken in the margins of books you own to organize the text for review or study.

- When taking notes, summarize the main ideas presented in the lesson.

Summaries are useful for condensing data and realizing what is important.
\qquad

CHAPTER
 Exponential and Logarithmic Functions and Relations

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on graphing exponential functions, one fact might be that an asymptote is a line that a graph of a function approaches, but never touches. After completing the chapter, you can use this table to review for your chapter test.

Lesson	Fact
8-1 Graphing Exponential Functions	
8-2 Solving Exponential Equations and Inequalities	
8-3 Logarithms and Logarithmic Functions	
8-4 Solving Logarithmic Equations and	
Inequalities	
8-5 Properties of Logarithms	
8-6 Common Logarithms	
8-7Base e and Natural Logarithms Functions	

\qquad
\qquad
\qquad

8-1 Graphing Exponential Functions

What You'll Learn

2.

Skim the lesson. Write two things you already know about graphing exponential functions.

1. \qquad
\qquad
\qquad
\qquad

Review Vocabulary State the domain and range for each function. (Lessons 5-1 and 7-7)

$y=x+1$ Domain:	$y=x^{2}+1$ Domain: Range:	$y=\sqrt{x}+1$ Domain:
	Range:	Range:

New Vocabulary Write the correct term next to each definition.
the base of the exponential expression, $1+r$
\qquad a function where the base is a constant and the exponent is the independent variable
\qquad - a line that a graph of a function approaches, but never touches
\qquad the base of the exponential expression, $1-r$
\qquad - a function of the form $f(x)=b^{x}$, where $b>1$
\qquad
\qquad
\qquad

Main Idea

Exponential Growth pp. 475-477

Details

Provide details about how each characteristic of the given exponential function affects the graph of the function.

Exponential Decay

pp. 477-479

Compare and contrast an exponential growth function and an exponential decay function for each of the listed characteristics.

Value of b	End Behavior	Asymptote
y-intercept	Domain	Range

Helping You Remember

One way to remember that polynomial functions and exponential functions are different is to contrast the polynomial function $y=x^{2}$ and the exponential function $y=2^{x}$. Tell at least three ways they are different.
\qquad
\qquad
\qquad
\qquad
\qquad

8-2 Solving Exponential Equations and Inequalities

What You'll Learn Skim the Examples for Lesson 8-2. Predict two things you think you will learn about solving exponential equations and inequalities.

1. \qquad
\qquad
2. \qquad

Active Vocabulary

Review Vocabulary Provide an example of a linear equation that would be solved using the listed property of equality. (Lesson 1-3)

Addition Property of Equality	Subtraction Property of Equality
Division Property of Equality	Multiplication Property of Equality

New Vocabulary Write the definition next to each term.
exponential equation \qquad
exponential inequality \qquad
\qquad
\qquad

Main Idea

Solve Exponential Equations
pp. 485-487

Solve Exponential Inequalities
p. 487

Details

The compound interest formula is shown below. Describe each variable and identify its value in the real-world problem.
Natalie invests $\$ 2,500$ in a savings account in which interest is compounded weekly. If after ten years she has \$3,100 in the account, what is the annual rate of interest?

Fill in the missing verbal and mathematical steps to solve the exponential inequality.

\qquad
\qquad
\qquad

8-3 Logarithms and Logarithmic Functions

What You'll Learn
 Scan the text in Lesson 8-3. Write two facts you learned about logarithms and logarithmic functions as you scanned the text.

1. \qquad
\qquad
2. \qquad

Active Vocabulary

Review Vocabulary Determine the inverse for each representation of a function. (Lesson 7-2)

New Vocabulary Fill in each blank with the correct term or phrase.
logarithm For $x=b^{y}$, the variable \qquad is called the logarithm of \qquad . The notation for this logarithm is \qquad —,
which is read as y \qquad log base \qquad of \qquad .
logarithmic function \quad The function \qquad , where b is not equal to
\qquad ; the graph of this function is the \qquad graph of logarithmic functions.
\qquad
\qquad
\qquad

Lesson 8-3 (continued)

Main Idea

Details

Logarithmic Functions and Expressions

pp. 492-493

Evaluate the logarithmic expression by completing the diagrams.
Write in exponent
form.
$\log _{5} 25=y$
$\log _{5} 25$

$$
\log _{5} 25=
$$

\qquad

Compare and contrast the graph of $y=2^{x}$ with the graph of $y=\log _{2} x$ for each of the listed characteristics.

Intercepts	End Behavior	
	Asymptotes	
Domain		Range

Helping You Remember

Using the words base, exponent, and logarithm, describe an easy way to remember and apply the part of the definition of logarithm that says, " $\log _{b} x=y$ if and only if $b^{y}=x$."
\qquad
\qquad
\qquad

8-4 Solving Logarithmic Equations and Inequalities

What You'll Learn
 Scan the text under the Now heading. List two things you will learn about in the lesson.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary
 New Vocabulary Write the definition next to each term.

logarithmic equation \qquad
logarithmic inequality

Main Idea

Details

Solve Logarithmic Equations
pp. 502-503

Provide an example for the two methods for solving logarithmic equations.

Methods for Solving Logarithmic Equations	
Definition of a Logarithm	Property of Equality for Logarithmic Functions

\qquad
\qquad

Main Idea

Solve Logarithmic Inequalities

pp. 503-504

Details

Fill in the missing verbal and mathematical steps to solve the logarithmic inequality.

$$
\begin{gathered}
x-4<0 \\
x<4
\end{gathered}
$$

Helping You Remember
Explain the Property of Equality for Logarithmic Functions in your own words. How is this property used to solve equations?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

8-5 Properties of Logarithms

What You'll Learn

Skim lesson 8-5. Predict two things that you expect to learn based on the headings and the Key Concept box.

1. \qquad
\qquad
2. \qquad

Active Vocabulary

Review Vocabulary List the five properties of exponents learned in Chapter 6. Provide an example of each property. (Lesson 6-1)

Vocabulary Link Describe in your own words why the statement "A logarithm is an exponent" is true. What does this mean about the properties of logarithms that you will learn about?
\qquad
\qquad

Properties of Logarithms

pp. 509-511

Solve Logarithmic Equations
p. 511

Details

Give your own verbal description for each property of logarithms, then use the provided numerical example to verify the property.

Property	Verbal Description	Number Example
Product Property of Logarithms		
Quotient Property of Logarithms		
Power Property of Logarithms		

Solve the logarithmic equation.

$\log _{3} x+\log _{3}(x-4)=\log _{3} 12$	Use a property of
$\log _{3} x(x-4)=\log _{3} 12$	logarithms to combine the left side of the equation.
$\begin{gathered} x^{2}-4 x=12 \\ x=6 \text { or } x=-2 \end{gathered}$	Use the equality property of logarithms to write and solve a new equation.
$\log _{3}-2$ is undefined, so $x=-2$ is extraneous. $\log _{3} 6+\log _{3} 2=\log _{3} 12 \text { shows }$ $x=6 \text { is a solution. }$	Check for extraneous solutions in the original equation.

\qquad
\qquad
\qquad

8-6 Common Logarithms

What You'll Learn \quad Scan Lesson 8-6. List two headings you would use to make an outline of this lesson.

1. \qquad
\qquad
2. \qquad

Active Vocabulary New Vocabulary Fill in each blank with the correct term or phrase.

common logarithm \downarrow A logarithm with a base of \qquad that is used in many

change of base formula

A formula that allows you to write \qquad
logarithmic expressions that have \qquad bases;
for example, $\log _{4} 15=\frac{\log _{10} \square}{\log _{10} \square}$
Vocabulary Link Pretend that the log button on your calculator is broken. Explain how you can still use your calculator to find the value of $\log 200$. Find $\log 200$ without using the \log button.
\qquad
\qquad

Lesson 8-6 (continued)

Details

Common Logarithms

pp. 516-518

Answer each question concerning the solution of the exponential equation.

ponential equation.		Can each side be
Do you have to use $\log _{10}$?	$3^{x}=21$	written with the same base?
	$\log 3^{x}=\log 21$	
	$x=\frac{\log 21}{\log 3}$	Where do these decimals come from?
	$x \approx \frac{1.32}{0.48}$	
Why can you move the x to the front?	$x \approx 2.75$	

Change of Base Formula pp. 518-519

Use the change of base formula to evaluate each logarithmic expression.

$\log _{5} 100$	$=\frac{\log _{10} 100}{\log _{10} \square}$
	$\approx \square$
$\log _{6} 50=\frac{\log _{10} \square}{\log _{10} \square}$	
$\log _{2} 64$	$=\frac{\log _{10} \square}{\log _{10} \square}$
	$\approx \square$
\square	$\log _{4} 150=\square$

Helping You Remember
Sometimes it is easier to remember a formula if you can state it in words. State the change of base formula in words.
\qquad
\qquad
\qquad

8-7 Base e and Natural Logarithms

What You'll Learn
 Scan the text in Lesson 8-7. Write two facts you learned about base e and natural logarithms as you scanned the text.

1. \qquad
\qquad
2. \qquad

Active Vocabulary

Review Vocabulary Evaluate each logarithmic expression. Do not use a calculator. (Lessons 8-3, 8-5, and 8-6)

1. $\log _{5} 125$
2. $\log _{6} 18+\log _{6} 2$
3. $\log _{5} 150-\log _{5} 6$
4. $\log _{2} 2^{125}$
5. $\log 25+\log 4$
6. $\log 10^{-3}$

New Vocabulary Label the diagram with the terms listed at the left.

\qquad
\qquad

Main Idea

Base e and Natural Logarithms
pp. 525-526

Details

Write each expression in another form, then use a calculator to evaluate. Check your answer by substituting into the original expression.

Equations and
Inequalities with e and ln
pp. 527-528

Describe each variable and identify its value from the real-world problem.
Ming-Na puts $\$ 600$ in a savings account in which interest is compounded continuously. How much money will she have after 5 years if the annual interest rate is 4% ?

Helping You Remember

A good way to remember something is to explain it to someone else. Suppose that you are studying with a classmate who is puzzled when asked to evaluate $\ln e^{3}$. How would you explain an easy way to figure this out?
\qquad
\qquad
\qquad

8-8 Using Exponential and Logarithmic Functions

What You'll Learn

Skim the Examples for Lesson 8-8. Predict two things you think you will learn about using exponential and logarithmic functions.

1. \qquad
\qquad
2. \qquad

Active Vocabulary

logistic growth model
the constant k in the exponential growth formula $f(x)=a e^{k t}$
rate of continuous decay rate of continuous growth

Review Vocabulary Solve each equation. (Lessons 8-2, 8-3, and 8-6)

$3^{4 x}=27$	$\log _{2}(3 x-1)=5$	$5^{x+8}=20$

New Vocabulary Match the term with its definition by drawing a line to connect the two.
a model in which population growth has a limiting factor
the constant k in the exponential growth formula
$f(x)=a e^{-k t}$
Vocabulary Link Will the amount of carbon-14 contained in a fossil eventually reach zero? Explain your answer using the word asymptote.
\qquad
\qquad
Lesson 8-8 (continued)

Main Idea

Details

Exponential Growth and Decay

pp. 533-535
Compare and contrast the exponential functions $f(x)=a e^{k t}$ and $f(x)=a e^{-k t}$.

	$f(x)=a e^{k t}$	$f(x)=a e^{-k t}$		
Model				
Description			\quad	
:---				
Real-World Examples of Use				
Graph End				
Behavior				

Logistic Growth
 p. 536

Use the graph of the function $f(t)=\frac{75}{1+1.3 e^{-0.0985 t}}$, which models the population of frogs in a pond after t years, where $t \geq 0$, to answer the questions.

What is the maximum population of frogs? \qquad

What is the number of frogs at time zero? \qquad
After how many years will the population of frogs be 70?

\qquad DATE \qquad
\qquad

CHAPTER
 Exponential and Logarithmic Functions and Relations

The It Together

Fill in each column with one or more details. Fill in the arrowed rectangles with a description of the relationship between the rectangular boxes.

\qquad

CHAPTER Relations

Before the Test

Review the ideas you listed in the table at the beginning of the chapter. Cross out any incorrect information in the first column. Then complete the table by filling in the third column.

K	W	L
What I know...	What I want to find out...	What I learned...

Math Online Visit glencoe.com to access your vtextbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 8.

Are You Ready for the Chapter Test?

Use this checklist to help you study.I used my Foldable to complete the review of all or most lessons.I completed the Chapter 8 Study Guide and Review in the textbook.I took the Chapter 8 Practice Test in the textbook.I used the online resources for additional review options.I reviewed my homework assignments and made corrections to incorrect problems.I reviewed all vocabulary from the chapter and their definitions.

- Complete reading assignments before class. Write down or circle any questions you may have about what was in the text.
\qquad
\qquad

Rational Functions and Relations

Before You Read

Before you read the chapter, think about what you know about rational functions and relations. List three things you already know about them in the first column. Then list three things you would like to learn about them in the second column.

K	
What I know...	W

Construct the Foldable as directed at the beginning of this chapter.

Note Taking Tips

- When you take notes, write descriptive paragraphs about your learning experiences.
- When you take notes, you may wish to use a highlighting marker to emphasize important concepts.
\qquad

curver
 Rational Functions and Relations

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on solving rational equations and inequalities, one fact might be that the method for finding the mean of a set of numbers in which some elements of the set carry more importance is called the weighted average. After completing the chapter, you can use this table to review for your chapter test.

Lesson	Fact
9-1 Multiplying and Dividing Rational	
Expressions	

\qquad

9-1 Multiplying and Dividing Rational Expressions

What You'll Learn

Skim Lesson 9-1. Predict two things that you expect to learn based on the headings and the Key Concept box.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

Review Vocabulary Write each expression as a product of its prime factors. (Lesson 5-3)

1260	$x^{3}+7 x^{2}+12 x$	$9 x^{2}-81$

New Vocabulary Write the definition next to each term.

rational expression

complex fraction

Vocabulary Link Explain why the expression $3 \frac{3}{4}$ is both a rational expression and a rational number.
\qquad
\qquad
Lesson 9-1 (continued)

Details

Simplify Rational Expressions
pp. 553-556

Simplify Complex

 Fractionspp. 556-557

Check each step that is necessary when completing the specified problem.

	Simplify Rational Expressions	Multiply Rational Expressions	Divide Rational Expressions
Convert to Multiplication			
Multiply Numerators			
Multiply Denominators			
Factor Numerator			
Factor Denominator			
Eliminate Common Factors			
Simplify Remaining Factors			

Fill in the missing boxes for each complex fraction rewritten as a multiplication problem.

\qquad
\qquad

9-2 Adding and Subtracting Rational Expressions

What You'll Learn
 Scan the text in Lesson 9-2. Write two facts you learned about adding and subtracting rational expressions as you scanned the text.

1. \qquad
\qquad
2. \qquad

Active Vocabulary

Review Vocabulary Simplify each expression. (Lessons 6-1, $6-2$, and 9-1)

1. $\frac{2}{6}-\frac{5}{6}$
2. $\frac{5}{12}+\frac{4}{9}$
3. $\frac{3 x}{8}+\frac{5 x}{8}$
4. $\frac{4 x^{2}}{9 x y} \cdot \frac{15 x^{3} y^{2}}{10 x}$

Vocabulary Link Explain the relationship between the terms multiple, least common multiple, common denominator, and least common denominator for any two whole numbers.
\qquad
\qquad
Lesson 9-2 (continued)

Main Idea

Details

LCM of Polynomials

p. 562

Write the factors for $x^{2}-9$ inside the inner circle. Write the factors for $x^{3}+6 x^{2}+9 x$ that are not already represented in the inner circle between the inner and the outer circles. Write the common denominator using each factor written inside the circles.

Add and Subtract

 Rational Expressions pp. 563-564

Transform the numerators so that the rational expressions have the common denominator shown.

Helping You Remember Some students have trouble remembering

 whether a common denominator is needed to add and subtract rational expressions or to multiply and divide them. How can your knowledge of working with fractions in arithmetic help you remember this?\qquad
\qquad
\qquad

9-3 Graphing Reciprocal Functions

What You'll Learn

Skim the lesson. Write two things you already know about graphing reciprocal functions.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

New Vocabulary Fill in each blank with the correct term or phrase.
reciprocal function
a function that has an equation of the form \qquad
where $\alpha(x)$ is a \qquad function and $a(x)$ \qquad zero
hyperbola \quad the name given to the graph of a _ a line that the__ function
asymptote \quad of a _ approaches

Vocabulary Link Complete the tables of values for the reciprocal function $f(x)=\frac{1}{x}$, then complete the boxes on the right.

x	$f(x)$
0	
0.001	
0.01	
0.1	
1	
10	
100	
1000	
10000	

x	$f(x)$
-1000	
-100	
-10	
-1	
-0.1	
-0.01	
-0.001	
-0.0001	
0	

As $x \rightarrow \infty$,
$f(x) \rightarrow \square$.
As $x \rightarrow-\infty$,
$f(x) \rightarrow \square$.
As $x \rightarrow 0^{+}$,
$f(x) \rightarrow \square$.
As $x \rightarrow 0^{-}$,
$f(x) \rightarrow \square$.

\qquad
\qquad
Lesson 9-3 (continued)

Main Idea

Vertical and Horizontal Asymptotes pp. 569-570

Details

Sketch the vertical and horizontal asymptotes in the graph below. Write the equations of the asymptotes and then write the domain and range for the function.

Transformations of Reciprocal Functions pp. 571-572

Compare and contrast the graphs of $f(x)=\frac{1}{x}$ to $g(x)=\frac{3}{x-2}-5$ for each of the listed characteristics.

	Domain	Range	Vertical Asymptotes	Horizontal Asymptotes
$f(x)$				
$g(x)$				

Helping You Remember

Explain why the reciprocal function $f(x)=\frac{1}{x}$ has a domain and range of all nonzero real numbers. How can the domain and range help you remember what the graph looks like?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

9-4 Graphing Rational Functions

What You'll Learn

2.

Skim the Examples for Lesson 9-4. Predict two things you think you will learn about graphing rational functions.

1. \qquad
\qquad
\qquad
\qquad

Active Vocabulary

New Vocabulary Label the diagram with the terms listed at the left.

Vocabulary Link Look up the word oblique in the dictionary. Explain how the definitions pertaining to architecture and anatomy can help you remember the meaning of an oblique asymptote.
\qquad
\qquad
\qquad
\qquad
Lesson 9-4 (continued)

Vertical and Horizontal Asymptotes
pp. 577-579

For the rational function $f(x)=\frac{n(x)}{d(x)}$, summarize the information that can be derived from each part of the function.

Numerator Alone	Denominator Alone
Numerator and Denominator Together	

Oblique Asymptotes and Point Discontinuity
pp. 579-581

How are vertical asymptotes and point discontinuities the same? How are they different?
\qquad
\qquad

9-5 Variation Functions

What You'll Learn

2.

Scan the text under the Now heading. List two things you will learn about in the lesson.

1. \qquad
\qquad
\qquad
\qquad

Review Vocabulary Write the equation of the graph shown.
(Lesson 2-4)

New Vocabulary Write the correct term next to each definition.
a variation in which one quantity varies directly as the product of two or more quantities
a type of variation in which the product of two quantities, x and y, is equal to a constant k
the constant k in a constant of variation
a type of variation that can be expressed in the form $y=k x$
a type of variation in which one quantity varies directly and/or inversely as two or more other quantities
\qquad
\qquad
Lesson 9-5 (continued)

Details

Direct Variation and Joint Variation
pp. 586-587

Inverse Variation and Combined Variation pp. 588-589

Use the listed steps as a guide to solve the direct variation problem:

If y varies directly as x and

$$
y=24 \text { when } x=-3, \text { find } x \text { when } y=-16 .
$$

Solve the equation for the unknown.

Compare and contrast joint variation versus combined variation and direct variation versus inverse variation by completing the diagram.

\qquad

9-6 Solving Rational Equations and Inequalities

What You'll Learn

2.

Scan Lesson 9-6. List two headings you would use to make an outline of this lesson.

1. \qquad
\qquad
. \qquad
\qquad

Active Vocabulary

Review Vocabulary Determine the LCM for each set of expressions. (Lesson 9-2)

1. 12 and 20
2. $15 x$ and $24 x^{2}$
3. $(x-3)(x+3)$ and $(x+3)^{2}$
4. $x^{2}+9 x+18$ and $x^{2}-36$
rational inequality weighted average rational equation

New Vocabulary Match the term with its definition by drawing a line to connect the two.
an equation that contains one or more rational expressions
an inequality that contains one or more rational expressions
a method for finding the mean of a set of numbers in which some elements of the set carry more importance, or weight, than others

Vocabulary Link When you solved radical equations, you needed to watch out for extraneous solutions that would cause the expression under the radical to be negative. What extraneous solutions might occur when solving rational equations?
\qquad
\qquad
Lesson 9-6 (continued)

Solve Rational Equations
pp. 594-598

Solve Rational Inequalities
p. 599

Details

Solve $\frac{1}{x}+\frac{1}{x-3}=\frac{x-2}{x-3}$ by following the given steps.

Step 1: Find the LCD.

$$
\frac{1}{x}+\frac{1}{x-3}=\frac{x-2}{x-3}
$$

Step 2: Distribute the LCD.

$$
\begin{aligned}
& \square \cdot \frac{1}{x}+\square \cdot \frac{1}{x-3} \\
& =\square \cdot \frac{x-2}{x-3}
\end{aligned}
$$

Step 3: Simplify.

Step 4: Solve for x and check for extraneous solutions.

The equation $\frac{2}{3 x}=\frac{1}{2 x}+\frac{1}{24}$ has a solution of $x=4$ and an excluded value of $\boldsymbol{x}=0$. Mark these values of \boldsymbol{x} on the number line below and then test a sample value in each interval to determine the solution to the inequality $\frac{2}{3 x}<\frac{1}{2 x}+\frac{1}{24}$.

	Solution

\qquad DATE \qquad
\qquad

Rational Functions and Relations

Tie It Together

Fill in the graphic organizer. Add details if space permits.

\qquad

curver
 Rational Functions and Relations

Before the Test

Review the ideas you listed in the table at the beginning of the chapter. Cross out any incorrect information in the first column. Then complete the table by filling in the third column.

K	W	L
What I know...	What I want to find out...	What I learned...

Math Online Visit glencoe.com to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 9.

Are You Ready for the Chapter Test?

Use this checklist to help you study.
I used my Foldable to complete the review of all or most lessons.I completed the Chapter 9 Study Guide and Review in the textbook.I took the Chapter 9 Practice Test in the textbook.I used the online resources for additional review options.I reviewed my homework assignments and made corrections to incorrect problems.I reviewed all vocabulary from the chapter and their definitions.

- Be an active listener in class. Take notes, circle or highlight information that your teacher stresses, and ask questions when ideas are unclear to you.
\qquad
\qquad

Chapter
 10 Conic Sections

Before You Read

Before you read the chapter, respond to these statements.

1. Write an \mathbf{A} if you agree with the statement.
2. Write a \mathbf{D} if you disagree with the statement.

Before You Read	Conic Sections
- The shape of a parabola depends on the value of a in the equation.	
	- An equation of a circle is $\frac{x^{2}}{a^{2}}=\frac{y^{2}}{b^{2}}=1$.
	- A hyperbola has two axes of symmetry.
	- The equation of a vertical ellipse is $x^{2}+y^{2}=r^{2}$.
	The cross section of a double cone will be a parabola, hyperbola, circle, or ellipse.

FOLDABLES Study Organizer

Construct the Foldable as directed at the beginning of this chapter.

Note Taking Tips

- When you take notes, think about the order in which the concepts are being presented.
Write why you think the concepts were presented in this sequence.
- When you take notes, preview the lesson and make generalizations about what you think you will learn.
Then compare that with what you actually learned after each lesson.
\qquad
\qquad
\qquad

cupter
 10 Conic Sections

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on circles, one fact might be that the center of a circle is a given point in a plane that is equidistant from all points on the plane. After completing the chapter, you can use this table to review for your chapter test.

Lesson	Fact
10-1 Midpoint and Distance Formulas	
10-2 Parabolas	
10-3 Circles	
$10-4$ Ellipses	
Chapter 10 Hyperbolas	
$10-7$ Solving Linear-Nonlinear Systems	
102	

\qquad
\qquad

10-1 Midpoint and Distance Formulas

What You'll Learn

2.

Scan the text under the Now heading. List two things you will learn about in the lesson.

1. \qquad
\qquad
\qquad
\qquad

Active Vocabulary

Review Vocabulary Plot the points on the coordinate plane, then draw the triangle defined by the three points $A(-5,8)$, $B(-5,-2)$, and $C(6,-2)$. Determine the length of the sides of the triangle. (Lesson 2-4 and previous courses)

Side $A B$: \qquad

Side $B C$: \qquad
Side $A C$:

Determine the area and perimeter of the triangle.

Area	Perimeter

Determine the equations of the lines represented by segments $\overline{A B}, \overline{B C}$, and $\overline{A C}$.

$\overline{A B}$	$\overline{B C}$	$\overline{A C}$

\qquad
\qquad

Lesson 10-1 (continued)

Main Idea

The Midpoint Formula p. 617

The Distance Formula

 pp. 617-619
Details

Find the coordinates of S and the midpoint of $\overline{\boldsymbol{R T}}$.

Sequence the steps for using the distance formula in the diagram below.

- Find the square root of the sum.
- Find the difference between the x-coordinates and square it.
- Find the difference between the y-coordinates and square it.
- Find the sum of the two squared distances.

1. \qquad
\qquad
2. \qquad
\qquad
3. \qquad
\qquad
4. \qquad
\qquad
\qquad

10-2 Parabolas

What You'll Learn Scan the text in Lesson 10-2. Write two facts you learned about parabolas as you scanned the text.

1. \qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad

Active Vocabulary New Vocabulary Write the definition next to each term. parabola \qquad
focus \qquad
directrix \qquad
\qquad
latus rectum \qquad
\qquad
general form
standard form \qquad
\qquad
\qquad
Lesson 10-2 (continued)

Main Idea

Equations of Parabolas pp. 623-624

Details

Describe the effect that each characteristic of the equation of the parabola has on its graph.

Graph Parabolas
pp. 624-626

The graph of $x=y^{2}$ and of a transformation of this parent graph are shown. Write the equation of the transformed graph.

Helping You Remember

How can you remember what the sign of a tells you about the direction in which a parabola opens?
\qquad
\qquad

10-3 Circles

What You'll Learn \int Scan Lesson 10-3. List two headings you would use to make an outline of this lesson.

1. \qquad
\qquad
2. \qquad
\qquad

Review Vocabulary Use the distance formula to find the distance between the given pairs of points on the coordinate plane. (Lesson 10-1)

$(1,2)$ and $(9,11)$	$(1,2)$ and $(-7,-7)$	$(9,11)$ and $(-7,-7)$

New Vocabulary Match the term with its definition by drawing a line to connect the two.
radius
circle
center any segment whose endpoints are the center and a point on a circle
\qquad
\qquad

Equations of Circles

pp. 631-632

Details

Write the equation of a circle that has a diameter with endpoints $(-4,9)$ and $(6,-3)$.

Find the center of the circle using the midpoint formula.

Find the length of the radius using the center and an endpoint of the diameter.

Graph Circles
p. 633

Graph the circle given by the equation $(x+4)^{2}+(y-2)^{2}=16$.

Identify the center. \qquad

Identify the radius. \qquad
Use the center and radius to identify four points on the circle.
\qquad
\qquad

10-4 Ellipses

What You'll Learn Skim Lesson 10-4. Predict two things that you expect to learn based on the headings and the Key Concept box.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

New Vocabulary Write the correct term next to each definition.

- the endpoints of the major axis of an ellipse

\qquad the set of all points in a plane such that the sum of the distances from two fixed points is constant

\qquad - the midpoint of both the major axis and the minor axis of an ellipse
the sum of the distances from the foci to any point on the ellipse
the name given to the longer of the two axes of symmetry of an ellipse
\qquad - the name given to the fixed points of an ellipse such that the sum of the distances from these points is constant
\qquad -
the name given to the shorter of the two axes of symmetry of an ellipse
\qquad
\qquad

Lesson 10-4 (continued)

Main Idea

Equations of Ellipses

 pp. 639-642
Details

Use the questions as a guide to write the equation of the ellipse shown in the graph.

Where is the center of the ellipse? \square $h=$ $k=$ \square	What is the length of the major axis? $a^{2}=\left(\frac{\square}{2}\right)^{2}=25$	What is the length of the minor axis? $b^{2}=\left(\frac{\square}{2}\right)^{2}=9$

Write the equation of the ellipse $\frac{(x-\square)^{2}}{\square}+\frac{(y-\square)^{2}}{\square \square}=1$.

Graph Ellipses
pp. 642-643

Write the equation for the ellipse in standard form. Identify each characteristic of the ellipse.

$4(x-2)^{2}+9(y+3)^{2}=36$	Length of major axis:	Vertices
	Length of minor axis:	
	Co-vertices	

Helping You Remember

How can you remember which term comes first and where to place a and b in the equation of an ellipse?
\qquad
\qquad
\qquad

10-5 Hyperbolas

What You'll Learn

Skim the Examples for Lesson 10-5. Predict two things you think you will learn about hyperbolas.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

Review Vocabulary Determine the asymptotes for the function $f(x)=\frac{x+4}{x^{2}-10 x+9}$. (Lesson 9-4)

Oblique	Vertical	Horizontal

New Vocabulary Label the diagram with the terms listed at the left.

\qquad
\qquad
Lesson 10-5 (continued)

Equations of Hyperbolas pp. 648-649

Details

Use the questions as a guide to write the equation of the hyperbola shown in the graph.

Where is the center
of the hyperbola?
\square, \square
:---
between the focus and the center? and the center? $c=\square$ $h=\square$ $\quad \square=\square$

Write the equation of the hyperbola.

Supply the missing information for
$\frac{(y+3)^{2}}{9}-\frac{(x-2)^{2}}{25}=1$.

Center	Identify a, b and c.	Identify co-vertices.
Horizontal or Vertical	Identify vertices.	Identify foci.

\qquad
\qquad

10-6 Identifying Conic Sections

What You'll Learn

2.

Skim the lesson. Write two things you already know about identifying conic sections.

1. \qquad
\qquad
\qquad
\qquad

Review Vocabulary Match each equation to its graph.
(Lessons 10-3, 10-4 and 10-5)
A.

1. $\frac{(y-2)^{2}}{25}-\frac{(x-3)^{2}}{16}=1$
\qquad
2. $\frac{(x-2)^{2}}{16}+\frac{(y-3)^{2}}{25}=1$
\qquad
3. $(x-2)^{2}+(y-3)^{2}=16$
\qquad

B.

C.

\qquad
\qquad
Lesson 10-6 (continued)

Main Idea

Details

Conics in Standard Form
p. 656

Identify Conic Sections
p. 657

Write $x^{2}-6 x+y^{2}+10 y=-30$ in standard form and identify the type of conic section. Graph the conic section.

Complete the chart below. Include an example in each description.

\qquad
\qquad

10-7 Solving Linear-Nonlinear Systems

What You'll Learn

2.

Active Vocabulary

Review Vocabulary Provide an appropriate system of linear equations. (Lessons 3-1 and 3-2)

Vocabulary Link Explain how you could use a conic section and shading to show all locations on a map within a 100 -mile radius of the city of Memphis, Tennessee.
\qquad

Lesson 10-7 (continued)

Main Idea

Details

Systems of Equations

pp. 662-663

Systems of Inequalities pp. 663-664

Solve the system of equations. Fill in missing verbal and mathematical steps.

$$
\begin{aligned}
& x^{2}+y^{2}=4 \\
& y=x-2
\end{aligned} \quad \longrightarrow \text { Given }
$$

$$
2 x^{2}-4 x=0
$$

$$
2 x(x-2)=0
$$

$$
x=0,2
$$

$y=0-2$

$$
y=-2
$$

$\longrightarrow \longrightarrow$| Substitute the second
 value of x into the
 linear equation. |
| :--- |

$\square \longrightarrow$| Write the solutions as |
| :--- |
| ordered pairs. |

Explain what is meant by the intersection of the graphs of $x^{2}+y^{2}>16$ and $y<-x^{2}+4$.
\qquad
\qquad
\qquad
\qquad
\qquad

CHAPTER
 10 Conic Sections

Tie It Together

Fill in details in the graphic organizer.

\qquad
\qquad
\qquad

cavite
 10
 Conic Sections

Before the Test

Now that you have read and worked through the chapter, think about what you have learned and complete the table below. Compare your previous answers with these.

1. Write an \mathbf{A} if you agree with the statement.
2. Write a \mathbf{D} if you disagree with the statement.

Conic Sections	After You Read		
- The shape of a parabola depends on the value of a in the equation.			
- An equation of a circle is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.			
- A hyperbola has two axes of symmetry.			
- The equation of a vertical ellipse is			
$x^{2}+y^{2}=r^{2}$.			- The cross section of a double cone will be a parabola, hyperbola,
:---			
circle, or ellipse.			

Math Online Visit glencoe.com to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 10.

Are You Ready for the Chapter Test?

Use this checklist to help you study.
\square I used my Foldable to complete the review of all or most lessons.I completed the Chapter 10 Study Guide and Review in the textbook.I took the Chapter 10 Practice Test in the textbook.I used the online resources for additional review options.I reviewed my homework assignments and made corrections to incorrect problems.I reviewed all vocabulary from the chapter and their definitions.

Study Tips

- On handouts, homework, and workbooks that can be written in, underline and highlight significant information.
\qquad
\qquad
\qquad

Chapter
 11 Sequences and Series

Before You Read

Before you read the chapter, respond to these statements.

1. Write an \mathbf{A} if you agree with the statement.
2. Write a \mathbf{D} if you disagree with the statement.

Before You Read	Sequences as Functions
	- Each term in a geometric sequence is separated by a common difference.
	- Geometric means is the terms between two nonconsecutive terms in a geometric sequence.
	- An infinite geometric series can be convergent or divergent.
	- A recursive formula for a sequence means that every term is determined by one or more previous terms.
	- The Binomial Theorem can be used to find terms of Fibonacci sequence.

FOLDABLES Study Organizer Construct the Foldable as directed at the beginning of this chapter.

Note Taking Tips

- Before each lesson, skim through the lesson and write any questions that come to mind in your notes.
As you work through the lesson, record the answer to your question.
- Remember to always take notes on your own.

Don't use someone else's notes as they may not make sense.
\qquad
\qquad

curvie
 Sequences and Series

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on infinite geometric series, one fact might be that if a sequence goes to infinity, it continues without end. After completing the chapter, you can use this table to review for your chapter test.

Lesson	Fact
11-1 Sequences as Functions	
$11-2$ Arithmetic Sequences and Series	
$11-3$ Geometric Sequences and Series	
$11-4$ Infinite Geometric Series	
$11-5$ Recursion and Iteration	
$11-7$ Proof by Mathematical Induction	

\qquad
\qquad

11-1 Sequences as Functions

What You'll Learn

2.

Skim the lesson. Write two things you already know about sequences as functions.

1. \qquad
\qquad
\qquad
\qquad
Active Vocabulary \quad Review Vocabulary Describe how the functions $y=2 x$ and $y=2^{x}$ behave as $x \rightarrow \infty$. (Lessons 2-2 and 8-1)

New Vocabulary Write the correct term beside each definition.
a sequence which continues without end
the name given to the constant value that is added to a term
in an arithmetic sequence in order to find a successive term
a set of numbers in a particular order or pattern
a sequence in which each term is determined by multiplying
a sequence in which each term is determined by adding a
constant value to the previous term

the name given to the constant value that is multiplied by a
term in an arithmetic sequence in order to find a successive
term

a sequence which contains a limited number of terms
\qquad
\qquad

Arithmetic Sequences

pp. 681-682

Geometric Sequences pp. 683-684

Determine the next three terms of the arithmetic sequence, graph the first seven terms of the sequence, then write the equation which represents the sequence.

$$
2,5,8,11, \ldots
$$

Determine whether each sequence is geometric. Justify your answer.

1. $4,8,16,32, \ldots$
\qquad
2. $-15,-5,-1,-\frac{1}{5},-\frac{1}{15}, \ldots$
\qquad
\qquad

11-2 Arithmetic Sequences and Series

What You'll Learn
 Skim Lesson 11-2. Predict two things that you expect to learn based on the headings and the Key Concept box.

1. \qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad

Active Vocabulary \quad New Vocabulary Write the definition next to each term.
arithmetic means \qquad
\qquad
series \qquad
arithmetic series \qquad
\qquad
partial sum \qquad
\qquad
sigma notation
\qquad
\qquad

Arithmetic Sequences
pp. 688-689

Arithmetic Series
pp. 690-691

Provide a description and details for each part of the nth term formula for an arithmetic sequence given that you want to find the 13 th term of the sequence 18, 23, 28, 33, ...

Answer each question about the sigma notation shown.

$$
\sum_{x=2}^{7} 3 x+1
$$

1. What is the first value of x ? \qquad
2. What is the last value of x ?
3. How many terms will be summed? \qquad
4. What are the terms in the series?
5. What is the sum of the series? \qquad
\qquad
\qquad
\qquad

11-3 Geometric Sequences and Series

What You'll Learn

Scan the text in Lesson 11-3. Write two facts you learned about geometric sequences and series as you scanned the text.

1. \qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad

Active Vocabulary

Review Vocabulary Identify each sequence as arithmetic, geometric, or neither. Explain your reasoning. (Lesson 11-1)

$14,11,8,5,2, \ldots$	$1,4,9,16,25, \ldots$	$\frac{1}{4}, \frac{3}{16}, \frac{9}{64}, \frac{27}{256}, \ldots$

New Vocabulary Fill in each blank with the correct term or phrase.
geometric means the terms between two \qquad terms in a \qquad sequence; To find them, you need to know the \qquad ratio, r. They are
closely related to the \qquad
\qquad of an arithmetic sequence.
geometric series
the sum of the \qquad of a geometric
\qquad
\qquad

Main Idea

Geometric Sequences

pp. 696-697

Details

Provide a description and details for each part of the nth term formula for an arithmetic sequence given that you want to find the 10 th term of the sequence 3 , 9, 27, 81,

Geometric Series p. 698-99

Use the formula to find the sum of the geometric series given.

$$
a_{1}=12, r=2, \text { and } n=5
$$

Helping You Remember

Ri thinks that the formula $a_{n}=a_{1} \cdot r^{n-1}$ should be $a_{n}=a_{1} \cdot r^{n}$. How would you explain to him that he should use r^{n-1} rather than r^{n} in the formula?
\qquad
\qquad
\qquad

11-4 Infinite Geometric Series

What You'll Learn

2.

Skim the Examples for Lesson 11-4. Predict two things you think you will learn about infinite geometric series.

1. \qquad
\qquad
\qquad
\qquad

Active Vocabulary

Review Vocabulary Describe the end behavior of the functions $f(x)=2^{x}$ and $g(x)=2^{-x}$ as $x \rightarrow \infty$. (Lesson 6-4)

$f(x)=2^{x}$

New Vocabulary Match the term with its definition by
an infinite geometric series that does not have a sum

divergent series

continuing without end
infinity an infinite geometric series that has a sum

Vocabulary Link Look up the words diverge and converge in the dictionary. Use both words along with the words road, train tracks, and crossed in a sentence.
\qquad
\qquad

Infinite Geometric Series

pp. 705-707

Details

Answer the questions pertaining to the sigma notation shown below.

$$
\sum_{k=1}^{\infty} 12\left(\frac{1}{2}\right)^{k-1}
$$

1. Is this a convergent or divergent series? How can you tell?
\qquad
2. Is this an infinite or finite geometric series? How can you tell?
3. What is the first term of this series? \qquad
4. What is the common ratio? \qquad
5. What formula do you use to find the sum of an infinite series? \qquad
6. What is the sum? \qquad

Repeating Decimals

 p. 707Write the repeating decimal $0 . \overline{38}$ as a fraction.
Step 1: Write as an infinite series of decimals.

Step 2: Write as an infinite series of fractions.
\qquad
Step 3: Determine the value of r.

Step 4: Use the sum formula.
\qquad
\qquad

11-5 Recursion and Iteration

What You'll Learn Scan lesson 11-5. List two headings you would use to make an outline of this lesson.

1. \qquad
\qquad
2. \qquad
\qquad

Review Vocabulary Find the value of each composition given $f(x)=x-4$ and $g(x)=2 x^{2}+1$. (Lesson 7-1)

$f(g(2))$	$g(f(2))$	$g(f(g(3)))$

New Vocabulary Write the definition next to each term.
\qquad
\qquad
recursive sequence \qquad
\qquad
explicit formula \qquad
\qquad
recursive formula \qquad
\qquad
iteration
\qquad
\qquad

Lesson 11-5 (continued)

Details

Special Sequences

pp. 714-716

Iteration

p. 716

Provide details to explain how you would execute each step for writing a recursive formula for a given sequence.

Step
Details

Fill in each box to find the first three iterates x_{1}, x_{2}, and x_{3} of $f(x)=4 x-1$ for an initial value of $x_{0}=-2$.

$$
\begin{aligned}
& x_{1}=f(\square)=4 \cdot \square-1=\square \\
& x_{2}=f(\square)=4 \cdot \square-1=\square \\
& x_{3}=f(\square)=4 \cdot \square \square-1=\square
\end{aligned}
$$

\qquad
\qquad

11-6 The Binomial Theorem

What You'll Learn

2.

Scan the text under the Now heading. List two things you will learn about in the lesson.

1. \qquad
\qquad
\qquad
\qquad

Active Vocabulary

Review Vocabulary Expand the polynomial expressions $(2 x+1)^{2}$ and $(2 x+1)^{4}$. (Lesson 6 - 1)

$(2 x+1)^{2}$	$(2 x+1)^{4}$

New Vocabulary Label the diagram by indicating the pattern observed in Pascal's triangle.

\qquad
\qquad

Pascal's Triangle
p. 721

Write out Pascal's Triangle in the shaded boxes. Use the non-shaded boxes to expand the binomial written to the left of the row.

The Binomial Theorem pp. 721-723

Summarize in your own words the characteristics of binomial expansions in the diagram below.

\qquad
\qquad

11-7 Proof by Mathematical Induction

What You'll Learn
 Scan Lesson 11-7. List two headings you would use to make an outline of this lesson.

2.
3. \qquad
\qquad
\qquad
\qquad

Active Vocabulary

Review Vocabulary Describe the main method of proof that you used in Geometry. What were the main components of the proofs? (Geometry prerequisite skill)

New Vocabulary Fill in each blank with the correct term or phrase.
mathematical a method of \qquad statements that involve induction \qquad numbers; Step 1 is to "Show that the
statement is \qquad for $n=1$." Step 2 is to
"Assume that the statement is true for some
\qquad number \qquad " Step 3
is to "Show that the statement is true for \qquad ."
induction hypothesis
the step in mathematical \qquad in which you
\qquad
\qquad
for some natural \qquad k
\qquad

Details

Mathematical Induction

pp. 727-728
Complete the proof below.

| Prove |
| :---: | :---: |
| $1+2+\ldots+n=\frac{n(n+1)}{2}$. |$\longrightarrow$ Given

\square| Show that the
 statement is true for
 $n=1$. |
| :--- |

$$
\begin{aligned}
1+2 & +3+\ldots+k \\
& =\frac{k(k+1)}{2}
\end{aligned}
$$

Counterexamples
p. 728

Check the statement $1+4+9+\ldots+n^{2}=\frac{n\left(n^{2}+1\right)}{2}$ for the values $n=1, n=2$ and $n=3$. Determine whether each is an example or a counterexample of the statement.

$n=1$	$n=2$	$n=3$

\qquad
\qquad
\qquad

CHAPTER
 11 Sequences and Series

Tie It Together

Fill in details in each graphic organizer.

\qquad
\qquad
\qquad

capter
 Sequences and Series

Before the Test

Now that you have read and worked through the chapter, think about what you have learned and complete the table below. Compare your previous answers with these.

1. Write an \mathbf{A} if you agree with the statement.
2. Write a \mathbf{D} if you disagree with the statement.

Sequences and Series	After You Read
- Each term in a geometric sequence is separated by a common difference.	
- Geometric means is the terms between two nonconsecutive terms in a geometric sequence.	
- An infinite geometric series can be convergent or divergent.	
- A recursive formula for a sequence means that every term is determined by one or more previous terms.	
- The Binomial Theorem can be used to find terms of Fibonacci	
sequence.	

Math Online Visit glencoe.com to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 11.

Are You Ready for the Chapter Test?

Use this checklist to help you study.
\square I used my Foldable to complete the review of all or most lessons.
\square I completed the Chapter 11 Study Guide and Review in the textbook.
\square I took the Chapter 11 Practice Test in the textbook.
\square I used the online resources for additional review options.I reviewed my homework assignments and made corrections to incorrect problems.
\square I reviewed all vocabulary from the chapter and their definitions.

- Use flash cards to study for tests by writing the concept on one side of the card and its definition on the other.
\qquad
\qquad

Chapter
 \square
 Probability and Statistics

Before You Read

Before you read the chapter, think about what you know about probability and statistics. List three things you already know about probability and statistics in the first column. Then list three things you would like to learn about them in the second column.

K	W
What I know...	

Construct the Foldable as directed at the beginning of this chapter.

Note Taking Tips

- When you take notes, include personal experiences that relate to the lesson and ways in which what you have learned will be used in your daily life.
- When you take notes, write questions you have about the lessons in the margin of your notes.
Then include the answers to these questions as you work through the lesson.
\qquad
\qquad
\qquad

anupte 12 Probability and Statistics

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on conditional probability, one fact might be that a contingency table records data in which different possible situations result in different possible outcomes. After completing the chapter, you can use this table to review for your chapter test.

Lesson	Fact
12-1 Experiments, Surveys, and Observational Studies	
12-2 Statistical Analysis	
12-3 Conditional Probability	
12-4 Probability and Probability Distributions	
12-5 The Normal Distribution	
12-6 Hypothesis Testing	
12-7 Binomial Distributions	

\qquad

12-1 Experiments, Surveys and Observational Studies

What You'll Learn Scan the text under the Now heading. List two things you will learn about in the lesson.

1. \qquad
\qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

\qquad
New Vocabulary Write the correct term beside each definition.
a survey whose design favors certain outcomes
in an experiment, the people, animals or objects given the treatment
\qquad a survey in which every member of a population is polled
a study in which individuals are observed and no attempt is made to influence the results
a group of people, animals, or objects being studied
when two events are shown to be related
when a sample is random and not based on any predetermined characteristics of the population
a study in which something is intentionally done to people, animals, or objects and then the response is observed
\qquad when one event is shown to be the direct cause of another event
those given the placebo or false treatment in a study
a portion of a population
an instrument used to collect information
\qquad
\qquad

Lesson 12-1 (continued)

Details

Surveys, Studies, and Experiments
pp. 745-747

Distinguish Between Correlation and Causation
p. 747

For each survey listed, provide a description of the population, a biased sample, and an unbiased sample.

Survey Purpose	Population	Biased Sample	Unbiased Sample
to determine if a levy for a school district is likely to pass or fail			
to determine the average number of minutes of television children at a preschool watch each day			

Compare and contrast the terms correlation and causation.

Similarities	Differences

\qquad

12-2 Statistical Analysis

What You'll Learn Skim the Examples for Lesson 12-2. Predict two things you think you will learn about statistical analysis.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary New Vocabulary Write the definition next to each term.
\qquad
\qquad
\qquad
\qquad
\qquad

Measures of Central Tendency
pp. 752-753

Measures of Variation

pp. 754-755

Determine the mean, median, and mode of the set of data given. Determine which measure best represents the center of the data. Explain your reasoning.

Determine the standard deviation of the set of data given by completing each step in the diagram.

Melphing You Remember It is easier to remember a complicated procedure

 if you break it down into steps. Write the procedure for finding the standard deviation for a set of data in a series of brief, numbered steps.\qquad
\qquad
\qquad

12-3 Conditional Probability

What You'll Learn \quad Scan Lesson 12-3. List two headings you would use to make an outline of this lesson.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

Review Vocabulary Solve the probability problem.
(Lesson P-4)
A bag contains 16 marbles. Four of the marbles are blue and 12 of the marbles are green. Two marbles are randomly pulled from the bag. What is the probability that both marbles are blue?

Compound Probability

New Vocabulary Fill in each blank with the correct term or phrase.
conditional probability -
the \qquad of an \qquad given that
another event has already \qquad
contingency table a table used to record \qquad in which different
\qquad situations result in \qquad
possible \qquad
relative frequency values in a contingency \qquad associated with each of the possible \qquad
\qquad
\qquad

Details

Conditional Probability

 p. 759
Contingency Tables

p. 759

Define $P(B \mid A)$ in terms of the geometric areas shown in the Venn diagram.

$$
P(B \mid A)=\frac{\text { area of } \square}{\text { area of } \square}
$$

Fill in the diagram to find the probability that a subject in the survey bought popcorn, given that the gender was female.

A survey at a ballpark shows this selection of snacks purchased.

	Snack		
Gender	Hot Dog	Popcorn	Peanuts
Male	12	21	19
Female	13	8	25

Helping You Remember

A classmate is having trouble remembering the formula to use for conditional probability. What advice can you give to aid their memory?
\qquad
\qquad
\qquad
\qquad

12-4 Probability and Probability Distributions

What You'll Learn

Skim the lesson. Write two things you already know about probability and probability distributions.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

\qquad
\qquad -
a probability distribution which has a finite number of possible outcomes a function that maps the sample space to its probabilities any outcome that is not a success
\qquad - a distribution in which all of the probabilities are equal
\qquad - a graph or table which visually represents a probability distribution
a ratio which measures the chances of an event occurring
the set of all possible outcomes
\qquad - the weighted average of the values in a probability distribution
probabilities that are based on assumptions of what is expected to happen
\qquad
\qquad

Probability

pp. 764-766

Solve the probability problems below.
A box contains 24 transistors, 4 of which are defective. If 4 transistors are sold at random, find the following probabilities.

$P($ exactly 2 are defective)	P (none are defective)
$P($ all are defective $)$	P (at least 1 is defective)

Probability

 Distributionspp. 766-767

Use the probability distribution to determine the expected number of deliveries per day.

| Number of
 Arrangements | 6 | 7 | 8 | 9 | 10 |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| Probability | 0.2 | 0.2 | 0.3 | 0.2 | 0.1 |
| $E(x)$ | $=\square \cdot(\square)+\square \cdot(\square)+\square \cdot(\square)+\square \cdot(\square)+\square \cdot(\square)$ | | | | |
| $E(x)$ | $=\square+\square+\square$ | | | | |
| $E(x)$ | $=\square$ | | | | |

\square

Helping You Remember

Recognizing a counterexample can help reinforce your understanding of a concept. Explain why recording the number of inches of rain each day would not be considered a discrete probability distribution.
\qquad
\qquad
\qquad
\qquad

12-5 The Normal Distribution

What You'll Learn

Scan the text in Lesson 12-5. Write two facts you learned about the normal distribution as you scanned the text.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

continuous probability distribution
normal distribution skewed distribution positively skewed distribution negatively skewed distribution

New Vocabulary Label each diagram with all terms listed at the left that apply.

\qquad
\qquad

Normal and Skewed Distributions
pp. 773-774

The Empirical Rule

 pp. 774-775Describe the characteristics of a normal distribution in your own words.

The amount of weekly allowance of 1500 high school juniors is normally distributed with a mean of $\$ 30$ and a standard deviation of $\$ \mathbf{\$ 6}$. About how many students receive an allowance greater than \$42 per week?

How many standard deviations above the mean is $\$ 42 ?$	What percentage of students can be found in this area of the curve?	What is the number of students in this area of the curve?

Helping You Remember

Many students have trouble remembering how to determine if a curve represents a distribution that is positively skewed or negatively skewed. What is an easy way to remember this?
\qquad
\qquad

12-6 Hypothesis Testing

What You'll Learn
 Skim Lesson 12-6. Predict two things that you expect to learn based on the headings and the Key Concept box.

1. \qquad
\qquad
2. \qquad

Active Vocabulary New Vocabulary Write the definition next to each term.
inferential statistics \qquad
\qquad
\qquad
statistical inference \qquad
confidence interval
hypothesis
null hypothesis
alternative hypothesis
-
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Main Idea

Confidence Interval
p. 780

Details

Describe each identified part of the confidence interval formula below.

Hypothesis Testing

p. 781

Summarize the two possible outcomes of hypothesis testing.

Helping You Remember

It is easier to remember a complicated procedure if you break it down into steps. Write the procedure for hypothesis testing in a series of brief, numbered steps.
\qquad
\qquad

12-7 Binomial Distributions

What You'll Learn
 Scan the text under the Now heading. List two things you will learn about in the lesson.

1. \qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad

Active Vocabulary

Review Vocabulary Compare and contrast a continuous probability distribution and a discrete probability distribution. (Lessons 12-4 and 12-5)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

New Vocabulary Match the term with its definition by drawing a line to connect the two.
binomial experiment experimental probability

binomial distribution

estimated from observed simulations or experiments a graph or table which shows the probabilities of the outcomes of a binomial experiment
a random experiment with an outcome that is one of two simple events
\qquad
\qquad

Binomial Experiments

 pp. 786-787Justify why the described experiment is a binomial experiment based on the listed characteristics.
Probability of Success

Binomial Distribution

pp. 787-789

Len randomly guesses the answers to all 6 multiplechoice questions on a test. Each question has 5 choices. Fill in the formula used to determine the probability that he will get at least 4 of the answers correct.

Helping You Remember
Some students have trouble remembering how to calculate binomial probabilities. What is an easy way to remember which numbers to put into an expression like ${ }_{6} C_{4}\left(\frac{1}{5}\right)^{4}\left(\frac{4}{5}\right)^{2}$?
\qquad
\qquad DATE \qquad
\qquad

CHAPTER
 12 Probability and Statistics

The It Together

Fill in each graphic organizer. Add details if space permits.

Probability Distributions
Definition

Types of
Ways to Represent

\square
is to
population as \square is to

Sample \square
is to as \square is to \square
\qquad
\qquad
\qquad

cavprex
 Probability and Statistics

Before the Test

Review the ideas you listed in the table at the beginning of the chapter. Cross out any incorrect information in the first column. Then complete the table by filling in the third column.

K	W	L
What I know...	What I want to find out...	What I learned...

Math Online Visit glencoe.com to access your textbook, more examples, self-check quizzes,

 personal tutors, and practice tests to help you study for concepts in Chapter 12.
Are You Ready for the Chapter Test?

Use this checklist to help you study.
\square I used my Foldable to complete the review of all or most lessons.I completed the Chapter 12 Study Guide and Review in the textbook.I took the Chapter 12 Practice Test in the textbook.I used the online resources for additional review options.I reviewed my homework assignments and made corrections to incorrect problems.I reviewed all vocabulary from the chapter and their definitions.

Study Tips

- Designate a place to study at home that is free of clutter and distraction. Try to study at about the same time each afternoon or evening so that it is part of your routine.
\qquad
\qquad
\qquad

chapter
 13 Trigonometric Functions

Before You Read

Before you read the chapter, respond to these statements.

1. Write an \mathbf{A} if you agree with the statement.
2. Write a \mathbf{D} if you disagree with the statement.

Before You Read	$\begin{array}{c}\text { Trigonometric Functions }\end{array}$
	$\begin{array}{l}\text { - A trigonometric ratio can be used to } \\ \text { compared the sides of any triangle. }\end{array}$
	- 2π radians $=360^{\circ}$

a triangle.\end{array}\right\}\)| - A periodic function has x-values that |
| :--- |
| repeat at regular intervals. |

FOLDÁALES Study Organizer
 Construct the Foldable as directed at the beginning of this

 chapter.
Note Taking Tips

- When you take notes, look for written real-world examples in your everyday life.

Comment on how writers use statistics to prove or disprove points of view and discuss the ethical responsibilities writers have when using statistics.

- When you take notes, include visuals.

Clearly label the visuals and write captions when needed.
\qquad
\qquad
\qquad

Chaptir
 13 Trigonometric Functions

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on circular functions, one fact might be that a unit circle is a circle with a radius of 1 unit centered at the origin on the coordinate plane. After completing the chapter, you can use this table to review for your chapter test.

Lesson	Fact			
13-1 Trigonometric Functions in Right Triangles				
13-2 Angles and Angle Measure				
13-3 Trigonometric Functions of General				
Angles		\quad	13-4 Law of Sines	
:---:	:---:			
13-5 Law of Cosines				
13-6 Circular Functions				
13-7 Graphing Trigonometric Functions				
13-8 Translations of Trigonometric Graphs Trigonometric Functions				

\qquad
\qquad

13-1 Trigonometric Functions in Right Triangles

What You'll Learn
 Skim the lesson. Write two things you already know about trigonometric functions in right triangles.

1. \qquad
\qquad
\qquad
\qquad
2. \qquad

[^0]\qquad
\qquad

Lesson 13-1 (continued)

Main Idea

Details

Trigonometric Function for Acute Angles
pp. 808-809

Suppose θ is the measure of an acute angle of a right triangle. Complete each trigonometric ratio by labeling the appropriate sides: opp, adj, or hyp.

$$
\begin{array}{ll}
\sin \theta= & \csc \theta= \\
\cos \theta=\square & \sec \theta= \\
\tan \theta= & \cot \theta= \\
\hline
\end{array}
$$

Use Trigonometric Functions

pp. 810-812

Use a trigonometric function to find the value of \boldsymbol{x}. Round to the nearest whole number.

Helping You Remember

In studying trigonometry, it is important for you to know the relationships between the lengths of the sides of a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle. If you remember just one fact about this triangle, you will always be able to figure out the lengths of all the sides. What fact can you use, and why is it enough?
\qquad
\qquad
\qquad
\qquad
\qquad

13-2 Angles and Angle Measure

What You'll Learn
 Skim Lesson 13-2. Predict two things that you expect to learn based on the headings and the Key Concept box.

1. \qquad
\qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad
\qquad

Active Vocabulary

two or more angles in standard position with the same
terminal side
the position of an angle if the vertex is at the origin and one
ray is on the positive x-axis
the measure of an angle in standard position with a
terminal side that intercepts an arc with the same length as
the radius of the circle
the ray on the x-axis of an angle in standard position
the ray that rotates about the center of an angle in standard
position
an angle that has its vertex at the center of the circle
\qquad
\qquad

Lesson 13-2 (continued)

Main Idea

Angles in Standard Position

pp. 817-818

Convert Between
Degrees and Radians
pp. 819-820

Details

Model a positive angle and a negative angle by sketching them on the coordinate grids below. Include the angle measures.

Rewrite the degree measure in radians and the radian measure in degrees.

1. 50°
2. $\frac{3 \pi}{4}$

Helping You Remember

A good way to help you remember a mathematical concept is to connect it to something you already know. How can you use what you know about the circumference of a circle to remember how to convert between radian and degree measure?
\qquad
\qquad
\qquad

13-3 Trigonometric Functions of General Angles

What You'll Learn Scan Lesson 13-3. List two headings you would use to make an outline of this lesson.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary
 New Vocabulary Write the definition next to each term.
 quadrantal angle
 \qquad

\qquad
\qquad

Vocabulary Link Recall the meaning of the word quadrant. Explain how this meaning makes sense in the context of a quadrantal angle.
\qquad
\qquad

Lesson 13-3 (continued)

Trigonometric Functions of General Angles
pp. 825-826

The terminal side of θ in standard position contains the point at $(-4,0)$. Find the values of the six trigonometric functions of $\boldsymbol{\theta}$.

$$
\begin{array}{ll}
\sin \theta= & \csc \theta= \\
\cos \theta= & \sec \theta= \\
\tan \theta= & \cot \theta= \\
\hline
\end{array}
$$

Trigonometric Functions with Reference Angles pp. 826-828

The Key Concept chart on page 827 of the student book summarizes the signs of the six trigonometric functions in the four quadrants. Write the names of the trigonometric functions in each quadrant where they are positive.

Meping You Remember A good way to remember a new concept is to

 explain it in your own words. Explain how to find the reference angles for an angle in standard position depending on which quadrant its terminal side lies in.\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

13-4 Law of Sines

What You'll Learn Scan the text under the Now heading. List two things you will learn about in the lesson.

1. \qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad

Active Vocabulary

Review Vocabulary Write the definition next to each term. (Lesson 13-1)

trigonometry

New Vocabulary Fill in each blank with the correct term or phrase.

Law of Sines The Law of Sines shows the relationships between the
\qquad of a triangle and the sines of the angles
\qquad them.
solving a triangle \quad Using given measures to find all unknown side lengths and
\qquad of a triangle is called solving a triangle.
\qquad
\qquad

Lesson 13-4 (continued)

Main Idea

Details

Find the Area of a Triangle
p. 832

Complete the formula below to illustrate the Law of Sines for $\triangle A B C$.
Law of Sines
If $\triangle A B C$ has lengths a, b,
and c representing the
length of the sides
opposite the angles with
measures A, B, and C,
then:

Use the Law of Sines to solve for $L N$. Round to the nearest hundredth.

Helping You Remember

Suppose that you are taking a quiz and cannot remember whether the formula for the area of a triangle is Area $=\frac{1}{2} a b \cos C$ or Area $=\frac{1}{2} a b \sin C$. How can you quickly remember which of these is correct?
\qquad
\qquad
\qquad
\qquad

13-5 Law of Cosines

What You'll Learn
 Scan the text in Lesson 13-5. Write two facts that you learned about the Law of Cosines as you scanned the text.

1. \qquad
\qquad
\qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad
\qquad

Active Vocabulary

New Vocabulary Label the diagram with the correct terms to illustrate the Law of Cosines.

Law of Cosines

$$
\begin{aligned}
& a^{2}= \\
& b^{2}= \\
& c^{2}= \\
&
\end{aligned}
$$

\qquad
\qquad

Lesson 13-5 (continued)

Main Idea

Use the Law of Cosines to Solve Triangles

pp. 841-842

Choose a Method to Solve Triangles
pp. 842-843

Details

Use the Law of Cosines to solve for $R T$ to the nearest tenth.

Tell which method you would use to solve each oblique triangle with the given information. Write Law of Sines or Law of Cosines.

Solving Oblique Triangles	
Given	Begin by Using
two sides and an angle opposite one of them	
three sides	
two sides and their included angle	
two angles and any sides	

Helping You Remember

It is often easier to remember a complicated procedure if you can break it down into small steps. Describe in your own words how to use the Law of Cosines to find the length of one side of a triangle if you know the lengths of the other two sides and the measure of the included angle. Use numbered steps. (You may use mathematical terms, but do not use any mathematical symbols.)
\qquad
\qquad
\qquad
\qquad

13-6 Circular Functions

What You'll Learn

Active Vocabulary

circular function
cycle
period periodic function
unit circle

Skim the Examples for Lesson 13-6. Predict two things you think you will learn about circular functions.

1. \qquad
\qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad a function that is defined using the unit circle
a circle with a radius of one unit centered at the origin on the coordinate plane
the horizontal length of one cycle of a periodic function

Vocabulary Link Describe how the revolutions of the pedals on a bicycle can be used as a model of a periodic function.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Main Idea

Circular Functions

p. 848

Details

The terminal side of angle θ in standard position intersects the unit circle at $P\left(\frac{4}{5}, \frac{3}{5}\right)$. Find $\cos \theta$ and
$\sin \theta$.
$\cos \theta=$ \qquad
$\sin \theta=$ \qquad

Periodic Functions

pp. 849-850

Identify the period of the function graphed below.

Helping You Remember

What is an easy way to remember the periods of the sine and cosine functions in radian measure?
\qquad
\qquad
\qquad
\qquad

13-7 Graphing Trigonometric Functions

What You'll Learn
 Scan the text in Lesson 13-7. Write two facts that you learned about graphing trigonometric functions as you scanned the text.

1. \qquad
\qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad
\qquad

Active Vocabulary Review Vocabulary Write the definition next to each term (Lesson 13-2)

initial side

\qquad
\qquad
terminal side \qquad

New Vocabulary Fill in each blank with the correct term or phrase.
amplitude
-
The amplitude of the graph of a sine or cosine function equals half the difference between the \qquad and
\qquad values of the function.

frequency

Frequency is the number of \qquad of a periodic function in a given unit of time.
\qquad
\qquad

Main Idea

Sine, Cosine, and Tangent Functions pp. 855-858

Graphs of Other Trigonometric Functions p. 858

Details

Sketch the parent function $y=\tan \theta$ on the coordinate grid below.

The function $y=\sin (2 \theta)$ is graphed below as a dashed line. Identify the function graphed as a solid line.

Helping You Remember
What is an easy way to remember the periods of $y=a \sin b \theta$ and $y=a \cos b \theta$?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

13-8 Translations of Trigonometric Graphs

What You'll Learn

Scan the text under the Now heading. List two things you will learn about in the lesson.

1. \qquad
\qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad
\qquad

Active Vocabulary

New Vocabulary Label the diagrams with the correct terms.
vertical shift
midline

\qquad
\qquad

Main Idea

Details

Horizontal Translations

 p. 863The parent function $y=\cos \theta$ is graphed below. Graph the function $y=\cos \left(\theta+90^{\circ}\right)$ on the coordinate grid.

Label the general sine function shown below with the correct terms. Use amplitude, period, phase shift, and vertical shift.

Helping You Remember

Many students have trouble remembering which of the functions $y=\sin (\theta+\alpha)$ or $y=\sin (\theta-\alpha)$ represents a shift to the left or a shift to the right. Using $\alpha=45^{\circ}$, explain a good way to remember which is which.
\qquad
\qquad
\qquad
\qquad
\qquad

13-9 Inverse Trigonometric Functions

What You'll Learn

Skim the lesson. Write two things you already know about inverse trigonometric functions.

1. \qquad
\qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad
\qquad

Active Vocabulary \quad New Vocabulary Write the definition next to each term.
\qquad
\qquad

Arcsine function - \qquad
\qquad
Arctangent function \qquad
\qquad
principal values
\qquad
\qquad

Inverse Trigonometric Functions
pp. 871-872

Solve Equations by Using Inverses
p. 873

Details

Identify the inverse trigonometric function shown in each graph.

	${ }^{17} 0^{\circ}$		
	180°		
		\bigcirc	x
-2	-1	1	2
	-180°		
	$\bigcirc-360^{\circ}$		

\qquad

If $\sin \theta=0.16$, find θ to the nearest tenth degree. Show your work.

Helping You Remember

What is a good way to
remember the domains of the functions $y=\operatorname{Sin} x, y=\operatorname{Cos} x$, and $y=\operatorname{Tan} x$, which are also the range of functions $y=\operatorname{Arcsin} x$, $y=\operatorname{Arccos} x$, and $y=\operatorname{Arctan} x$? (You may want to draw a diagram.)

\qquad
\qquad

Trigonometric Functions

Tie It Together

Fill in the graphic organizer. Add details if space permits.

Function	In a Right Triangle	In a Unit Circle	Maximum Value	Minimum Value	Domain Restrictions	Reciprocal Function
Sine						
Cosine						
Tangent						
Cosecant						
Secant						
Cotangent						

Transformations on Trigonometric Parent Graphs

\qquad
\qquad
\qquad

caveria
 Trigonometric Functions

Before the Test

Now that you have read and worked through the chapter, think about what you have learned and complete the table below. Compare your previous answers with these.

1. Write an \mathbf{A} if you agree with the statement.
2. Write a \mathbf{D} if you disagree with the statement.

Trigonometric Functions	After You Read
- A trigonometric ratio can be used to compared the sides of any triangle.	
- 2π radians $=360^{\circ}$	
- The Law of Cosines can be used to solve a triangle.	
- A periodic function has x-values that repeat at regular intervals.	
- A horizontal translation of a periodic function is a phase shift.	

Math Online Visit glencoe.com to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 13.

Are You Ready for the Chapter Test?

Use this checklist to help you study.
\square I used my Foldable to complete the review of all or most lessons.
\square I completed the Chapter 13 Study Guide and Review in the textbook.
\square I took the Chapter 13 Practice Test in the textbook.I used the online resources for additional review options.I reviewed my homework assignments and made corrections to incorrect problems.I reviewed all vocabulary from the chapter and their definitions.

- Use the SR3Q method of reading: Survey, Question, Read, Recite, and Review. Survey the text by previewing the headings, boldface words, and examples; ask questions about what you survey, read with purpose, recite out loud the main points and concepts without looking at the text, and review your text notes or use the chapter review at the end of the chapter.
\qquad
\qquad
\qquad

cavite
 14 Trigonometric Identities and Equations

Before You Read

Before you read the chapter, think about what you know about trigonometric identities and equations. List three things you already know about them in the first column. Then list three things you would like to learn about them in the second column.

K	W
What I know...	

OLDA A^{\prime} Les Study Organizer

Construct the Foldable as directed at the beginning of this chapter.

Note Taking Tips

- When you take notes, it may be helpful to sit as close as possible to the front of the class.
There are fewer distractions and it is easier to hear.
- If your instructor points out definitions or procedures from your text, write a reference page in your notes.
You can then write these referenced items in their proper place in your notes after class.
\qquad

Chaptir
 14 Trigonometric Identities and Equations

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on trigonometric identities, one fact might be that a trigonometric identity is an equation involving trigonometric functions that is true for all values for which every expression in the equation is defined. After completing the chapter, you can use this table to review for your chapter test.

Lesson	Fact
14-1 Trigonometric Identities	

\qquad

14-1 Trigonometric Identities

What You'll Learn Scan the text under the Now heading. List two things you will learn about in the lesson.

1. \qquad
\qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

trigonometric identity

New Vocabulary Write the definition next to the term.
\qquad
\qquad

Vocabulary Link Describe what the word identity means in the context of the real world. Explain how this meaning makes sense as the word is applied to mathematical identities.
\qquad
\qquad
\qquad
\qquad

Main Idea

Find Trigonometric Values

pp. 891-892

Details

Complete each basic trigonometric identity below.
Quotient Identities:

1. $\tan \theta=$
2. $\cot \theta=$ \qquad

Reciprocal Identities:
3. $\sin \theta=$ \qquad
4. $\cos \theta=$ \qquad

Pythagorean Identities:
5. $\tan ^{2} \theta+1=$ \qquad 6. $\cot ^{2} \theta+1=$ \qquad

Simplify Expressions pp. 892-893

Simplify the expression $\sec \theta+\sec \theta \tan ^{2} \theta$ by writing it in terms of $\sec \theta$. Show your work.
\square

Helping You Remember

 relate it to something you already know. How can you use the unit circle definitions of the sine and cosine that you learned in Chapter 13 to help you remember the Pythagorean Identity $\cos ^{2} \theta+\sin ^{2} \theta=1$?\qquad
\qquad
\qquad

14-2 Verifying Trigonometric Identities

What You'll Learn

2.

Skim Lesson 14-2. Predict two things that you expect to learn based on the headings and the Key Concept box.

1. \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Vocabulary Link The following statements are suggestions for verifying trigonometric identities. Fill in each blank with the correct term or phrase.

Substitute one or more basic trigonometric \qquad to simplify the expression.

Factor or multiply as necessary. You may have to multiply
both the numerator and \qquad by the same trigonometric expression.

Write each side of the identity in terms of sine and ___ only. Then simplify each side as much as possible.

The properties of equality do not apply to identities as with equations. Do not perform operations to the quantities from each side of an \qquad identity.
\qquad
\qquad

Details

Transform One Side of an Equation
 Verify that $\frac{\sec \theta}{\tan \theta+\cot \theta}=\sin \theta$ is an identity.

pp. 898-899 \square

Transform Each Side of an Equation

pp. 899-900

Circle the correct answer.

$\frac{\sec \theta}{\csc \theta}=$
A $\frac{1}{\sin \theta}$
C $\frac{1}{\cos \theta}$
B $\cot \theta$
D $\tan \theta$

Helping You Remember

Many students have trouble knowing where to start in verifying a trignometric identity. What is a simple rule that you can remember that you can always use if you don't see a quicker approach?
\qquad
\qquad
\qquad

14-3 Sum and Difference of Angles Identities

What You'll Learn Scan the text in Lesson 14-3. Write two facts you learned about sum and difference of angles identities as you scanned the text.

1. \qquad
\qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad
\qquad

Active Vocabulary Review Vocabulary Fill in each blank with the correct term or phrase. (Lesson 14-1)

trigonometric identity \quad A trigonometric identity is an equation involving trigonometric \qquad that is true for all values for
which every expression in the equation is \qquad .

Vocabulary Link Fill in the blanks to complete each identity.

$$
\begin{aligned}
& \sin (A+B)= \\
& \text { A } \\
& \text { B } \\
& + \\
& \text { A } \\
& \text { B } \\
& \cos (A-B)= \\
& \text { A } \\
& \text { B } \\
& + \\
& \text { A } \\
& \text { B } \\
& \tan (A+B)=\frac{\tan \ldots+\tan \overline{-}-\tan _\tan -}{\square}
\end{aligned}
$$

\qquad
\qquad

Sum and Difference Identities

pp. 904-905

Follow the steps below to find the exact value of $\cos 105^{\circ}$.

Step 1: Rewrite

 105° as the sum of two more common angles.

Verify Trigonometric	Verify that $\sin (\theta-\mathbf{9 0}$
Identities is an identity.	
p. 906	

Helping You Remember
 Some students have trouble remembering which

 signs to use on the right-hand sides of the sum and difference of angles formulas. What is an easy way to remember this?\qquad
\qquad

14-4 Double-Angle and Half-Angle Identities

What You'll Learn
 Skim the lesson. Write two things you already know about double-angle and half-angle identities.

1. \qquad
\qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad
\qquad
\qquad

Review Vocabulary Fill in the blanks to complete each identity. (Lesson 14-3)
$\sin (A-B)=$ \qquad A \qquad

B - \qquad A \qquad B
$\cos (A+B)=$ \qquad A \qquad

B - \qquad A \qquad B
$\tan (A-B)=\frac{\tan \ldots-\tan \bar{\ldots}+\tan \ldots \tan \ldots}{\square<}$

Fill in the blanks to complete each identity.
$\sin 2 A=2$ \qquad A \qquad A
$\cos 2 A=$ \qquad A- \qquad
\qquad
\qquad

Double-Angle Identities Find $\sin 2 \theta$ if $\sin \theta=\frac{4}{5}$ and θ is between 0° and 90°. pp. 911-912

Half-Angle Identities

pp. 912-914

Follow the steps below to find the exact value of $\sin 15^{\circ}$.

Step 1: Rewrite 15° as the quotient of 30° and 2 .

Step 2: Apply a half angle identity.

Step 3: Substitute the exact values and simplify.

Helping You Remember
 There are many identities and formulas in

 mathematics, and they can be difficult to remember them all. How can you obtain all three of the identities for $\cos 2 \theta$ by remembering only one of them and using a Pythagorean Identity?\qquad
\qquad
\qquad
\qquad

14-5 Solving Trigonometric Equations

What You'll Learn
 Skim the Examples for Lesson 14-5. Predict two things you think you will learn about solving trigonometric equations.

1. \qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad

Active Vocabulary

sum of angles identity
$\cos 2 \theta=1-2 \sin ^{2} \theta$
$\sin (A+B)=\sin A \cos A+\cos A \sin B$
difference of angles identity
double-angle identity
half-angle identity
$\cos (A-B)=\cos A \cos B+\sin A \sin B$

New Vocabulary Write the definition next to the term.
trigonometric equation
\qquad
\qquad

Solve Trigonometric

 Equationspp. 919-920

Extraneous Solutions

pp. 921-922

Compare and contrast trigonometric identities with trigonometric equations.
Similarities Differences

Solve the equation $\sin 2 \theta=\cos \theta$ for $90^{\circ} \leq \theta<180^{\circ}$. Show your work.

Helping You Remember

A good way to remember something is to explain it to someone else. How would you explain to a classmate the difference between verifying a trigonometric identity and solving a trigonometric equation?
\qquad
\qquad
\qquad DATE \qquad
\qquad

CHAPTER
 14 Trigonometric Identities and Equations

The It Together
Fill in the graphic organizer.

\qquad

Chapter
 14
 Trigonometric Identities and Equations

Before the Test

Review the ideas you listed in the table at the beginning of the chapter. Cross out any incorrect information in the first column. Then complete the table by filling in the third column.

K	W	L
What I know...	What I want to find out...	What I learned...

Math Online Visit glencoe.com to access your textbook, more examples, self-check quizzes,

 personal tutors, and practice tests to help you study for concepts in Chapter 14.
Are You Ready for the Chapter Test?

Use this checklist to help you study.I used my Foldable to complete the review of all or most lessons.I completed the Chapter 14 Study Guide and Review in the textbook.I took the Chapter 14 Practice Test in the textbook.I used the online resources for additional review options.I reviewed my homework assignments and made corrections to incorrect problems.I reviewed all vocabulary from the chapter and their definitions.

Study Tips

- On test day, look over the entire test to get an idea of its length and scope so that you can pace yourself. Answer what you know first, skipping over material you do not know. When finished, go back and check for errors. Do not change an answer unless you are certain you are correct.

[^0]: Active Vocabulary New Vocabulary Fill in each blank with the correct term or phrase.
 reciprocal functions
 The cosecant, secant, and cotangent ratios are reciprocals of the \qquad , , and
 \qquad ratios, respectively. These are called the reciprocal functions.
 trigonometric function
 A trigonometric function has a rule given by a trigonometric
 \qquad
 trigonometric ratio
 A trigonometric ratio compares the \qquad lengths of a \qquad triangle. trigonometry

 Trigonometry is the study of relationships among the
 \qquad and \qquad of a right triangle.

