

The **McGraw·Hill** Companies

Mc Graw **Glencoe** Hill

Copyright © by The McGraw-Hill Companies, Inc. All rights reserved. Except as permitted under the United States Copyright Act, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without prior written permission of the publisher.

Send all inquiries to: Glencoe/McGraw-Hill 8787 Orion Place Columbus, OH 43240

ISBN: 978-0-07-890870-5 MHID: 0-07-890870-1

Printed in the United States of America

1 2 3 4 5 6 7 8 9 10 045 14 13 12 11 10 09 08

Contents

Chapter 1

Bef	ore You Read	1
Key	Points	2
	Expressions and Formulas	
1-2	Properties of Real Numbers	5
1-3	Solving Equations	7
1-4	Solving Absolute Value Equations .	9
1-5	Solving Inequalities	11
1-6	Solving Compound and Absolute	
	Value Inequalities	13
Tie	It Together	15
Bef	ore the Test	16

Chapter 2

Bef	ore You Read	17
Key	Points	18
2-1	Relations and Functions	19
2-2	Linear Relations and Functions	21
2-3	Rate of Change and Slope	23
2-4	Writing Linear Equations	25
2-5	Scatter Plots and Lines of Regression	27
2-6	Special Functions	29
2-7	Parent Functions and Transformations	31
2-8	Graphing Linear and Absolute	
	Value Inequalities	33
Tie	It Together	35
Bef	ore the Test	36

Chapter 3

Bef	ore You Read	'
Key	9 Points	
3-1	Solving Systems of Equations by	
	Graphing	1
3-2	Solving Systems of Equations	
	Algebraically 41	
3-3	Solving Systems of Inequalities by	
	Graphing43	
3-4	Optimization with Linear Programming 45	,
3-5	Systems of Equations in	
	Three Variables 47	,
Tie	It Together	1
Bef	ore the Test	1

Chapter 4

Bef	ore You Read	51
	Points	
4-1	Introduction to Matrices	53
4-2	Operations with Matrices	55
4-3	Multiplying Matrices	57
4-4	Transformations with Matrices	59
4-5	Determinants and Cramer's Rule	61
4-6	Inverse Matrices and Systems	
	of Equations	63

Tie It Together	. 65
Before the Test	. 66

Chapter 5

Before You Read	67
Key Points	68
5-1 Graphing Quadratic Functions	
5-2 Solving Quadratic Equations by	
Graphing	71
5-3 Solving Quadratic Equations by	
Factoring	73
5-4 Complex Numbers	75
5-5 Completing the Square	
5-6 The Quadratic Formula and the	
Discriminant	79
5-7 Transformations with Quadratic	
Functions	81
5-8 Quadratic Inequalities	83
Tie It Together	85
Before the Test	

Chapter 6

Before You Read	87	
Key Points	88	
6-1 Operations with Polynomials		
6-2 Dividing Polynomials		
6-3 Polynomial Functions		
6-4 Analyzing Graphs of Polynomial		
Functions		
6-5 Solving Polynomial Equations		
6-6 The Remainder and Factor		
Theorems		
6-7 Roots and Zeros	101	
6-8 Rational Zero Theorem	103	
Tie It Together	105	
Before the Test 106		

Chapter 7

Bef	Before You Read 107		
Key Points			
7-1	Operations on Functions1	09	
7-2	Inverse Functions and Relations 1	11	
7-3	Square Root Functions and		
	Inequalities 1	13	
7-4	<i>n</i> th Roots1	15	
7-5	Operations with Radical		
	Expressions 1	17	
7-6	Rational Exponents 1	19	
7-7	Solving Radical Equations and		
	Inequalities 1	21	
	It Together1		
Bef	ore the Test1	24	

Chapter 8

Before You Read 125			
Key Points			
8-1	Graphing Exponential Functions 1	27	
8-2	Solving Exponential Equations		
	and Inequalities 1	29	
8-3	Logarithms and Logarithmic		
	Functions 1	31	
8-4	Solving Logarithmic Equations		
	and Inequalities 1	33	
8-5	Properties of Logarithms 1	35	
8-6	Common Logarithms 1	37	
8-7	Base e and Natural Logarithms 1	39	
8-8	Using Exponential and		
	Logarithmic Functions 1	41	
Tie	It Together1		
Bef	Before the Test		

Chapter 9

ore You Read	
/ Points	146
Multiplying and Dividing Rational	
Expressions	147
Adding and Subtracting Rational	
Expressions	149
Graphing Reciprocal Functions	151
Graphing Rational Functions	153
Variation Functions	155
Solving Rational Equations	
and Inequalities	157
It Together	159
ore the Test	
	Points Multiplying and Dividing Rational Expressions Adding and Subtracting Rational Expressions Graphing Reciprocal Functions Graphing Rational Functions Variation Functions Solving Rational Equations and Inequalities It Together

Chapter 10

Befo	re You Read	161
Key Points1		
10-1	Midpoint and Distance Formulas	163
10-2	Parabolas	165
10-3	Circles	167
10-4	Ellipses	169
10-5	Hyperbolas	171
10-6	Identifying Conic Sections	173
10-7	Solving Quadratic Systems	175
Tie It Together		
Before the Test		

Chapter 11

Before You Read 179		
Key Points		180
11-1	Sequences as Functions	181
11-2	Arithmetic Sequences and Series	183
11-3	Geometric Sequences and Series	185

11-4	Infinite Geometric Series	187
11-5	Recursion and Iteration	189
11-6	The Binomial Theorem	191
11-7	Proof by Mathematical Induction	193
Tie It	Together	195
Befo	re the Test	196

Chapter 12

Befo	re You Read	197
Key	Points	198
12-1	Experiments, Surveys, and	
	Observational Studies	199
12-2	Statistical Analysis	201
12-3	Conditional Probability	203
12-4	Probability Distributions	205
12-5	The Normal Distribution	207
12-6	Hypothesis Testing	209
12-7	Binomial Distributions	211
Tie It	Together	213
Befo	re the Test	214

Chapter 13

Befo	re You Read	. 215
Key	Points	. 216
13-1	Trigonometric Functions in Right	
	Triangles	. 217
13-2	Angles and Angle Measure	. 219
13-3	Trigonometric Functions of General	
	Angles	. 221
13-4	Law of Sines	. 223
13-5	Law of Cosines	. 225
13-6	Circular Functions	. 227
13-7	Graphing Trigonometric Functions	. 229
13-8	Translations of Trigonometric	
	Graphs	. 231
13-9	Inverse Trigonometric Functions	. 233
Tie It	t Together.	. 235
Befo	re the Test	. 236

Chapter 14

Key Points23814-1 Trigonometric Identities23914-2 Verifying Trigonometric Identities24114-3 Sum and Difference of Angles Formulas24314-4 Double-Angle and Half-Angle Formulas24514-5 Solving Trigonometric Equations247
 14-2 Verifying Trigonometric Identities
 14-3 Sum and Difference of Angles Formulas
Formulas
14-4 Double-Angle and Half-Angle Formulas
Formulas
14-5 Solving Trigonometric Equations 247
Tie It Together
Before the Test 250

Note-Taking Tips

Your notes are a reminder of what you learned in class. Taking good notes can help you succeed in mathematics. The following tips will help you take better classroom notes.

- Before class, ask what your teacher will be discussing in class. Review mentally what you already know about the concept.
- Be an active listener. Focus on what your teacher is saying. Listen for important concepts. Pay attention to words, examples, and/or diagrams your teacher emphasizes.
- Write your notes as clear and concise as possible. The following symbols and abbreviations may be helpful in your note-taking.

Word or Phrase	Symbol or Abbreviation	Word or Phrase	Symbol or Abbreviation
for example	e.g.	not equal	¥
such as	i.e.	approximately	*
with	w/	therefore	·.
without	w/o	versus	vs
and	+	angle	Z

- Use a symbol such as a star (★) or an asterisk (*) to emphasis important concepts. Place a question mark (?) next to anything that you do not understand.
- Ask questions and participate in class discussion.
- Draw and label pictures or diagrams to help clarify a concept.
- When working out an example, write what you are doing to solve the problem next to each step. Be sure to use your own words.
- Review your notes as soon as possible after class. During this time, organize and summarize new concepts and clarify misunderstandings.

Note-Taking Don'ts

- Don't write every word. Concentrate on the main ideas and concepts.
- Don't use someone else's notes as they may not make sense.
- Don't doodle. It distracts you from listening actively.
- Don't lose focus or you will become lost in your note-taking.

NAME

Before You Read

Before you read the chapter, respond to these statements.

- 1. Write an ${\bf A}$ if you agree with the statement.
- **2.** Write a \mathbf{D} if you disagree with the statement.

Before You Read	Equations and Inequalities
	• Real numbers include rational and irrational numbers.
	• The Symmetric Property states that for any real number <i>a</i> , <i>a</i> = <i>a</i> .
	• Substitution is one way to check if the solution for an equation is correct.
	• $ y $ means the absolute value of y .
	• The graph of a compound inequality with "and" is union of the solution set of the two inequalities.

FOLDABLES Study Organizer Cons

Construct the Foldable as directed at the beginning of this chapter.

Note Taking Tips

• When you take notes, it may be helpful to sit as close as possible to the front of the class.

There are fewer distractions and it is easier to hear.

• If your instructor points out definitions or procedures from your text, write a reference page in your notes.

You can then write these referenced items in their proper place in your notes after class.

Equations and Inequalities

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on expressions and formulas, one fact might be that a formula is a mathematical sentence that expresses the relationship between certain qualities. After completing the chapter, you can use this table to review for your chapter test.

Lesson	Fact
1-1 Expressions and Formulas	
1-2 Properties of Real Numbers	
1-3 Solving Equations	
1-4 Solving Absolute Value Equations	
1-5 Solving Inequalities	
1-6 Solving Compound and Absolute Value Inequalities	

Lesson 1-1

1-1 Expressions and Formulas

What You'll Learn	Skim the lesson. Write two things you already know about expressions and formulas. 1
	2.
Active Vocabulary	Review Vocabulary Identify the four <i>grouping symbols</i> used in the following expression. (<i>Prerequisite Skill</i>)
►	$\frac{\left(\frac{3\sqrt{3\cdot 6}-2}{5(2-3)}\right)^2}{5(2-3)}$
►	New Vocabulary Write the correct term beside each definition.
►	letters used to represent unknown quantities
>	expressions that contain at least one variable
►	a mathematical sentence that expresses the relationship between certain quantities
►	a set of rules which outline the order in which calculations must be performed in a mathematical expression
	Vocabulary Link Putting on socks and then shoes is an example of a real life situation in which following a prescribed <i>order of operations</i> is crucial to a successful outcome. Describe two other such situations.

			_
N	Δ	١Л	F
1.1			L

	DATE PERIOD
Lesson 1-1 (continued)	
Main Idea	Details
Order of Operations pp. 5–6	Write a title for each step and complete the operations in order for the expression $3x - 4(y + 2)^2$ when $x = -2$ and $y = 3$.
	Begin
	P
	E
	MD
	AS
Formulas	Calculate the amount of medicine to give an eight-

Formulas

p. 6

Calculate the amount of medicine to give an eightyear-old child if the adult dosage is 1500 milligrams. Use the formula d = 0.08aD where d is the child's dosage, *a* is the child's age, and *D* is the adult dosage.

Helping You Remember

Think of a phrase or sentence to help you

remember the order or operations.

1-2 Properties of Real Numbers

What You'll Learn	Skim the Examples for Lesson 1-2. Predict two things you think you will learn about the properties of real numbers.
	1
	2
Active Vocabulary	New Vocabulary Match the term with its definition by drawing a line to connect the two.
integers	numbers that can be expressed as a ratio of two integers; the decimal form either terminates or repeats
real numbers	numbers used for counting $\{1, 2, 3, \dots\}$
natural numbers	the set of numbers which represent all points on a number line
rational numbers	numbers than cannot be expressed as a ratio of two integers; the decimal form neither terminates, nor repeats
whole numbers	the counting numbers plus zero $\{0, 1, 2, 3, \dots\}$
irrational numbers	the whole numbers and their opposites
	Vocabulary Link Explain each of the mathematical representations of properties in your own words.
	1. a + b = b + a
	2. $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
	3. $a + (-a) = 0$

Lesson 1-2

Main Idea	Det	ails
Real Numbers b. 11	Write each of the following appropriate location in the $\left\{\sqrt{2}, 4, 0, \frac{2}{3}, 1000, \pi, 2.25, -22\right\}$	Venn diagram.
	Real Nu	,
	Rational Numbers	Irrational Numbers
	Integers Whole Natural	
Properties of Real Numbers	State the property represer	ited in each equation.
op. 12–13	1. $6.72 + (-6.72) = 0$	
	2. $3b + 2b = (3 + 2)b$	
	3. $-3(2 \cdot 5) = (-3 \cdot 2)5$	
	4. $5 \cdot a = a \cdot 5$	
	5. $\frac{6}{11} \cdot \frac{11}{6} = 1$	

1-3 Solving Equations

What You'll Learn	Scan the text in Lesson 1-3. Write two facts you learned about equations as you scanned the text.
	1
	2
Active Vocabulary	New Vocabulary Define the following terms from this lesson.
open sentence >	
equation ►	
solution ►	
	Vocabulary Link <i>Properties of Equality</i> can be explained in non-mathematical terms. For each description, name the <i>Property of Equality</i> that is described.
	The word "little" means the same as the word "small". Therefore, when I read the word "small" I can replace it with the word "little."
	The word "little" means the same as the word "small." The word "small" means the same as the word "tiny." Therefore, the word "little" means the same as the word "tiny."

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Lesson 1-3

NAME	DATE	PERIOD
Lesson 1-3 (continued)		
Main Idea	D	etails
Verbal Expressions and Algebraic Expressions p. 18	List verbal expressions th operation.	nat would translate into each
p. 10		
Properties of Equality pp. 19–21	Solve the equation using	the steps listed as a guide.
	Equation	Step
	2(q-3) + 5q = 8(q-1)	Original equation
		Distributive Property
		Simplify.

Helping You Remember

How can the words *reflection* and *symmetry* help you remember and distinguish between the reflexive and symmetric properties of equality? Think about how these words are used in geometry.

Addition Property of Equality Addition Property of Equality **Division Property of Equality**

Check.

1-4 Solving Absolute Value Equations

What You'll Learn	Scan the text under the <i>Now</i> heading. List two things you will learn about in the lesson.
	1
	2
Active Vocabulary	Review Vocabulary Describe the importance of grouping symbols to the order of operations. (Lesson 1-1)
	New Vocabulary Fill in the blank with the correct term or phrase.
absolute value 🕨	The of a number from on a number line.
empty set 🕨	The term used to describe when an equation is true and thus has no solution. The symbols used to denote the empty set are and
extraneous solution ►	The term used to describe a solution to an which is found when solving the equation but is determined to be invalid when the solution in the original equation.

Lesson 1-4

NAME	DATE	PERIOD
Lesson 1-4 (continued)		
Main Idea	Details	5
Absolute Value Expressions	Evaluate each expression give	n $u = -3$ and $v = 5$.
p. 27	1. $ u - v $	2. $3 u - 4 v $
	3. $5 - 4u + 7 - v$	$4.\frac{ 2u-1 }{ v-6 }$
Absolute Value Equations pp. 28–29	Complete the diagram to solve	uation = 23 - 9 is 23 units number line, e two possible

and

2x - 9 =

x =

Check

Helping You Remember

How can the number line model for absolute value, shown in your textbook help you remember that many absolute value equations have two solutions?

2x - 9 =

x =

Check

1-5 Solving Inequalities

What You'll Learn	Skim Lesson 1-5. Predict two things that you expect to learn based on the headings and the Key Concept box.
	1
	2.
Active Vocabulary	Review Vocabulary Write a word description for each inequality symbol and write a true mathematical sentence using the symbol. (<i>Prerequisite Skill</i>)
	1.> 2.<
	3. ≥
	4. ≤ New Vocabulary Label the parts of the set builder notation below using the phrases given at the left. Show the set builder notation on the number line.
such that \blacktriangleright all numbers b \blacktriangleright b is less than $-6 \blacktriangleright$	$\{b \mid b \leq -6\}$
	-11-10-9-8-7-6-5-4-3-2-1 0 1 2 3 4 5 6 7 8 9 10 11

NAME	DATE PERIOD
Lesson 1-5 (continued)	
Main Idea	Details
One-Step Inequalities pp. 33–35	Identify the reason for each step in solving the inequality. Graph the solution set on a number line.
	6x + 12 < 8x - 8
	6x + 12 - 12 < 8x - 8 - 12
	6x < 8x - 20
	6x - 8x < 8x - 8x - 20
	-2x < -20
	$\frac{-2x}{-2} < \frac{-20}{-2}$
	<i>x</i> > 10
	-22-20-18-16-14-12-10-8-6-4-2 0 2 4 6 8 10 12 14 16 18 20 22
Multi-Step Inequalities pp. 35–36	Describe the similarities and differences between solving an equation and solving an inequality.
**	Similarities Differences

Helping You Remember

A common error in solving inequalities is forgetting to reverse the equality symbol when multiplying or dividing both sides of an inequality by a negative number. How could you explain this rule to a classmate who is having trouble remembering this rule?

Solving Compound and Absolute Value 1-6 Inequalities What You'll Learn Scan Lesson 1-6. List two headings you would use to make an outline of this lesson. 1. _____ 2. Active Vocabulary **New Vocabulary** Write the definition next to each term. compound inequality \blacktriangleright *union* ▶ intersection \blacktriangleright

Vocabulary Link Shade the *intersection* of sets A and B in Diagram I. Shade the *union* of sets *A* and *B* in Diagram II.

Lesson 1-6

NAME	DATE PERIOD
Lesson 1-6 (continued)	
Main Idea	Details
Compound Inequalities pp. 41–42	Write a compound inequality that says "x is greater than -3 and x is less than or equal to 4." Graph the inequality.
	Write a compound inequality that says "x is less than 2 or x is greater than or equal to 6." Graph the inequality
	<u>-7-6-5-4-3-2-1 0 1 2 3 4 5 6 7</u>
Absolute Value Inequalities pp. 43–44	Complete the chart below for solving absolute value inequalities.
	Step 1: Isolate the absolute value expression.
	↓
	Step 2: Choose the correct form of the inequality.
	$ ax + b > c \qquad ax + b \ge c \qquad ax + b < c \qquad ax + b \le c$
	Rewrite as
	ax + b > c
	$\begin{vmatrix} \text{or} \\ ax + b < -c \end{vmatrix}$
	and solve for <i>x</i> .
Helping You Rem	ember part in the training of the second sec
	Describe a way to remember whether an

absolute value inequality should be translated into an *and* or an *or* compound inequality.

Expressions and Formulas

Tie It Together

Complete each table concerning real numbers. Provide two important details in each graphic organizer concerning variables.

DATE _

CHAPTER

Equations and Inequalities

Before the Test

Now that you have read and worked through the chapter, think about what you have learned and complete the table below. Compare your previous answers with these.

- 1. Write an A if you agree with the statement.
- **2.** Write a \mathbf{D} if you disagree with the statement.

Equations and Inequalities	After You Read
• Real numbers include rational and irrational numbers.	
• The Symmetric Property states that for any real number a , $a = a$.	
• Substitution is one way to check if the solution for an equation is correct.	
• $ y $ means the absolute value of y .	
• The graph of a compound inequality with "and" is union of the solution set of the two inequalities.	

Math Online Visit *glencoe.com* to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 1.

Are You Ready for the Chapter Test?

Use this checklist to help you study.

- $\hfill\square$ I used my Foldable to complete the review of all or most lessons.
- \Box I completed the Chapter 1 Study Guide and Review in the textbook.
- $\hfill\square$ I took the Chapter 1 Practice Test in the textbook.
- $\hfill\square$ I used the online resources for additional review options.
- $\hfill\square$ I reviewed my homework assignments and made corrections to incorrect problems.
- $\hfill\square$ I reviewed all vocabulary from the chapter and their definitions.

• Set goals and priorities before studying. Then study the most difficult material first and complete assignments that have due dates before others.

Linear Relations and Functions

Before You Read

Before you read the chapter, respond to these statements.

- 1. Write an \boldsymbol{A} if you agree with the statement.
- **2.** Write a \mathbf{D} if you disagree with the statement.

Before You Read	Linear Relations and Functions
	• A relation is always a function, but a function is not always a relation.
	• Rate of change is the slope.
	• The slope-intercept form of a linear equation is used when there is an ordered pair and slope is given.
	• A line of regression is the change of <i>y</i> over the change of <i>x</i> .
	• In the graph of a linear inequality, the line is the boundary.

FOLDABLES Study Organizer

Construct the Foldable as directed at the beginning of this chapter.

Note Taking Tips

- When you take notes, listen or read for main ideas. Then record concepts, define terms, write statement in if-then form, and write paragraph proofs.
- When taking notes, writing a paragraph that describes the concepts, the computational skills, and the graphics will help you to understand the math in the lesson.

Linear Relations and Functions

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on rate of change and slope, one fact might be that the slope of a line is the same as its rate of change. After completing the chapter, you can use this table to review for your chapter test.

Lesson	Fact
2-1 Relations and Functions	
2-2 Linear Relations and Functions	
2-3 Rate of Change and Slope	
2-4 Writing Linear Equations	
2-5 Scatter Plots and Lines of Regression	
2-6 Special Functions	
2-7 Parent Functions and Transformations	
2-8 Graphing Linear and Absolute Value Inequalities	

2-1 Relations and Functions

What You'll Learn	Scan Lesson 2-1. List two headings you would use to make an outline of this lesson.
	1
	2
A d'an Manakalara	
Active Vocabulary	New Vocabulary Write the definition next to each term.
continuous function \blacktriangleright	
dependent variable 🕨	
$discrete\ function\ ightarrow$	
,	
function notation \blacktriangleright	
independent variable 🕨	
independent variable 🕨	
one-to-one function \blacktriangleright	
onto function \blacktriangleright	
vertical line test 🕨	

Linear Relations and Functions 2-2

What You'll Learn	Scan the text in Lesson 2-2. Write two facts you learned about linear functions and relations as you scanned the text.
	1
	2
Active Vocabulary	Review Vocabulary Label the diagram using the words at the left. (Lesson 2-1)
$independent\ variable$ \blacktriangleright	
$dependent \ variable$ \blacktriangleright	y = 3x - 4
constant >	New Vocabulary Fill in each blank with the correct term or phrase.
linear relation \blacktriangleright	a relation in which the graph of the relation is a
linear equation ►	an equation with exponents no greater than, and which does not contain the operation of of a constant by a variable
linear function ►	a function whose satisfy a linear function of the form $f(x) = _\x + _\$
standard form ▶	form of a linear equation written as $Ax + By = C$ where A, B, C are and have a greatest common factor of
y-intercept 🕨	the of the point at which a graph crosses the
x-intercept 🕨	the of the point at which a graph crosses the

Lesson 2-2 (continued)

Main Idea

Linear Relations and **Functions**

pp. 69–70

Circle the characteristic of each function that makes it nonlinear. Sketch the graph of each function to show that it is nonlinear.

Details

Standard Form

pp. 70–71

Compare and contrast finding the *x*-intercept and the y-intercept for an equation by filling in the chart below.

	Finding x-intercept	Finding y-intercept
What is the same?		
What is different?		

Helping You Remember

Your friend thinks that she should let x = 0 to find the *x*-intercept. How would you explain to her how to remember the correct method?

2-3 Rate of Change and Slope

What You'll Learn	Skim the lesson. Write two things you already know about
what fou if Learn	rate of change and slope.
	1
	1.
	2
Active Vocabulary	Review Vocabulary Write the definition of the word <i>ratio</i> and list three ways that a ratio can be expressed. By scanning ahead, how are ratios expressed in this lesson?
	New Vocabulary Write the definition next to each term.
rate of change ►	
slope 🕨	

Lesson 2-3

Main Idea		Deta	ails	
Rate of Change op. 76–77	change of 30		Table A has a r and Table B ninute.	
	Ta	ole A	Table B	
	Year	People	Minutes	Inches
	0		1	
	4	125	2	
	5		4	38.6
	8		7	
-	slope of the li	ne described.	ethods to calc	
_	slope of the line $a \lim_{x \to a} (x_1, y_1)$ and $(3, -2)$	ne described. The that passes the $(-1, 4)$ and $Use (3, -2)$ as	hrough the point d $(3, -2)$	ts ne points to
Slope pp. 77–78	slope of the li	ne described. The that passes the $(-1, 4)$ and $Use (3, -2)$ as	hrough the point d $(3, -2)$	ts

Writing Linear Equations 2-4

What You'll Learn	Skim the Examples for Lesson 2-4. Predict two things you think you will learn about writing linear equations.
	1
	2.
Active Vocabulary	Review Vocabulary Write the slope formula, and then write a verbal description of how to use the slope formula.
	(Lesson 2-3)
	New Vocabulary Label the equations with the correct terms.
point-slope form \blacktriangleright	
$slope$ -intercept form \blacktriangleright	y = mx + b
y-coordinate of point on the line ►	
slope 🕨	
y-intercept >	$y - y_1 = m(x - x_1)$
x-coordinate of point on the line ▶	
Chapter 2	25 Glencoe Algebra 2

Lesson 2-4

JAME	DATE PERIOD
Lesson 2-4 (continued)	
Main Idea	Details
Forms of Equations pp. 83–85	The directions "Write the equation of the line given" can take on many variations. List three situations when using the <i>Slope-Intercept Form</i> would be appropriate and two situations when using the <i>Point-Slope Form</i> would be appropriate.
	Slope Intercept Form y = mx + b
	Point Slope Form $y - y_1 = m(x - x_1)$
Parallel and Perpendicular Lines pp. 85–86	Write an equation for each of the three following lines.
	1. a line which has an <i>x</i> -intercept of 4 and a <i>y</i> -intercept of -2
	2. a line parallel to the line in Exercise 1
	3. a line perpendicular to the line in Exercise 1
Helping You Rem the point-slope form?	How can you use the slope formula to remember

2-5 Scatter Plots and Lines of Regression

What You'll Learn	Skim Lesson 2-5. Predict two things that you expect to learn based on the headings and the Key Concept box.
	1
	2.
Active Vocabulary	New Vocabulary Write the correct term beside each definition.
►	the equation for a line of best fit
►	when a scatter plot resembles a line which falls from left to right
►	a set of data which contains two variables
►	a line which closely approximates the scatter plot for a set of data
►	a set of bivariate data graphed as order pairs on a coordinate plane
►	when a scatter plot resembles a line which rises from left to right
►	a line of best-fit which is calculated mathematically so that the distance of all data points to the line of fit are minimized
►	a measure of how well data are modeled by a line of best fit
	Vocabulary Link Circle each word which would likely describe the given statistical relationship.
	the number of absences and the final grades of seven students randomly selected from an algebra class
	negative positive no weak strong correlation correlation correlation

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Lesson 2-5

Lesson 2-5 (continued)

Main Idea

Details

Scatter Plots and Prediction Equations pp. 92–93

Make a scatter plot and give a verbal description of the correlation. Determine a line of best fit for the data.

The table shows the number of sick days taken and the ages of seven random employees from a retail store.

Age	18	26	39	48	53	58
Days	16	12	9	5	6	2

Lines of Regression

pp. 94–95

Make detailed notes about the keystrokes necessary to perform linear regression on your graphing calculator.

Making the Scatter Plot	Performing Regression	Using Regression Line
		L J

Helping You Remember

Look up the word *scatter* in a dictionary. How can its definition help you to remember the difference between a scatter plot and the graph of a linear equation?

2-6 Special Functions

What You'll Learn	Scan the text under the <i>Now</i> heading. List two things you will learn about in the lesson.
	1
	2
Active Vocabulary	Review Vocabulary Graph each on a number line. (Lesson 1-6)
Active vocubulury	$\begin{vmatrix} x & < 4 \\ \hline \\ -5-4-3-2-1 & 0 & 1 & 2 & 3 & 4 & 5 \end{vmatrix}$ all integers whose absolute value is greater than 2 $\begin{vmatrix} + + + + + + + + + + + + + + + + + + +$
step function \blacktriangleright	New Vocabulary Write the definition next to each term.
greatest integer function >	
piecewise-defined function >	
absolute value function >	
piecewise-linear function >	

Main Idea Details				
Piecewise-Defined Functions pp. 101–102	Provide either the graph or the function notation for each <i>piecewise-defined function</i> . Identify the domai and range for each.			
	Function	Graph	Domain	
	$f(x) = \begin{vmatrix} x+2 & \text{if } x \ge 2\\ -x+4 & \text{if } x < 2 \end{vmatrix}$	↓ y ↓ y ↓ v ↓ v ↓ v	Range	
	$f(x) = \begin{vmatrix} x + 2 & \text{if } x \le -2 \\ x - 3 & \text{if } x > -2 \end{vmatrix}$		Domain	
			Range	

DATE _____ PERIOD _

2. | [[-8.2]] |

4. 3 | 15 - 7 |

Helping You Remember

Many students find the greatest integer function confusing. Explain how you can use a number line to find the value of this function for any real number.

1. [4.5]

3. | **[**12.9**]** − 15 |

Functions

pp. 102–104

2-7 Parent Functions and Transformations

What You'll Learn	Skim the Examples for Lesson 1-2. Predict two things you think you will learn about transformations. 1 2
Active Vocabulary	New Vocabulary Write the correct term beside each definition.
►	the simplest graph in a family of similar graphs
►	f(x) = x
►	a group of graphs which display similar characteristics
►	the straight line which an image is reflected over
►	$f(x) = x^2$
►	movement of an image vertically or horizontally
►	f(x) = a
►	when an image is flipped over a straight line
►	a transformation which shrinks or enlarges a figure
	Review Vocabulary Write the name of each transformation. $ \begin{array}{c} $

Lesson 2-7

NAME			DATE	PE	RIOD
Lesson 2-7 (continued)					
Main Idaa				Detaile	
Main Idea		Details			
Parent Graphs	Complete t	he table	e bel	ow.	
pp. 109–110	Function Name	Funct Notat		General Shaj	pe Domain and Range
	Constant				
	Absolute Value			"V" shape	
	Quadratic			"U" shape	
Transformations pp. 110–112	Poinot		g the chart. How are the transformations		
	f(x) = x + g(x) = x + y	+ 4 and	1	the same?	different?

Helping You Remember

Describe how grouping symbols affect

translations and reflections.

f(x) = -|x| and

g(x) = |-x|

2-8 Graphing I Inequalitie	Linear and Absolute Value es
What You'll Learn	Scan the text in Lesson 2-8. Write two facts you learned about graphing inequalities as you scanned the text. 1.
	2.
Active Vocabulary	Review Vocabulary Explain how the solution set for
	Explain now the solution set for 3x - 4 = 8 differs from the solution set of $3x - 4 > 8$ and the solution set of $3x - 4 \ge 8$.
	New Vocabulary Write the definition next to each term.
linear inequality 🕨	
boundary >	

Lesson 2-8

DATE _____ PERIOD _

Linear Relations and Functions

Tie It Together

Provide details in each graphic organizer.

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

DATE .

Study Tips

before test day.

□ I completed the Chapter 2 Study Guide and Review in the textbook.

 \Box I used my Foldable to complete the review of all or most lessons.

□ I took the Chapter 2 Practice Test in the textbook.

- □ I used the online resources for additional review options.
- □ I reviewed my homework assignments and made corrections to incorrect problems.

• Review information daily to keep it fresh and to reduce the amount of last minute studying before test day. Look over the notes from class, readings, and corrected homework to review. If you have confusion about any concepts get them cleared up

□ I reviewed all vocabulary from the chapter and their definitions.

• The slope-intercept form of a linear equation is used when there is an ordered pair and slope is given.	
• A line of regression is the change of <i>y</i> over the change of <i>x</i> .	
• In the graph of a linear inequality, the line is the boundary.	
Math Online Visit <i>glencoe.com</i> to access your textbook, more examples personal tutors, and practice tests to help you study for concepts in Ch	· · · ·
Are You Ready for the Chapter Test?	
Use this checklist to help you study.	

Linear Relations and Functions

Before the Test

Now that you have read and worked through the chapter, think about what you have learned and complete the table below. Compare your previous answers with these.

- 1. Write an **A** if you agree with the statement.
- **2.** Write a **D** if you disagree with the statement.

Linear Relations and Functions	After You Read
• A relation is always a function, but a function is not always a relation.	
• Rate of change is the slope.	
• The slope-intercept form of a linear equation is used when there is an ordered pair and slope is given.	
• A line of regression is the change of <i>y</i> over the change of <i>x</i> .	
• In the graph of a linear inequality, the line is the boundary.	

CHAPTER

Before You Read

Before you read the chapter, think about what you know about systems of equations and inequalities. List three things you already know about them in the first column. Then list three things you would like to learn about them in the second column.

К	W
What I know	What I want to find out

FOLDABLES Study Organizer Construct the Foldable as directed at the beginning of this chapter.

Note Taking Tips

• Before each lesson, skim through the lesson and write any questions that come to mind in your notes.

As you work through the lesson, record the answer to your question.

• When you take notes, always write clear and concise notes so they can be easily read when studying for a quiz or exam.

Systems of Equations and Inequalities

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on optimization with linear programming, one fact might be that to optimize means to seek the best price or amount to minimize costs or maximize profits. After completing the chapter, you can use this table to review for your chapter test.

Lesson	Fact
3-1 Solving Systems of Equations by Graphing	
3-2 Solving Systems of Equations Algebraically	
3-3 Solving Systems of Inequalities by Graphing	
3-4 Optimization with Linear Programming	
3-5 Systems of Equations in Three Variables	

3-1 Solving Systems of Equations by Graphing

What You'll Learn	Scan the text under the <i>Now</i> heading. List two things you will learn about in the lesson. 1 2	
Active Vocabulary	Review Vocabulary Make a table of values which satisfy the equation $x + y = 6$. Graph the equation using the table of values. (Lesson 2-1) x y y y How many ordered pairs would satisfy the equation? Justify your answer.	
	New Vocabulary Match the term with its definition by drawing a line to connect the two.	
consistent	a set of two or more equations that contain the same variables	
inconsistent	a system of equations that has at least one solution	
break-even point	a system of equations that has an infinite number of solutions	
system of equations	in business applications, the point at which the income equals the cost	
independent	a system of equations that has exactly one solution	
dependent	a system of equations that has no solutions	

NAME _ _ DATE _____ PERIOD __ **Lesson 3-1** (continued) **Main Idea** Details Solve Systems Using Find the solution for the system of equations first by **Tables and Graphs** making a table of values and then by graphing. pp. 135-136 x + y = 5 $\Rightarrow y =$ y I $y - 3x = -3 \Rightarrow y =$ x y 0 X solution x y **Classify Systems of** Sketch one or two systems of equations which satisfy **Equations** each description. pp. 137-138 Inconsistent Consistent y l 0 0 x X 0 x **Helping You Remember** Look up the words *consistent* and *inconsistent* in a dictionary. How can these words help you distinguish between consistent and inconsistent systems of equations?

3-2 Solving Systems of Equations Algebraically

What You'll Learn	Scan the text in Lesson 3-2. Write two facts you learned about solving systems of equations algebraically as you scanned the text. 1 2
Active Vocabulary	Review Vocabulary Write the property of equality which is represented by each example. (Lessons 1-2 and 1-3)
	3x + 2y = 12 is equivalent to $6x + 4y = 24$
	-3x + 3x = 0
substitution method >	New Vocabulary Write the definition next to each term.
elimination method >	

Lesson 3-2

Solving Systems of Inequalities by Graphing 3-3

Lesson 3-3 (continued)Main IdeaDetailsFinding Vertices of an
Enclosed Region
pp. 152–153Determine the three systems of equations that you
would solve in order to determine the vertices of the
triangle formed by the system of inequalities. For
each system, select an appropriate method for solving
and justify your selection.
 $2y \le x + 8$
y + 2x > -5
y - 4x < -5System #1System #2

DATE ____

_____ PERIOD __

System #1	System #2	System #3
Method?	Method?	Method?

Helping You Remember

of inequalities, how can the inequality symbols help you remember whether to use a dashed or solid line?

3-4 Optimization with Linear Programming

What You'll Learn	Skim Lesson 3-4. Predict two things that you expect to learn based on the headings and the Key Concept box. 1. 2.		
Active Vocabulary	New Vocabulary Write the correct term beside each definition.		
►	the region bounded by the constraints that are represented by the graphs of the inequalities		
►	to seek the price that will minimize costs and/or maximize profits		
►	the process of finding maximum or minimum values of a function given constraints		
►	a feasible region which is enclosed by constraints		
►	business limitations on production caused by various business variables		
►	a feasible region which is not completely enclosed by constraints Vocabulary Link Evaluate the function $f(x) = -2x + 1$ for $x = -2, -1$ and 0. Evaluate the function $g(x, y) = 2x + 4y$ given $(x, y) = (3, 2), (4, -1)$ and $(5, 8)$.		
	$f(-2) = \ g(3, 2) = \$		
	$f(-1) = __\ g(4, -1) = __\$		
	$f(0) = \ g(5, 8) = \$		

Lesson 3-4

NAME	DATE	PERIOD	
Lesson 3-4 (continued)			
Main Idea	De	tails	
Maximum and Minimum Values pp. 160–161	steps on the slanted lines	amming problem. Write the	
Step 1	Step 3		
Step 2	Step 4		
Optimization p. 162	Write a system of inequali function to represent the application. Describe how inequalities and the funct	following business you would use the	
	At Burger Barn, a double contains 2 meat patties and 6 pickles, and a triple contains 3 meat patties and 3 pickles. At the end of a shift, only 24 meat patties and 48 pickles remain. If a double burger sells for \$1.20 and a triple burger sells for \$1.50, then how many of each should be made to maximize revenue?		
	Revenue Function	Description of Solution Process	
	System of Inequalities		

3-5 Systems of Equations in Three Variables

What You'll Learn	Skim the Examples for Lesson 3-5. Predict two things you think you will learn about systems of equations in three variables.
	2.
Active Vocabulary	New Vocabulary Fill in each blank with the correct term or phrase.
ordered triple \blacktriangleright	The solution to a system of equations in
	variables is written in the form of The graphs
	of a system in three variables form a system of
	Planes can intersect in a, in the same
	or in a single
	Vocabulary Link Provide a real world example for each of the following situations. Look around your classroom for examples.1. three planes which intersect in one point
	2. three planes which intersect in a line
	3. three planes which are parallel
	4. three planes which intersect in two lines

Lesson 3-5

Tie It Together

Fill in each graphic organizer paying attention to the depicted relationships between the organizers. Add details if space permits.

Before the Test

Review the ideas you listed in the table at the beginning of the chapter. Cross out any incorrect information in the first column. Then complete the table by filling in the third column.

К	W	L
What I know	What I want to find out	What I learned

Math Online Visit *glencoe.com* to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 3.

Are You Ready for the Chapter Test?

Use this checklist to help you study.

- \Box I used my Foldable to complete the review of all or most lessons.
- \Box I completed the Chapter 3 Study Guide and Review in the textbook.
- \Box I took the Chapter 3 Practice Test in the textbook.
- \Box I used the online resources for additional review options.
- \Box I reviewed my homework assignments and made corrections to incorrect problems.
- \Box I reviewed all vocabulary from the chapter and their definitions.

Study Tips

• If possible, rewrite your notes. Not only can you make them clearer and neater, rewriting them will help you remember the information.

NAME		DATE	
4 Matri	ices		

Before You Read

Before you read the chapter, think about what you know about matrices. List three things you already know about them in the first column. Then list three things you would like to learn about them in the second column.

К	W
What I know	What I want to find out

FOLDABLES Study Organizer

Construct the Foldable as directed at the beginning of this chapter.

Note Taking Tips

• A visual study guide like the Foldable shown above helps you organize what you know and remember what you have learned.

You can use them to review main ideas or keywords.

• When you take notes, draw a visual (graph, diagram, picture, chart) that presents the information introduced in the lesson in a concise, easy-to-study format.

DATE _

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on transformations with matrices, one fact might be that a translation occurs when a figure is moved from one location to another without changing its size, shape, or orientation. After completing the chapter, you can use this table to review for your chapter test.

Lesson	Fact
4-1 Introduction to Matrices	
4-2 Operations with Matrices	
4-3 Multiplying Matrices	
4-4 Transformations with Matrices	
4-5 Determinants and Cramer's Rule	
4-6 Inverse Matrices and Systems of Equations	

4-1 Introduction to Matrices

What You'll Learn	Scan the text under the <i>Now</i> heading. List two things you will learn about in the lesson.
	1
	2.
Active Vocabulary	New Vocabulary Write the term next to its definition.
>	the number of rows and columns in a matrix, written as $m \times n$, where <i>m</i> is the number of rows and <i>n</i> is the number of columns
►	a constant or variable in a matrix
►	a matrix which has only one row
►	a rectangular array of variables or constants in horizontal rows and columns
►	a matrix which has the same number of rows as columns
►	two matrices which has the same dimensions and which have equivalent corresponding elements
►	a matrix which has only one column
•	a matrix in which every element is zero

NAME	DATE PERIOD
Lesson 4-1 (continued)	
Main Idea	Details
Organize and Analyze Data	Use matrix A to answer the following questions.
Data pp. 185–187	$A = \begin{bmatrix} 3 & 2 & -6 & 1 & 5 \\ 12 & 4 & -6 & 3 & 8 \\ 11 & 0 & 0.5 & 9 & -1 \\ -25 & \frac{3}{4} & -2 & 7 & 15 \end{bmatrix}$
	What are the dimensions of Matrix <i>A</i> ?
	What is the value of $a_{_{31}}$? of $a_{_{43}}$?
	What is the value of $a_{_{14}}$? of $a_{_{53}}$?
	What is the sum of the elements in column 3?
	What is the average of the elements in row 2?
	Provide an example matrix for each of the given descriptions.

Equivalent Square Matrices	Square Matrix With 4 Rows	Non- Equivalent Row Matrices

Helping You Remember

Some students have trouble remembering which number comes first in writing the dimensions of a matrix. Think of an easy way to remember this

4-2 Operations with Matrices

What You'll Learn	Skim Lesson 4-2. Predict two things that you expect to learn based on the headings and the Key Concept box.			
	1			
	2			
Active Vocabulary	New Vocabulary Write the definition next to each term.			
scalar multiplication \blacktriangleright				

Vocabulary Link The table below records the distance between Chicago and other major cities on a map which uses a scale of 1 cm = 100 miles.

	St. Louis	Seattle	Atlanta	Cleve- land	Orlando
Actual Mileage					
Distance on Map	2.62	17.33	5.85	5.47	9.94

Describe how the distances between the cities on the map can be converted to the actual mileages between the cities. Complete the table to show the actual mileages between the cities. Lesson 4-2

Main Idea Add and Subtract Matrices p. 193	Details Decide if matrix addition and subtraction are commutative using matrices $A = \begin{bmatrix} -3 & -2 \\ 1 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 9 & 6 \\ 0 & -7 \end{bmatrix}$		
	Addition	Subtraction	
	Commutative? Yes or No	Commutative? Yes or No	
Scalar Multiplication pp. 194–195	Provide an example for listed in the table below Commutative Property of Addition	each of the matrix propertie	
	Associative Property of Addition		
	Left Scalar Distributive Property		
	Right Scalar Distributive Property		
Helping You Rem word scale as used in a sc help you remember the m	ale of miles on a map. How can	al term <i>scalar</i> is related to the this usage of the word scale	

_____ DATE _____ PERIOD __

4-3 Multiplying Matrices

What You'll Learn	Skim the lesson. Write two things you already know about multiplying matrices.		
	1		
Active Vocabulary		Write the dimense below. (Lesson 4-1)	sion of each of the
	$A = \begin{bmatrix} 4 & -7 \\ 6 & 5 \\ 0 & 0.5 \end{bmatrix}$	Dimens	ion of <i>A</i> :
	$B = \begin{bmatrix} 4\\2\\\frac{1}{2}\\-7 \end{bmatrix}$	Dimens	ion of <i>B</i> :
	$C = \begin{bmatrix} 3 & 5 & 7 \\ -3 & 6 & 0 \end{bmatrix}$	Dimens	ion of <i>C</i> :
	$D = \begin{bmatrix} 3 & -1 & 0.\\ -5 & 2 & 8 \end{bmatrix}$	$\begin{bmatrix} 75 & 6 \\ & 1 \end{bmatrix}$ Dimension	ion of <i>D</i> :
			n the number of columns umber of rows in the
	A and B	A and C	$A ext{ and } D$
	B and C	B and D	C and D
	B and A	C and A	$D ext{ and } A$
	C and B	D and B	D and C

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Transformations with Matrices 4-4

What You'll Learn	Scan Lesson 4-4. List two headings you would use to make an outline of this lesson.
	1
	2

Active Vocabulary	Review Vocabulary Match each function to a description of a transformation of the parent graph $f(x) = x $. (Lesson 2-7)	
f(x) = 3 x	a translation	
f(x) = x - 4	a reflection	
f(x) = - x	a dilation	
	New Vocabulary Write the correct term beside each definition.	
►	when a geometric figure is moved without changing its size, shape, or orientation	
►	• a matrix in which each column represents the coordinates of a polygon drawn on a coordinate plane	
►	when a geometric figure is enlarged or reduced	
►	a geometric figure prior to undergoing a transformation	
►	when the points of geometric figure are mapped to new points across a line of symmetry	
►	a geometric figure which has undergone a transformation	
►	functions which map points of a preimage onto its image	
►	when points of a geometric figure are mapped to new points which are rotated about a center point	

Lesson 4-4

Lesson 4-4 *(continued)* **Main Idea** Details **Translations and** Complete the chart with detail about translations and **Dilations** dilations. pp. 209–211 Description Matrix **Trans**of Transfor-Operation Example formation mation Used Translation Dilation **Reflections and** Describe the transformation that will occur if a *vertex matrix* is multiplied on the left by each of the **Rotations** following matrices. pp. 212–213

_ DATE _____ PERIOD __

Helping You Remember

Describe a way to remember which of the reflection matrices corresponds to a reflection over the *x*-axis.

Determinants and Cramer's Rule 4-5

What You'll Learn	Skim the Examples for Lesson 4-5. Predict two things you think you will learn about determinants and Cramer's Rule. 1. 2.		
Active Vocabulary	Review Vocabulary Solve each system of equations using either the <i>substitution</i> method or the <i>elimination method</i> . (Lesson 3-2)		
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	New Vocabulary Fill in the blank with the correct term or phrase.		
determinant ►	Every matrix has a determinant. Determinants can be used to calculate the of a triangle. They can also be used to determine if a of equations has a		
second-order determinant ▶	When the determinant of a matrix is calculated, it is called a second-order determinant. The value of a second-order determinant is the of the		
third-order determinant ▶	When the determinant of a matrix is calculated, it is called a third-order determinant. The value of a third- order determinant is calculated using the rule.		
Cramer's Rule ►	You can use Cramer's Rule to solve systems of If the determinant of the matrix is zero, then the system does not have a solution.		

Lesson 4-5

DATE _____ PERIOD _

third-order determinant using the diagonal rule.

Inverse Matrices and Systems of Equations 4-6

What You'll Learn	Scan the text in Lesson 4-6. Write two facts you learned about inverse matrices and systems of equations as you scanned the text. 1
Active Vocabulary	 Review Vocabulary Given an example of each property. (Lesson 1-2) 1. Identity Property of Addition
	2. Inverse Property of Multiplication
	3. Inverse Property of Addition
identity matrix \blacktriangleright	New Vocabulary Label the following matrices and diagrams using the terms on the left.
inverses 🕨	
matrix equation \blacktriangleright	$\begin{bmatrix} 2 & 3 \\ 1 & -2 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 16 \\ -6 \end{bmatrix}$
variable matrix \blacktriangleright	
$constant\ matrix$ >	
coefficient matrix ▶	$A = \begin{bmatrix} 3 & -5 \\ -2 & 6 \end{bmatrix} \text{ and } B = \begin{bmatrix} \frac{3}{4} & \frac{5}{8} \\ \frac{1}{4} & \frac{3}{8} \end{bmatrix} \text{ and } A \cdot B = B \cdot A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

Lesson 4-6

NAME	DATE	PERIOD
Lesson 4-6 (continued)		
Main Idea	De	tails
Identity and Inverse Matrices	Fill in the empty boxes bel description of how to use t	low to provide a verbal the definition of an inverse.
pp. 229–231		
	If $P = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ then $P^{-1} = \frac{1}{ad - b}$	
Matrix Equations pp. 231–232	Use a matrix equation and the elimination method to solve the system of equations below.	
	$\begin{array}{c} x-3\\ 3x+2 \end{array}$	y = 25 2y = -2
	Matrix Equation	Elimination Method

Matrix Equation Elimination Method

Helping You Remember

What advice would you give a classmate who is having trouble remembering how to find the *inverse* of a 2×2 matrix?

4. Matrices

Tie It Together

Fill in each graphic organizer paying attention to the depicted relationships between the organizers.

Before the Test

NAME

Review the ideas you listed in the table at the beginning of the chapter. Cross out any incorrect information in the first column. Then complete the table by filling in the third column.

К	W	L
What I know	What I want to find out	What I learned

Math Online Visit *glencoe.com* to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 4.

Are You Ready for the Chapter Test?

Use this checklist to help you study.

- \Box I used my Foldable to complete the review of all or most lessons.
- □ I completed the Chapter 4 Study Guide and Review in the textbook.
- □ I took the Chapter 4 Practice Test in the textbook.
- \Box I used the online resources for additional review options.
- \Box I reviewed my homework assignments and made corrections to incorrect problems.
- \Box I reviewed all vocabulary from the chapter and their definitions.

Study Tips

• To prepare to take lecture notes, make a column to the left about 2 inches wide. Use this column to write additional information from your text, place question marks, and to summarize information.

Quadratic Functions and Relations

Before You Read

Before you read the chapter, respond to these statements.

- 1. Write an A if you agree with the statement.
- **2.** Write a ${\bf D}$ if you disagree with the statement.

Before You Read	Quadratic Functions and Relations
	• The graph of a quadratic function is called the discriminate.
	• Quadratic equations can be solved by graphing, factoring, or using the Square Root Property.
	• Sometimes there are imaginary solutions to equations that have no real number solutions.
	• There are no real solutions when there are no <i>x</i> -intercepts in the graph of a quadratic.
	• In a quadratic function, $y = a(x - h)^2 + k$, the graph opens up when k is positive and down when k is negative.

FOLDABLES Study Organizer

Construct the Foldable as directed at the beginning of this chapter.

Note Taking Tips

- In addition to writing important definitions in your notes, be sure to include your own examples of the concepts presented.
- Take notes in such a manner that someone who did not understand the topic will understand after reading what you have written.

Quadratic Functions and Relations

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on complex numbers, one fact might be that pure imaginary numbers are square roots of negative real numbers. After completing the chapter, you can use this table to review for your chapter test.

	Lesson	Fact
5-1	Graphing Quadratic Functions	
5-2	Solving Quadratic Equations by Graphing	
5-3	Solving Quadratic Equations by Factoring	
5-4	Complex Numbers	
5-5	Completing the Square	
5-6	The Quadratic Formula and the Discriminant	
5-7	Transformations with Quadratic Functions	
5-8	Quadratic Inequalities	

Graphing Quadratic Functions 5-1

Lesson 5-1 (continued)	
Main Idea	Details
Graph Quadratic Functions	Graph $f(x) = 2x^2 + 2 + 8x$. Fill in missing verbal and mathematical steps.
pp. 249–251	Write the function in standard form.
	Identify the coefficients.
	Identify the <i>y</i> -intercept.
	x y Make a table. Put the vertex in the center. Graph the ordered pairs. Check the axis of symmetry.
Maximium and Minimum Values	Find the domain and range for the function $f(x) = -2x^2 + 12x - 5$.
pp. 252–253	Find x-coordinate of vertex. Domain =
	Find y-coordinate of vertex. Range =

Helping You Remember

term of a quadratic function to tell whether it has a maximum or a minimum value?

5-2 Solving Quadratic Equations by Graphing

What You'll Learn	Scan the text in Lesso about solving quadrat scanned the text.		
	1		
	2		
Active Vocabulary	Review Vocabulary Gra related linear equation		tion and solve the
	y = 2x - 5	2x - 5 = 0	How is the graph related to the solution of the equation?
	New Vocabulary Write definition.	the correct term b	eside each
►	the solution of a quad	ratic equation	
►	quadratic functions th	at are set equal to	zero
►	the <i>x</i> -intercepts of the	graph of a functio	n
>	$ax^2 + bx + c = 0$, when	re $a \neq 0$, and a, b ,	and <i>c</i> are integers

Chapter 5

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Main Idea	D	etails
Solve Quadratic Functions pp. 259–261	Show that the zeros of the are the roots of the equat	e function $f(x) = 2x^2 + 5x - 3$ ion $2x^2 + 5x - 3 = 0$.
PP: 200 201		$2x^{2} + 5x - 3 = 0$ $x = $ and $x = $ $2(-3)^{2} + 5(-3) - 3 = 0$ $2(0.5)^{2} + 5(0.5) - 3 = 0$
Estimate Solutions pp. 261–262	Graph the parabola.	Locate zeros on the graph.
		ratics on a culator
	Finding zeros in a table.	Solve quadratic equations.
Helping You Ren what is meant by the zer	nember Think of a memory ros of a quadratic function.	y aid that can help you recall

_____ DATE _____ PERIOD ___

5-3 Solving Quadratic Equations by Factoring

What You'll Learn	Scan Lesson 5-3. List two headings you would use to make an outline of this lesson.
	1
	2.
Active Vocabulary	New Vocabulary Fill in each blank with the correct term or phrase.
factored form 🕨	A form of a quadratic equation written as $y = $
	where p and q represent the of the
	of the equation.
FOIL method \blacktriangleright	A method for changing a quadratic equation from
	form to form. The foil metho
	uses the Property to multiply
	Vocabulary Link Make a table of values for $y = x^2 - x - 6$ and $y = (x - 3)(x + 2)$. Graph the equations.
	x -5 -2 0 3 5
	<i>y o x</i>
	x -5 -2 0 3 5
	What can you determine about the two equations?

Lesson 5-3

Lesson 5-3 (continued) Main Idea Details Factor each trinomial using the steps listed. **Factored Form** p. 268 $x^2 - 35 + 2x$ Given $8 + 3x^2 - 10x$ Write in standard form. Identify the product and sum. Find two integers to satisfy the product and sum. Expand the middle term and find GCF of first two terms and second two terms. Solve Equations by Explain the error made in the solution to the Factoring quadratic equation. pp. 269–271 Solutions: $x^2 - 4x - 12 = 5$ (x-6)(x+2) = 5x - 6 = 5 or x + 2 = 5x = 11x = 3Error: _

5-4 Complex Numbers

What You'll Learn	Skim Lesson 5-4. Predict two things that you expect to learn based on the headings and the Key Concept box.
	1
	2.

Active Vocabulary

New Vocabulary Place each number in a box. All numbers should be used once: -4, 0, 5, $\frac{1}{2}$, π , $\sqrt{2}$, 0.5. (Lesson 1-2)

Vocabulary Link Match the term with its definition by drawing a line to connect the two.

square root property	square root of a negative real number
complex conjugates	\boldsymbol{i} , which is defined as $\boldsymbol{i}^2 = -1$
imaginary unit	a property which says that if $x^2 = a$, then $x = \pm \sqrt{a}$
pure imaginary number	any number which can be written in the form $a + bi$, where a and b are real numbers and i is the imaginary unit
complex number	two complex numbers of the form $a + bi$ and $a - bi$

Lesson 5-4

_ DATE _____ PERIOD _ **Lesson 5-4** (continued) **Main Idea Details** Simplify the expression by completing each empty **Pure Imaginary Numbers** box. pp. 276-277 Write each listed number under each category that **Operations with Complex Numbers** applies. -7, 12*i*, 3 + 4*i*, $\sqrt{-12}$, 0, 2 + *i*, *i*⁵, $\sqrt{5}$, $\frac{2}{3}$, $\frac{1}{2} + \frac{3}{2}i$, $-\frac{1}{3}i$ pp. 277-279 Real Complex Imaginary

Helping You Remember

How can you use what you know about the factors of a polynomial that is a difference of two squares to help you remember how to simplify fractions with imaginary numbers in the denominator?

Completing the Square 5-5

What You'll Learn	Skim the Examples for Lesson 5-5. Predict two things you think you will learn about completing the square.
	1
	2

Active Vocabulary

Review Vocabulary Solve the equation using each method. (Lessons 5-2, 5-3, and 5-4)

Which method do you prefer. Explain your answer.

New Vocabulary Fill in the blanks with the correct terms.

completing the square \blacktriangleright

- a method used to manipulate a _____
 - ______ so that one side is a perfect

Property can be

____; Once one side is a perfect square,

the

used to solve the equation.

Main Idea	Det	tails
Square Root Property op. 284–285	Solve each equation using if possible. If not possible,	
	$x^2 - 25 = 36$	$x^2 + 6x + 36 = 100$
C omplete the Square op. 285–287	Solve the equation by com	pleting the square.
	$x^2 - 8x - 25 = 0$	Does $\left(-\frac{8}{2}\right)^2 = -25?$ No
		Add 25 to each side.
		$\left(-\frac{8}{2}\right)^2 = 16$. Add 16 to each side.
		Factor the left and simplify the right. Solve using the Square Root Property.
		Add 4 to each side.

5-6

The Quadratic Formula and the Discriminant

What You'll Learn	Skim the lesson. Write two things you already know about the quadratic formula and the discriminant.		
	1		
	2		
Active Vocabulary	Review Vocabulary Complete the square to solve each equation. (Lesson 5-5)		
	$x^2 - 2x - 15 = 0 2x^2 - x - 3 = 0$		

New Vocabulary Complete the *Quadratic Formula* and discriminant by filling in each box with the missing constant, variable or operation.

Vocabulary Link Explain how the non-mathematical meaning of the word discriminate can help you to remember the mathematical meaning of this word.

NAME	DATE PERIOD
Lesson 5-6 (continued)	
Main Idea	Details
Quadratic Formula pp. 292–295	Solve the quadratic equation by completing the square and by using the Quadratic Formula.
	Completing the Square $x^2 - 4x + 12 = 0$ Quadratic Formula $x^2 - 4x + 12 = 0$ $a = b = c =$ $a = b = c =$
Roots and the Discriminant pp. 295–297	Complete the chart about discriminants below in your own words.
	positive perfect square positive non-perfect square
	What does the discriminant tell you?

negative number

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Helping You Remember

Based on what you know about the discriminant, explain why it is not possible to have only one complex root.

80

zero

5-7

Transformations with Quadratic Functions

Main Idea	Details	
Write Quadratic Functions in Vertex Form	Write the equation of the parabola show Vertex Form	n to the righ
pp. 305–306	$y = a(x - h)^{2} + k$ Fill in known information. $a(a - b)^{2} + b$	
	Solve for <i>a</i> : Write in vertex form. $y = 2(x - 3)^2 - 4$	
Transformations of Quadratic Functions pp. 306–307	Describe how each characteristic of the function affects the graph of the quadra Graph the function.	
	$y = -3(x-4)^2 + 3$	
Helping You Ren	y = 0	$(x + 4)^2$ is a
translation to the left and	d that $y = (x - 5)^2$ is a translation to the right?	

5-8 Quadratic Inequalities

What You'll Learn	Scan the text under the <i>Now</i> heading. Lis will learn about in the lesson.	st two things you
	1	
	2	
Active Vocabulary	Review Vocabulary Graph the inequalities (Lesson 3-3)	in two variables.
	$y > -2x + 5 \qquad \qquad 2y$	$y - 4x \le 6$
quadratic inequalities >	New Vocabulary Fill in each blank with th phrase.	le correct term or
	A quadratic inequality in two	can be
	graphed in the same way that you graph	linear
	A quadratic inequalit	ty in two variables
	that is graphed consists of a	and
	A quadratic inequalit	ty in one variable
	can be solved using the	of the related
	function. The solution	ı set is given in
		_ notation.

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

DATE ____

_____ PERIOD _

Quadratic Functions and Relations

Tie It Together

Fill in the graphic organizer. Add details when possible.

DATE .

CHAPTER

Before the Test

Now that you have read and worked through the chapter, think about what you have learned and complete the table below. Compare your previous answers with these.

- 1. Write an A if you agree with the statement.
- **2.** Write a \mathbf{D} if you disagree with the statement.

Quadratic Functions and Relations	After You Read
• The graph of a quadratic function is called a discriminate.	
• Quadratic equations can be solved by graphing, factoring, or using the Square Root Property.	
• Sometimes there are imaginary solutions to equations that have no real number solutions.	
• There are no real solutions when there are no <i>x</i> -intercepts in the graph of a quadratic.	
• In a quadratic function, $y = a(x - h)^2 + k$, the graph opens up when <i>k</i> is positive and down when <i>k</i> is negative.	

Math Online Visit *glencoe.com* to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 5.

Are You Ready for the Chapter Test?

Use this checklist to help you study.

- $\hfill\square$ I used my Foldable to complete the review of all or most lessons.
- $\hfill\square$ I completed the Chapter 5 Study Guide and Review in the textbook.
- $\hfill\square$ I took the Chapter 5 Practice Test in the textbook.
- \Box I used the online resources for additional review options.
- $\hfill\square$ I reviewed my homework assignments and made corrections to incorrect problems.
- $\hfill\square$ I reviewed all vocabulary from the chapter and their definitions.

Study Tips

• When studying for tests create and use graphic organizers to show relationships between concepts.

Before You Read

Before you read the chapter, think about what you know about polynomials and polynomial functions. List three things you already know about them in the first column. Then list three things you would like to learn about them in the second column.

К	W
What I know	What I want to find out

FOLDABLES Study Organizer

er Construct the Foldable as directed at the beginning of this chapter.

Note Taking Tips

- When you take notes, write a summary of the lesson, or write in your own words what the lesson was about.
- When taking notes, place a question mark next to anything you do not understand.

Then be sure to ask questions before any quizzes or tests.

Polynomials and Polynomial Functions

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on solving polynomial equations, one fact might be that when factoring a polynomial, always look for a common factor first. After completing the chapter, you can use this table to review for your chapter test.

Lesson	Fact
6-1 Operations with Polynomials	
6-2 Dividing Polynomials	
6-3 Polynomial Functions	
6-4 Analyzing Graphs of Polynomial Functions	
6-5 Solving Polynomial Equations	
6-6 The Remainder and Factor Theorems	
6-7 Roots and Zeros	
6-8 Rational Zero Theorem	

Operations with Polynomials 6-1

What You'll Learn	Skim Lesson 6-1. Predict two things that you expect to learn based on the headings and the Key Concept box. 1
	2
Active Vocabulary	Review Vocabulary Evaluate each expression. (Lesson 1-1)

$3a^{2}b^{4}$, given $a = 3, b = 2$	$2^a \cdot 2^b \cdot 2^c$ given $a = 1, b = 2$, and $c = 3$
$\frac{2a^3b}{6a^2b}$, given $a = 2, b = 4$	$\frac{3^a \cdot 3^b}{3^{a-1} \cdot 3^{b-1}}$, given $a = 3, b = 1$

New Vocabulary Write the definition next to each term.

simplify ►

degree of a polynomial ►

Vocabulary Link Look up the prefixes *mono* and *poly* in the dictionary. Explain how their definitions apply to the terms monomial and polynomial.

6-2 Dividing Polynomials

What You'll Learn	Scan the text under the <i>Now</i> heavill learn about in the lesson. 1. 2.	
Active Vocabulary	Review Vocabulary Find the quota the left box. Show how to check y multiplication in the right box. (A	vour work using Prerequisite Skill)
	Divide 6)735	Check
	New Vocabulary Fill in the blank phrase.	s with the correct term or
synthetic division \blacktriangleright	A process fora	polynomial by a
	that is simpler than	
	division. Instead of writing the entire polynomial for the	
	division, only the	of each
	is used.	
	Vocabulary Link If necessary, look it pertains to music. Write a sent synthesizer is related to a real m	ence that describes how a

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

NAME	DATE	PERIOD
Lesson 6-2 (continued)		
Main Idea	Detai	ils
Long Division pp. 341–342	Use long division to find (2x ² left box. Use multiplication t right box.	
	Divide $x - 4\overline{)2x^2 - 5x - 3}$	Check
Synthetic Division pp. 342–344	Determine the quotient and synthetic division.	remainder using
•		

Helping You Remember When you translate the numbers in the last row of a synthetic division into the quotient and remainder, what is an easy way to remember which exponents to use in writing the terms of the quotient?

6-3 Polynomial Functions

What You'll Learn	Scan Lesson 6-3. List two headings you would use to make an outline of this lesson.	
	1	
	2	
Active Vocabulary	New Vocabulary Match the term with its definition by drawing a line to connect the two.	
polynomial in one variable	the simplest polynomial functions of the form $f(x) = ax^b$ where <i>a</i> and <i>b</i> are real numbers	
leading coefficient	a polynomial function of degree 5	
polynomial function	the behavior of a graph as <i>x</i> approaches positive infinity or negative infinity	
power function	a polynomial function of degree 4	
end behavior	the coefficient of the first term of a polynomial written in standard form	
quartic function	a continuous function that can be described by a polynomial equation in one variable	
quintic function	an expression of the form $a_n x^n + a_{n-1} x^{n-1} + \dots a_2 x^2 + a_1 x + a_0$, where $a_n \neq 0$, a_{n-1} , a_2 , a_1 , and a_0 are real numbers, and n is a nonnegative integer	

Lesson 6-3 (continued)		
Main Idea	Details	
Polynomial Functions pp. 348–349	Provide a polynomial fu each of the following de 1. a cubic polynomial with	-
	2. a quintic polynomial w	ith 3 terms
	3. a quartic power function	on
	4. a quadratic polynomial without a linear term	
Graphs of Polynomial Functions	Complete the diagram w polynomial functions.	vith details about graphing
p. 350	How does the degree affect the shape?	How does the degree affect the number of <i>x</i> -intercepts?
	Polynom	nial Function
	What is the end behavior?	How can you find the domain and range?

_____ DATE _____ PERIOD ___

Analyzing Graphs of Polynomial Functions 6-4

Active Vocabulary

Review Vocabulary Place a different number in each box. (Lesson 1-2)

Real Numbers Rational Numbers Irrational Whole Numbers Numbers Integers Natural Numbers

New Vocabulary Label the diagram with the terms listed at the left.

Lesson 6-4

NAME	DATE PERIOD
Lesson 6-4 (continued)	
Main Idea	Details
Graphs of Polynomial Functions pp. 357–358	Determine if $f(x) = x^3 + x^2 - 4$ has at least one real zero between $x = 1$ and $x = 2$.
	Find $f(1)$. above or below the x-axis at $x = 1$? There is at least one zero, could be more.
	$\begin{array}{c} \begin{array}{c} & & \\ $
	Find $f(2)$. above or below the <i>x</i> -axis at $x = 2$?
	$\begin{bmatrix} x - axis at x = 2? \\ cannot be sure if \\ there is a zero or \\ not. \end{bmatrix}$
Maximum and Minimum Points	The graph of $f(x)$ is shown below. Answer the following questions based on the graph.
pp. 358–359	• Label each turning
	point as a maximum or a minimum and with the approximate ordered pair.
	• What is the least possible degree of $f(x)$?

Helping You Remember

The origins of words can help you remember their meaning and to distinguish between similar words. Look up maximum and minimum in a dictionary and describe their origins (original language and meaning).

Solving Polynomial Equations 6-5

What You'll Learn	Scan the text in Lesson 6-5. V about solving polynomial fund	Vrite two facts you learned ctions as you scanned the text.
	1	
	2	
Active Vocabulary	Review Vocabulary Explain ho difference of two squares poly (Lesson 5-3)	w to recognize and factor a nomial. Provide two examples.
	Energy 1	Econolis 9
	Example 1:	Example 2:
	New Vocabulary Write the cordefinition.	rect term beside each
►	a polynomial in <i>x</i> rewritten in	a the form $au^2 + bu + c$
►	a polynomial that cannot be f	actored

Main Idea	Details	
F actor Polynomials op. 368–370	Factor using the formula of two cubes. Multiply to	as for the sum and difference o check the factors.
	Factor: $c^3 - 64d^3$	Factor: $8x^3 - 1$
Solve Polynomial Equations	Solve $x^6 + 7x^3 = 8$.	
pp. 370–371		Set the equation equal to zero.
		Rewrite the equation so that the first term is squared, the second term is linear, and the third term is a constant.
		Determine " <i>u</i> " and rewrite the equation.
		Factor and use the Zero Product Property.
		Replace " <i>u</i> " and finish solving
Helping You Ren correct signs in the form remember the correct sig	ulas for the sum and difference of	ave trouble remembering the of cubes. What is an easy way to

98

Lesson 6-6

6-6 The Remainder and Factor Theorems

(Space for State Standard)

What You'll Learn	Skim the Examples for Lesson think you will learn about the Theorems. 1. 2.	e Remainder and Factor
Active Vocabulary	Review Vocabulary Find the quadratic long division and synthetic di $(x^2 + 10x + 10)$	
	Long Division	Synthetic Division
		Solve.
synthetic substitution >	New Vocabulary Write the def	inition next to each term.
depressed polynomial 🕨		

	DATE PERIOD
Lesson 6-6 (continued)	
Main Idea	Details
Synthetic Substitution pp. 377–378	Use synthetic substitution to determine the value o $f(3)$, $f(-2)$ and $f(5)$ given $f(x) = 3x^3 - 4x^2 + 7x + 5$.
-	1. <i>f</i> (3)
	2. $f(-2)$
	3. <i>f</i> (5)
Factors of Polynomials p. 379	Write a true statement using given and the provide vocabulary term.
	Given $(x - 2)$ is a factor of $f(x)$.
	<i>f</i> (2)
	remainder
	quotient
	depressed

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Think of a mnemonic for remembering the sentence, "Dividend equals quotient times divisor plus remainder."

6-7 **Roots and Zeros**

What You'll Learn	Scan Lesson 6-7. List two headings you would use to make an outline of this lesson.
	1
	I
	2
Active Vocabulary	Review Vocabulary Explain how you can use the graph of the function $f(x) = x^2 - 7x + 12$ to find the solutions to the equation $x^2 - 7x + 12 = 0$. (Lesson 5-2)
	Vocabulary Link Look up and provide a definition for the terms fundamental, theorem, and algebra. Using these definitions, write a conjecture sentence about a Fundamental Theorem of Algebra.
fundamental 🕨	
,	
theorem >	
algebra 🕨	

Lesson 6-7

NAME	DATE PERIOD
Lesson 6-7 (continued)	
Main Idea	Details
Synthetic Types of Root pp. 383–385	s Write a true statement using the given and the provided vocabulary term.
	Given $(x + 3)$ is a factor of $f(x)$.
	$ f(-3) \qquad \qquad$
	→ Zero →
	▶ root solution
	x-axis

Find Zeros

pp. 385-387

Rewrite each false statement below so that it will be a true statement.

- **1.** If 6 + 5i is a zero of a function, then -6 + 5i is also a zero of the function.
- **2.** If the function f(x) has zeros of 3, -4, and 6i, then the function of least degree in factored form might be: f(x) = (x+3)(x-4)(x+6i)(x-6i).
- **3.** The number of positive real zeros for $f(x) = x^4 + 3x^3 - 2x^2 + x - 4$ is 3.

Rational Zero Theorem 6-8

What You'll Learn	Scan Lesson 6-8. Predict two things you think you will learn about the Rational Zero theorem.
	1
	2
Active Vocabulary	Review Vocabulary Identify the parts of the polynomial function below. (<i>Lesson 6-3</i>).
	$6x^5 + 17x^4 - 8x^3 + 7x - 9$
	The leading coefficient is
	The constant is
	The degree of the polynomial is
	New Vocabulary Fill in each blank to complete the Rational Zero Theorem.
Rational Zero Theorem 🕨	If $P(x)$ is a polynomial function with integral coefficients,
	then every rational of $P(x) = 0$ is of the form
	, a rational number in simplest form, where <i>p</i> is a
	factor of the and q is a factor of the

Lesson 6-8

Main Idea	Details
Identify Rational Zeros	List all of the possible zeros of each function.
p. 391	1. $3x^3 + 20x - 6$
	2. $8x^4 - 3x^3 - 2x^2 - 2x + 1$
	3. $5x^7 + 9x^4 - 3x^2 - 2$
	4. $x^7 - x^6 + x^5 + x^4 - x^3 + x^2 - x + 1$
Find Rational Zeros pp. 392–393	Complete the graphic organizer to show the steps finding rational zeros.
	Identify the Identify the
	of the in
	polynomial. Use the the polynomial. Use
	variable the variable
	Identify all possible Use
	zeros by naming all to test each
	fractions possible zero.
	Once a zero is found, find
	zeros of the remaining
	polynomial.

_____ DATE _____ PERIOD ___

to help you remember which numbers go in the numerator and which go in the denominator when listing the possible zeros of a polynomial function?

Tie It Together

Fill in the graphic organizer.

6 Polynomials and Polynomial Functions

Before the Test

NAME

Review the ideas you listed in the table at the beginning of the chapter. Cross out any incorrect information in the first column. Then complete the table by filling in the third column.

К	W	L
What I know	What I want to find out	What I learned

Math Online Visit *glencoe.com* to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 6.

Are You Ready for the Chapter Test?

Use this checklist to help you study.

- $\hfill\square$ I used my Foldable to complete the review of all or most lessons.
- $\hfill\square$ I completed the Chapter 6 Study Guide and Review in the textbook.
- $\hfill\square$ I took the Chapter 6 Practice Test in the textbook.
- $\hfill\square$ I used the online resources for additional review options.
- $\hfill\square$ I reviewed my homework assignments and made corrections to incorrect problems.
- $\hfill\square$ I reviewed all vocabulary from the chapter and their definitions.

Study Tips

• While note-taking use abbreviations to use less time and room. Write neatly and place a question mark by any information that you do not understand.

PERIOD _

Inverses and Radical Functions and Relations

Before You Read

Before you read the chapter, respond to these statements.

- 1. Write an A if you agree with the statement.
- **2.** Write a \mathbf{D} if you disagree with the statement.

Before You Read	Inverses and Radical Functions and Relations
	• An inverse relation is the set of ordered pairs when positive values become negative and negative values become positive.
	• A square root function is a type of radical function.
	• The graph of an inequality on a coordinate plane has a boundary and shaded region.
	• Operations like addition and subtraction can not be performed on radicals.
	• To undo an <i>n</i> th root, raise the radical expression to the <i>n</i> th power.

FOLDABLES Study Organizer

Construct the Foldable as directed at the beginning of this chapter.

Note Taking Tips

• When you take notes in geometry, be sure to make comparisons among the different formulas and concepts.

For example, how are pyramids and cones similar? different? This will help you learn the material.

• When you take notes, it is often a good idea to use symbols to emphasize important concepts.

Inverses and Radical Functions and Relations

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on solving radical equations and inequalities, one fact might be that you can solve a radical equation by raising each side of the equation to a power. After completing the chapter, you can use this table to review for your chapter test.

Lesson	Fact
7-1 Operations on Functions	
7-2 Inverse Functions and Relations	
7-3 Square Root Functions and Inequalities	
7-4 nth Roots	
7-5 Operations with Radical Expressions	
7-6 Rational Exponents	
7-7 Solving Radical Equations and Inequalities	

Lesson 7-1

7-1 Operations on Functions

What You'll Learn	about operations on fu	n 7-1. Write two facts you learned nctions as you scanned the text.
	2	
Active Vocabulary	Review Vocabulary Wri intersection of set A an	te the set-builder notation for the nd B. (Lesson 1-5)
	$A = \{x \mid x > 8\}$	$B = \{x \mid -5 < x < 15\}$
	New Vocabulary Fill in phrase.	each blank with the correct term or
composition of functions \blacktriangleright	a method used to	functions in which the
	of o	ne function are used to
	a se	econd function
	number relate to the d	oes the definition of a composite efinition of a composite function? How definition of a composite function?

DATE _____ PERIOD _

7-2 **Inverse Functions and Relations**

What You'll Learn		redict two things than a start two things that a start the Key Cond	t you expect to learn cept box.
Active Vocabulary	2 Review Vocabulary S variable. (Lesson 1-3	olve each equation f	or the indicated
	$d = r \cdot t$	y = mx + b	$a^2 + b^2 = c^2$
	Solve for <i>t</i> .	y = mx + bSolve for <i>m</i> .	Solve for <i>a</i> .
	New Vocabulary Wri	te the definition nex	t to each term.

inverse relation ►
inverse function ►
Vocabulary Link Inverses can be related to real-world situations. Explain how the function "reverse directions" is an inverse for the function "get driving directions" on an Internet-mapping program.

Main Idea	Det	ails
Find Inverses pp. 417–418	Find the inverse of $f(x) = 3x$	x + 1.
op. 117 110	f(x) = 3x + 1	Original function
		Replace $f(x) = $ with $y =$.
		Exchange <i>x</i> and <i>y</i> .
		Solve for <i>y</i> .
		Replace $y = \text{with } f^{-1}(x) = .$
		1 0 1
Verifying Inverses b. 419	Determine if $f(x) = x^2 + 1$ ar inverses.	nd $g(x) = \sqrt{x-1}$ are
	Find $[f \circ g](x)$	Find $[g \circ f](x)$

_____ DATE _____ PERIOD __

Helping You Remember

A good way to remember something new is to relate it to something you already know. How are the vertical and horizontal line tests related?

Square Root Functions and Inequalities 7-3

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Lesson 7-3

NAME	DATE PERIOD
Lesson 7-3 (continued)	
Main Idea	Details
Square Root Functions pp. 424–426	Identify the domain and range for the function $f(x) = \sqrt{2x + 6} - 3$.
	Domain
	Which expression must never be negative? Write an inequality and solve. Write in set- builder notation.
	Range
	Evaluate $f(x)$ at the domain boundary. Write in set-builder notation:
Square Root Inequalities p. 426	The graph of $y \ge \sqrt{x+2}$ is shown below. Justify each characteristic of the graph in the box provided.
	Why is the graph shaded above?
	Why is the graph shifted left?
	Why is the line solid?

NAME	DATE	PERIOD
7-4 <i>n</i> th Roots		
What You'll Learn	Skim the lesson. Write two thir <i>n</i> th roots.	ngs you already know about
	1	
	2	
Active Vocabulary	Review Vocabulary Explain how $x^2 = 16$ differ from the solutions (Lesson 5-6)	the solutions to the equation $x^2 = -16$.
	New Vocabulary Label the diagram the left.	am with the terms listed at
$4th \ root \triangleright$		
radical sign ►	$\sqrt[4]{16} = 2$	
index ►		
radicand >		= -2
principal root 🕨		
Chapter 7	115	Glencoe Algebra

Lesson 7-4

Lesson 7-4 (continued)

7-5 Operations with Radical Expressions

What You'll Learn	Scan the text under the <i>Now</i> h will learn about in the lesson.	neading. List two things you
	1	
	2	
Active Vocabulary	Review Vocabulary Explain wh not in simplified form. Simplif	y the expressions below are y each expression. (<i>Lesson 5-4</i>)
	Expression 1: $\frac{15}{-2i}$	Example 2: $\frac{-2i}{6-i}$
	New Vocabulary Write the defin	nition next to each term.
rationalizing the ► denominator		
like radical expressions >		
conjugate 🕨		

Lesson 7-5

Lesson 7-5 (continued) Main Idea **Details** Using your own words, list conditions that must be **Simplify Radicals** met for a radical expression to be simplified. Provide pp. 439-441 details concerning how to achieve each condition. All possible factors are taken The index n is as small as out from under the radicand. possible. Simplified Form No radicals in the No fractions in the radicand. denominator.

Add the radical expressions.

pp. 441-442

7-6 Rational Exponents

What You'll Learn	Scan the text in Lesson 7-6. Write two facts you learned about rational exponents as you scanned the text. 1.
	2.
Active Vocabulary	Review Vocabulary Write the definition for a rational number. Using the definition, explain why the numbers 0.25, -3, and 5 are all rational numbers. (Lesson 1-2)
	Review Vocabulary Simplify each of the following expressions. (Lesson 6-1)1. $(x^3)^2$ 2. $x^3y^2 \cdot x^5y^{-5}$ 3. $\frac{16a^3b^5}{8a^5b^{-2}}$
	Vocabulary Link Using the terms <i>inverse functions</i> and <i>equivalent functions</i> , describe how the functions $f(x) = x^3$, $g(x) = x^{\frac{1}{3}}$, and $h(x) = \sqrt[3]{x}$ are related to each other.
	$g(x) - x$, and $n(x) - \sqrt{x}$ are related to each other.

Lesson 7-6

NAME	DATE PERIOD
Lesson 7-6 (continued)	
Main Idea	Details
Rational Exponents and Radicals	Draw a line to match the equivalent radical and exponential forms.
pp. 446–447	$x^{\frac{3}{2}}$ $x^{\frac{8}{2}}$ $x^{\frac{2}{3}}$ $x^{\frac{1}{2}}$ $x^{\frac{3}{1}}$ $x^{\frac{1}{3}}$ $x^{\frac{2}{1}}$
	$\sqrt[3]{x^9} \qquad \sqrt{x^4} \qquad \sqrt[3]{x^2} \qquad \sqrt{x} \qquad \sqrt{x^8} \qquad \sqrt{x^3} \qquad \sqrt[3]{x}$
Simplify Expressions pp. 448–449	Write an example expression which would require simplification in order to meet the stated condition.
	No fractional exponents are in the denominator.Index of any remaining radical is the least number possible.
	Simplified Form
	no negative exponents not a complex fraction
Helping You Reme help you remember which p which part gives the root.	mber How can your knowledge of integer exponents art of the fraction in a rational exponent gives the power and
()

7-7 **Solving Radical Equations and Inequalities**

What You'll Learn	Scan Lesson 7-7. List two head an outline of this lesson. 1 2	dings you would use to make	
Active Vocabulary	Review Vocabulary Solve each equation using the Square Root Property. Complete the square, if necessary. (Lesson 5-5)		
	$x^2 - 16x + 64 = 81$	$x^2 + 7x - 8 = -20$	
	New Vocabulary Match the terr drawing a line to connect the t		
radical equation	a solution found when solving not satisfy the original equation	=	
extraneous solution	equations which include radica	al expressions	
radical inequality	inequalities which include rad	ical expressions	
	Vocabulary Link Look up the w dictionary. Use the word extra with the words <i>clue</i> , <i>crime</i> , and	neous in a sentence along	

Chapter 7

121

Lesson 7-7

NAME		DATE _	F	PERIOD
Lesson 7-7 (continued)				
Main Idea			Details	
Solve Radical Equations pp. 453–455	Write the m solve the eq		l and mathe	ematical steps to
	$\sqrt{x+2} - 2$	$=\sqrt{x}$	Giver	1
			comp	te the more licated radical ession.
	$\left(\sqrt{x+2}\right)^2$	$= (\sqrt{x} + 2)^2$		
			Isolat radic	te the remaining al.
Solve Radical Inequalities			test $-3 \le x$ [uality $\sqrt{x+x}$]	
pp. 455–456	<i>x</i> -value #1	<i>x</i> -value #2	<i>x</i> -value #3	Is $-3 \le x \le 13$ part of the solution set?
				Yes No

Helping You Remember

How can you explain to a friend to check every proposed solution in the original radical equation?

Inverses and Radical Functions and Relations

Tie It Together

Fill in details in each graphic organizer.

CHAPTE

Inverses and Radical Functions and Relations

Befo<u>re the Test</u>

Now that you have read and worked through the chapter, think about what you have learned and complete the table below. Compare your previous answers with these.

- 1. Write an A if you agree with the statement.
- **2.** Write a \mathbf{D} if you disagree with the statement.

Inverses and Radical Functions and Relations	After You Read
• An inverse relation is the set of ordered pairs when positive values become negative and negative values become positive.	
• A square root function is a type of radical function.	
• The graph of an inequality on a coordinate plane has a boundary and shaded region.	
• Operations like addition and subtraction can not be performed on radicals.	
• To undo an <i>n</i> th root, raise the radical expression to the <i>n</i> th power.	

Math Online Visit *glencoe.com* to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 7.

Are You Ready for the Chapter Test?

Use this checklist to help you study.

- $\hfill\square$ I used my Foldable to complete the review of all or most lessons.
- $\hfill\square$ I completed the Chapter 7 Study Guide and Review in the textbook.
- $\hfill\square$ I took the Chapter 7 Practice Test in the textbook.
- $\hfill\square$ I used the online resources for additional review options.
- $\hfill\square$ I reviewed my homework assignments and made corrections to incorrect problems.
- $\hfill\square$ I reviewed all vocabulary from the chapter and their definitions.

Study Tips

• Make up an invented sentence (acrostic) to remember lists or sequences. Please Excuse My Dear Aunt Sally is one acronym for remembering the order of operations (parentheses, exponents, multiply and divide, add and subtract).

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc

Exponential and Logarithmic Functions and Relations

Before You Read

Before you read the chapter, think about what you know about exponential and logarithmic functions and relations. List three things you already know about them in the first column. Then list three things you would like to learn about them in the second column.

K What I know	W What I want to find out

FOLDABLES Study Organizer

Construct the Foldable as directed at the beginning of this chapter.

• When taking notes, make annotations.

Annotations are usually notes taken in the margins of books you own to organize the text for review or study.

• When taking notes, summarize the main ideas presented in the lesson. Summaries are useful for condensing data and realizing what is important.

Exponential and Logarithmic Functions and Relations

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on graphing exponential functions, one fact might be that an asymptote is a line that a graph of a function approaches, but never touches. After completing the chapter, you can use this table to review for your chapter test.

Lesson	Fact
8-1 Graphing Exponential Functions	
8-2 Solving Exponential Equations and Inequalities	
8-3 Logarithms and Logarithmic Functions	
8-4 Solving Logarithmic Equations and Inequalities	
8-5 Properties of Logarithms	
8-6 Common Logarithms	
8-7 Base <i>e</i> and Natural Logarithms	
8-8 Using Exponential and Logarithmic Functions	

8-1 Graphing Exponential Functions

What You'll Learn	graphing exponen		ou already know about
	2.		
Active Vocabulary	Review Vocabulary function. (Lesson:	State the domain s 5-1 and 7-7)	and range for each
	y = x + 1	$y = x^2 + 1$	$y = \sqrt{x} + 1$
	Domain:	Domain:	Domain:
	Range:	Range:	Range:
	New Vocabulary W definition.	Vrite the correct ter	m next to each
►	the base of the ex	xponential expressio	n, 1 + r
►	a function where the independent		ant and the exponent is
►	a line that a grap touches	h of a function app	roaches, but never
►	the base of the ex	ponential expression	on, 1 – <i>r</i>
►	a function of the	form $f(x) = b^x$, wher	The $b > 1$
►	a function of the	form $f(x) = b^x$, wher	b = 0 < b < 1

Lesson 8-1

Main Idea		Details	
Exponential Growth pp. 475–477	Provide details ab given exponential function.		
		$y = -3^{x+1} - 4$	shifts graph
		y = -3 $z = 4$	
	The parent function is	n	shifts graph
		L	
Exponential Decay pp. 477–479	Compare and cont function and an ex of the listed chara	ponential decay	0
- •	function and an ex	ponential decay	0
- •	function and an ex of the listed chara	xponential decay cteristics.	function for each

8-2 Solving Exponential Equations and Inequalities

What You'll Learn	Skim the Examples for Lesson think you will learn about solvi inequalities. 1.	ng exponential equations and
	2	
Active Vocabulary	Review Vocabulary Provide an e that would be solved using the <i>(Lesson 1-3)</i>	
	Addition Property of Equality	Subtraction Property of Equality
	Division Property of Equality	Multiplication Property of Equality
	New Vocabulary Write the defin	ition next to each term.
exponential equation \blacktriangleright		
$exponential\ inequality$ \blacktriangleright		
$compound \ interest$ >		

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

_____ PERIOD _ DATE ____ **Lesson 8-2** (continued) Main Idea **Details Solve Exponential** The compound interest formula is shown below. **Equations** Describe each variable and identify its value in the real-world problem. pp. 485–487 Natalie invests \$2,500 in a savings account in which interest is compounded weekly. If after ten years she has \$3,100 in the account, what is the annual rate of interest? $\overset{\star}{A} = P(1 +$ $\frac{r}{n}$

Solve Exponential Inequalities p. 487

Fill in the missing verbal and mathematical steps to solve the exponential inequality.

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc

8-3 Logarithms and Logarithmic Functions

What You'll Learn	Scan the text in Lesson 8-3. W about logarithms and logarithm the text.	•			
	2				
Active Vocabulary	Review Vocabulary Determine to representation of a function. (A)				
	Ordered Pairs				
	$f(x) = \{(-3, -7), (-1, -3), (0, -1), (1, 1), (2, 5)\}$ $f^{-1}(x) = \{$				
	Function Notation f(x) = 3x + 1	Graph			
	New Vocabulary Fill in each blaphrase.	ank with the correct term or			
logarithm 🕨	For $x = b^{y}$, the variable	is called the logarithm			
	of The notation for the	is logarithm is,			
	which is read as <i>y</i>	log base of			
logarithmic function ►	The function, w ; the graph of this graph of logarithmic function	function is the			

Lesson 8-3

Main Idea		De	tails	
ogarithmic Function nd Expressions o. 492–493	the diagrams.	garithmic e	expression	n by completing Think: What
	Write in exponent form. $\log_5 25 = y$	$\log_5 2$	25	xponent must be put on 5 to get 25?
	1	$\log_5 25 = $		
raphing Logarithmic unctions b. 493–495	c Compare and c graph of $y = \log x$ characteristics.	$g_{2}x$ for each		
	Intercepts	End Be	havior	Asymptotes
	Domain			Range
Helping You Re	emember			nt, and logarithm,

8-4 Solving Logarithmic Equations and Inequalities

l learn about in the lesson.	
v Vocabulary Write the def	
De	tails
	e two methods for solving
Methods for Solving Lo	garithmic Equations
efinition of a Logarithm	Property of Equality for Logarithmic Functions
	v Vocabulary Write the def v Vocabulary Write the def De povide an example for the carithmic equations. Methods for Solving Lo

Lesson 8-4

NAME	DAT	E	PERIOD
Lesson 8-4 (continued)			
Main Idea		Detail	S
Solve Logarithmic Inequalities pp. 503–504	Fill in the missing verbal and mathematical steps to solve the logarithmic inequality.		
рр. 505-504	$\log_5(x-4) > 2$		Given
		F	Property of Inequality for Logarithmic Functions
			Simplify and solve the inequality.
	$\begin{array}{c} x - 4 < 0 \\ x < 4 \end{array}$	•	
			Write the final answer.
Helping You Rer Functions in your own w	nember Explain the Pords. How is this property us		f Equality for Logarithmic re equations?

Properties of Logarithms 8-5

Vocabulary Link Describe in your own words why the statement "A logarithm is an exponent" is true. What does this mean about the properties of logarithms that you will learn about?

Lesson 8-5 (continued)

DATE __

Main Idea

Properties of Logarithms pp. 509–511

Give your own verbal description for each property of logarithms, then use the provided numerical example to verify the property.

Details

Property	Verbal Description	Number Example
Product Property of Logarithms		
Quotient Property of Logarithms		
Power Property of Logarithms		

Solve the logarithmic equation.

Solve Logarithmic Equations

p. 511

 $\log_3 x + \log_3 (x - 4) = \log_3 12$ Use a property of logarithms to combine the $\log_3 x(x-4) = \log_3 12$ left side of the equation. $x^2 - 4x = 12$ Use the equality property of logarithms to write and x = 6 or x = -2solve a new equation. $\log_3 -2$ is undefined, so x = -2Check for extraneous is extraneous. solutions in the original $\log_3 6 + \log_3 2 = \log_3 12$ shows x = 6 is a solution. equation.

8-6 Common Logarithms

What You'll Learn	Scan Lesson 8-6. List two headings you would use to make an outline of this lesson.		
	1		
	2		
Active Vocabulary	New Vocabulary Fill in each blank with the correct term or phrase.		
common logarithm ▶	A logarithm with a base of that is used in many		
	; often it is written without the		
	of 10, so $\log_{10} x =$		
change of base formula 🕨	A formula that allows you to write		
	logarithmic expressions that have bases;		
	for example, $\log_4 15 = \frac{\log_{10}}{\log_{10}}$		
	Vocabulary Link Pretend that the log button on your calculator is broken. Explain how you can still use your calculator to find the value of log 200. Find log 200 without using the log button.		

Lesson 8-6 (continued)

Main Idea

Details

Common Logarithms pp. 516-518

Answer each question concerning the solution of the exponential equation.

Change of Base Formula pp. 518-519

Use the change of base formula to evaluate each logarithmic expression.

Helping You Remember

Sometimes it is easier to remember a formula if you can state it in words. State the change of base formula in words.

Base *e* and Natural Logarithms 8-7

What You'll Learn		-7. Write two facts you learned logarithms as you scanned the
	2	
Active Vocabulary	Review Vocabulary Evalua not use a calculator. (Less	ate each logarithmic expression. Do sons 8-3, 8-5, and 8-6)
	1. log ₅ 125	2. $\log_6 18 + \log_6 2$
	3. $\log_5 150 - \log_5 6$	4. $\log_2 2^{125}$
	5. $\log 25 + \log 4$	6. log 10 ⁻³
	New Vocabulary Label the the left.	e diagram with the terms listed at
natural base, e 🕨	$f(x) = e^x$	$\underbrace{f(x) = \log_e x}_{\bullet}$
natural base exponential > function	<u> </u>	
$natural\ logarithm$ >		$f(x) = \ln x$

e and ln pp. 527-528

Ming-Na puts \$600 in a savings account in which interest is compounded continuously. How much money will she have after 5 years if the annual interest rate is 4%?

Helping You Remember

A good way to remember something is to explain it to someone else. Suppose that you are studying with a classmate who is puzzled when asked to evaluate $\ln e^3$. How would you explain an easy way to figure this out?

8-8 Using Exponential and Logarithmic Functions

What You'll Learn		for Lesson 8-8. Predi about using exponen	
	2		
Active Vocabulary	Review Vocabulary <i>S</i> and 8-6)	Solve each equation. (Lessons 8-2, 8-3,
	$3^{4x} = 27$	$\log_2(3x-1) = 5$	$5^{x+8} = 20$
	New Vocabulary Ma drawing a line to co	tch the term with its onnect the two.	definition by
logistic growth model	the constant <i>k</i> in the $f(x) = ae^{kt}$	e exponential growth	formula
rate of continuous decay	a model in which po	opulation growth has	a limiting factor
rate of continuous growth	the constant <i>k</i> in the $f(x) = ae^{-kt}$	e exponential growth	formula
	-	l the amount of carbo ach zero? Explain you	

Lesson 8-8

Lesson 8-8 (continued)

Main Idea

Details

Exponential Growth and Decay

pp. 533–535

Compare and	contrast the	exponentia	l functions
$f(x) = ae^{kt} \text{ and}$	$\mathbf{l} f(x) = a e^{-kt}.$		

	$f(x) = ae^{kt}$	$f(x) = ae^{-kt}$
Model Description		
Real-World Examples of Use		
Graph End Behavior		
Graph Asymptotic Behavior		

Logistic Growth

p. 536

Use the graph of the function $f(t) = \frac{75}{1+1.3e^{-0.0985t}}$, which models the population of frogs in a pond after t years, where $t \ge 0$, to answer the questions.

What is the maximum population of frogs? _____

What is the number of frogs at time zero?

After how many years will the population of frogs be 70?

Exponential and Logarithmic Functions and CHAPTER -**Relations**

Tie It Together

Fill in each column with one or more details. Fill in the arrowed rectangles with a description of the relationship between the rectangular boxes.

NAME

Exponential and Logarithmic Functions and Relations

Before the Test

Review the ideas you listed in the table at the beginning of the chapter. Cross out any incorrect information in the first column. Then complete the table by filling in the third column.

К	W	L
What I know	What I want to find out	What I learned

Math Online Visit *glencoe.com* to access your vtextbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 8.

Are You Ready for the Chapter Test?

Use this checklist to help you study.

- $\hfill\square$ I used my Foldable to complete the review of all or most lessons.
- $\hfill\square$ I completed the Chapter 8 Study Guide and Review in the textbook.
- \Box I took the Chapter 8 Practice Test in the textbook.
- $\hfill\square$ I used the online resources for additional review options.
- \Box I reviewed my homework assignments and made corrections to incorrect problems.
- $\hfill\square$ I reviewed all vocabulary from the chapter and their definitions.

Study Tips

• Complete reading assignments before class. Write down or circle any questions you may have about what was in the text.

Before You Read

Before you read the chapter, think about what you know about rational functions and relations. List three things you already know about them in the first column. Then list three things you would like to learn about them in the second column.

K What I know	W What I want to find out

FOLDABLES Study Organizer Construct the Foldable as directed at the beginning of this chapter.

Note Taking Tips

- When you take notes, write descriptive paragraphs about your learning experiences.
- When you take notes, you may wish to use a highlighting marker to emphasize important concepts.

Rational Functions and Relations

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on solving rational equations and inequalities, one fact might be that the method for finding the mean of a set of numbers in which some elements of the set carry more importance is called the weighted average. After completing the chapter, you can use this table to review for your chapter test.

Lesson	Fact
9-1 Multiplying and Dividing Rational Expressions	
9-2 Adding and Subtracting Rational Expressions	
9-3 Graphing Reciprocal Functions	
9-4 Graphing Rational Functions	
9-5 Variation Functions	
9-6 Solving Rational Equations and Inequalities	

Lesson 9-1

9-1 Multiplying and Dividing Rational Expressions

What You'll Learn			Predict two things that	
	based	on the head	ings and the Key Conce	ept box.
	1			
	2.			
	Z			
	_			
Active Vocabulary			Write each expression	as a product of its
	prime	factors. (Les	son 5-3)	
		1260	$x^3 + 7x^2 + 12x$	$9x^2 - 81$
	New V	ocabulary W	rite the definition next	to each term.
$rational\ expression$ \blacktriangleright				
$complex$ fraction \blacktriangleright				
	Vocab ration	ulary Link Ex al expression	plain why the expressi and a rational numbe	on $3\frac{3}{4}$ is both a er.
			······	

Lesson 9-1 (continued)

Main Idea

Details

Simplify Rational Expressions

pp. 553–556

Check each step	p that is n	ecessary	when	completing
the specified pr	oblem.	-		

	Simplify Rational Expressions	Multiply Rational Expressions	Divide Rational Expressions
Convert to Multiplication			
Multiply Numerators			
Multiply Denominators			
Factor Numerator			
Factor Denominator			
Eliminate Common Factors			
Simplify Remaining Factors			

Simplify Complex Fractions

pp. 556–557

Fill in the missing boxes for each complex fraction rewritten as a multiplication problem.

9-2 Adding and Subtracting Rational Expressions

What You'll Learn	Scan the text in Lesson 9-2. Write about adding and subtracting ratio scanned the text.	
	1	
	2	
Active Vocabulary	Review Vocabulary Simplify each ex 6-2, and 9-1)	pression. (Lessons 6-1,
	1. $\frac{2}{6} - \frac{5}{6}$	2. $\frac{5}{12} + \frac{4}{9}$
	3. $\frac{3x}{8} + \frac{5x}{8}$	$4. \frac{4x^2}{9xy} \cdot \frac{15x^3y^2}{10x}$

Vocabulary Link Explain the relationship between the terms *multiple, least common multiple, common denominator,* and *least common denominator* for any two whole numbers.

Lesson 9-2

Main Idea	Details	
CCM of Polynomials b. 562	Write the factors for $x^2 - 9$ inside the inner circle. Write the factors for $x^3 + 6x^2 + 9x$ that are not alreer represented in the inner circle between the inner the outer circles. Write the common denominator using each factor written inside the circles.	ady
	Common Denominator	
Add and Subtract Rational Expressions op. 563–564	Transform the numerators so that the rational expressions have the common denominator shown	1.
	Compare $x(x - 4)$ to 4x(x - 4). Which factor is different? + - + - - + - - - - - - - -	facto
	4x(x-4) $4x(x-4)$	

Graphing Reciprocal Functions 9-3

What You'll Learn	Skim the lesson. Write two things you already know about graphing reciprocal functions.		
	1		
	2		
Active Vocabulary	New Vocabulary Fill in each blank with the correct term or phrase.		
reciprocal function >	a function that has an equation of the form,		
	where $a(x)$ is a function and $a(x)$ zero		
hyperbola 🕨	the name given to the graph of a function		
asymptote 🕨	a line that the of a approaches		

Vocabulary Link Complete the tables of values for the reciprocal function $f(x) = \frac{1}{x}$, then complete the boxes on the right.

x	f(x)	x	f(x)	As $x \to \infty$,
0		-1000		$f(x) \rightarrow$
0.001		-100		
0.01		-10		As $x \to -\infty$,
0.1		-1		$f(x) \rightarrow$.
1		-0.1		As $x \to 0^+$,
10		-0.01		$f(x) \rightarrow$
100		-0.001		
1000		-0.0001		As $x \to 0^-$,
10000		0		$f(x) \rightarrow$.
				-

Main Idea		Deta		
V ertical and Horizonta Asymptotes op. 569–570	1 Sketch the ver graph below. V and then write x = x =	Vrite the equa	tions of the a and range for	symptotes
	Domain			
	$\{x \mid x \neq ___\}$] ↓
				Range $ y \neq _$
Reciprocal Functions	Compare and $g(x) = \frac{3}{x-2} - 5$		$\{y \$ raphs of $f(x) =$	$ y \neq _]$ $= \frac{1}{x} \text{ to}$
Reciprocal Functions			$\{y \$ raphs of $f(x) =$	$ y \neq _]$ $= \frac{1}{x} \text{ to}$
Reciprocal Functions	$g(x) = \frac{3}{x-2} - 5$	o for each of t	{y raphs of f(x) = he listed char Vertical	$ y \neq _]$ $= \frac{1}{x} \text{ to}$ acteristics. Horizontal
Fransformations of Reciprocal Functions p. 571–572	$g(x) = \frac{3}{x-2} - 5$ Domain	o for each of t	{y raphs of f(x) = he listed char Vertical	$ y \neq _]$ $= \frac{1}{x} \text{ to}$ acteristics. Horizontal

Graphing Rational Functions 9-4

Active Vocabulary

- vertical asymptote
- horizontal asymptote
 - oblique asymptote \blacktriangleright
 - *point discontinuity* ►

New Vocabulary Label the diagram with the terms listed at the left.

Vocabulary Link Look up the word *oblique* in the dictionary. Explain how the definitions pertaining to architecture and anatomy can help you remember the meaning of an *oblique* asymptote.

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

NAME	DATE	PERIOD
Lesson 9-4 (continued)		
Main Idea	Det	ails
Vertical and Horizontal Asymptotes pp. 577–579	For the rational function for information that can be defined function.	$f(x) = \frac{n(x)}{d(x)}$, summarize the rived from each part of the
	Numerator Alone	Denominator Alone
	Numerator and Der	nominator Together
Oblique Asymptotes and Point Discontinuity pp. 579–581	How are vertical asymptotes the same? How are they diffe	

9-5 Variation Functions

What You'll Learn	Scan the text under the <i>Now</i> will learn about in the lesson.	heading. List two things you	
	1		
	2		
Active Vocabulary	Review Vocabulary Write the e (Lesson 2-4)	quation of the graph shown.	
		What is the slope?	
		What is the <i>y</i> -intercept?	
		Write the equation in $y = mx + b$ form.	
	New Vocabulary Write the corr definition.	rect term next to each	
►	a variation in which one quan product of two or more quanti		
►	a type of variation in which the product of two quantities, x and y , is equal to a constant k		
►	the constant k in a constant of variation		
>	a type of variation that can be $y = kx$	e expressed in the form	
►	a type of variation in which or and/or inversely as two or mor		

Lesson -9-5

DATE	
DITE	

Lesson 9-5 (continued)	
Main Idea	Details
Direct Variation and Joint Variation	Use the listed steps as a guide to solve the direct variation problem:
pp. 586–587	If y varies directly as x and
	y = 24 when $x = -3$, find x when $y = -16$.
	Set up a proportion in the form $\frac{y_1}{x_1} = \frac{y_2}{x_2}$.
	Cross multiply to form an equation without fractions and simplify.
	Solve the equation for the unknown.
Inverse Variation and Combined Variation pp. 588–589	Compare and contrast joint variation versus combined variation and direct variation versus inverse variation by completing the diagram.
	Inverse versus Direct Joint versus Combined
Sa	me Different Same Different

9-6 Solving Rational Equations and Inequalities

What You'll Learn	Scan Lesson 9-6. List two headings you would use to make an outline of this lesson.		
	1		
	2		
Active Vocabulary	Review Vocabulary Determine the expressions. (Lesson 9-2)	he LCM for each set of	
	1. 12 and 20	2. $15x$ and $24x^2$	
	3. $(x - 3)(x + 3)$ and $(x + 3)^2$	4. $x^2 + 9x + 18$ and $x^2 - 36$	
	New Vocabulary Match the term drawing a line to connect the tw	•	
rational inequality	an equation that contains one o	or more rational expressions	
weighted average	an inequality that contains one	or more rational expressions	
rational equation	a method for finding the mean some elements of the set carry than others		
	Vocabulary Link When you solve needed to watch out for extrance cause the expression under the extraneous solutions might occu equations?	eous solutions that would radical to be negative. What	

Lesson 9-6

Tie It Together

Fill in the graphic organizer. Add details if space permits.

Chapter 9

Rational Functions and Relations

Before the Test

Review the ideas you listed in the table at the beginning of the chapter. Cross out any incorrect information in the first column. Then complete the table by filling in the third column.

К	W	L
What I know	What I want to find out	What I learned

Math Online Visit *glencoe.com* to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 9.

Are You Ready for the Chapter Test?

Use this checklist to help you study.

- $\hfill\square$ I used my Foldable to complete the review of all or most lessons.
- $\hfill\square$ I completed the Chapter 9 Study Guide and Review in the textbook.
- $\hfill\square$ I took the Chapter 9 Practice Test in the textbook.
- $\hfill\square$ I used the online resources for additional review options.
- $\hfill\square$ I reviewed my homework assignments and made corrections to incorrect problems.
- $\hfill\square$ I reviewed all vocabulary from the chapter and their definitions.

Study Tips

• Be an active listener in class. Take notes, circle or highlight information that your teacher stresses, and ask questions when ideas are unclear to you.

160

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc

DATE _

Before You Read

Before you read the chapter, respond to these statements.

- 1. Write an A if you agree with the statement.
- $\mathbf{2.}$ Write a \mathbf{D} if you disagree with the statement.

Before You Read	Conic Sections
	• The shape of a parabola depends on the value of <i>a</i> in the equation.
	• An equation of a circle is $\frac{x^2}{a^2} = \frac{y^2}{b^2} = 1.$
	• A hyperbola has two axes of symmetry.
	• The equation of a vertical ellipse is $x^2 + y^2 = r^2$.
	• The cross section of a double cone will be a parabola, hyperbola, circle, or ellipse.

FOLDABLES Study Organizer

Construct the Foldable as directed at the beginning of this chapter.

Note Taking Tips

• When you take notes, think about the order in which the concepts are being presented.

Write why you think the concepts were presented in this sequence.

• When you take notes, preview the lesson and make generalizations about what you think you will learn.

Then compare that with what you actually learned after each lesson.

0

CHAPTER **Conic Sections**

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on circles, one fact might be that the center of a circle is a given point in a plane that is equidistant from all points on the plane. After completing the chapter, you can use this table to review for your chapter test.

DATE _

_____ PERIOD _

Lesson	Fact
10-1 Midpoint and Distance Formulas	
10-2 Parabolas	
10-3 Circles	
10-4 Ellipses	
10-5 Hyperbolas	
10-6 Identifying Conic Sections	
10-7 Solving Linear-Nonlinear Systems	

10-1 Midpoint and Distance Formulas

What You'll Learn	Scan the text under the <i>Now</i> heading. List two things you will learn about in the lesson.		
Active Vocabulary	Review Vocabulary P then draw the triang B(-5, -2), and $C(6, -1)the triangle. (Lesson$	gle defined by the the 2). Determine the lea	ree points A(-5, 8), ngth of the sides of
	Side <i>AB</i> :		
	Side <i>BC</i> :		
	Side AC:		
	Determine the area	and perimeter of the	triangle.
	Area		Perimeter
	Determine the equisegments \overline{AB} , \overline{BC} ,		represented by
	ĀB	\overline{BC}	\overline{AC}

Lesson 10-1

NAME	DATE	PERIOD
Lesson 10-1 (continued)		
Main Idea	Deta	ils
The Midpoint Formula p. 617	Find the coordinates of S an	d the midpoint of \overline{RT} .
	<i>R</i> (-3, 9)	T(12, -5)
	Midpoint	
The Distance Formula pp. 617–619	Sequence the steps for using the diagram below.	
	 Find the square root of the sur Find the difference between the square it 	
	square it.Find the difference between the square it.	ne y-coordinates and
	• Find the sum of the two squar	red distances.
	1	
	2	
	3	
	1 ,	
Chapter 10	164	Glencoe Algebra 2

NAME	DATE PERIOD
10-2 Parabolas	
What You'll Learn	Scan the text in Lesson 10-2. Write two facts you learned about parabolas as you scanned the text. 1
	2
Active Vocabulary	New Vocabulary Write the definition next to each term.
parabola 🕨	
focus ►	
directrix 🕨	
latus rectum ▶	
general form ▶	
general form v	

Lesson 10-2

Main Idea	Details
Equations of Parabolas pp. 623–624	Describe the effect that each characteristic of the equation of the parabola has on its graph.
L	$y = -\hat{3}(x + 7)^2 - 5$
Graph Parabolas pp. 624–626	The graph of $x = y^2$ and of a transformation of this parent graph are shown. Write the equation of th transformed graph.

_____ DATE _____ PERIOD ___

Equation of the Transformed Graph

Helping You Remember

How can you remember what the sign of a tells you about the direction in which a parabola opens?

NAME		DATE F	PERIOD
10-3 Circles			
What You'll Learn	Scan Lesson 10-3. Li an outline of this les 1.		
	2		
Active Vocabulary	Review Vocabulary U distance between the		
	plane. (Lesson 10-1) (1, 2) and (9, 11)	(1, 2) and (-7, -7)	
	New Vocabulary Mated drawing a line to core		definition by
radius	the set of all points in a plane that are equidistant from a given point in the plane		equidistant from a
circle	the point in the plan circle are equidistan		f the points of a
center	any segment whose on a circle	endpoints are the ce	enter and a point on

NAME	DATE PERIOD
Lesson 10-3 (continued)	
Main Idea	Details
Equations of Circles pp. 631–632	Write the equation of a circle that has a diameter with endpoints $(-4, 9)$ and $(6, -3)$.
	Find the center of the circle using the midpoint formula.
	Find the length of the radius using the center and an endpoint of the diameter.
	↓
	Determine h, k , and r^2 .
	$h = $ $k = $ $r^2 = $
	Write the equation of the circle.
Graph Circles	Graph the girale given by the equation

Graph Circles

p. 633

Graph the circle given by the equation $(x+4)^2 + (y-2)^2 = 16.$

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

NAME	DATE PERIOD
10-4 Ellipses	
What You'll Learn	Skim Lesson 10-4. Predict two things that you expect to learn based on the headings and the Key Concept box. 1
	2
Active Vocabulary	New Vocabulary Write the correct term next to each definition.
►	the endpoints of the major axis of an ellipse
▶	the set of all points in a plane such that the sum of the distances from two fixed points is constant
►	the endpoints of the minor axis of an ellipse
►	the midpoint of both the major axis and the minor axis of a ellipse
▶	the sum of the distances from the foci to any point on the ellipse
	the name given to the longer of the two axes of symmetry of an ellipse
►	the name given to the fixed points of an ellipse such that the sum of the distances from these points is constant
►	the name given to the shorter of the two axes of symmetry an ellipse

Lesson 10-4

Main Idea	Details
Equations of Ellipses pp. 639–642	Use the questions as a guide to write the equation of the ellipse shown in the graph.
	Where is the center What is the length of What is the length
	of the ellipse? the major axis? of the minor axis?
	$h = \boxed{\begin{array}{c} k = \end{array}} a^2 = \left(\boxed{\begin{array}{c} 1 \\ 2 \end{array}} \right)^2 = \boxed{25} b^2 = \left(\boxed{\begin{array}{c} 1 \\ 2 \end{array}} \right)^2 = 9$
	Minor Axis
	Major Axis
	Center
	Write the equation of the ellipse $\frac{(x - b)^2}{b} + \frac{(y - b)^2}{b} = \frac{1}{2}$
Graph Ellipses pp. 642–643	Write the equation for the ellipse in standard form. Identify each characteristic of the ellipse.
	$4(x-2)^2 + 9(y+3)^2 = 36$ Length of major axis: Vertices
	Length of minor axis:
	Center: Co-vertices
Helping You Re	How can you remember which term comes first and <i>b</i> in the equation of an ellipse?

NAME	I	DATE P	PERIOD
10-5 Hyperbola	as		
What You'll Learn	Skim the Examples f think you will learn a 1.		
	2		
Active Vocabulary	Review Vocabulary Definition $f(x) = \frac{x}{x^2 - 1}$	etermine the asymptote $\frac{4}{10x+9}$. (Lesson 9-4	ototes for the
	Oblique	Vertical	Horizontal
	New Vocabulary Labe the left.	l the diagram with	the terms listed at
hyberbola 🕨			_
transverse axis 🕨			

Injoindure for transverse axis conjugate axis conjugate axis co-vertex co-ve

NAME		DATE PE	RIOD
Lesson 10-5 (continued)			
Main Idea		Details	
Equations of Hyperbola		ns as a guide to write nown in the graph.	the equation of
pp. 648–649	the hyperbola si	lown in the graph.	
	11 Contraction of the second se		
	Where is the center of the hyperbola? (\Box, \Box) $h = \Box k = \Box$	What is the distance between the vertex and the center? $a = b^2 + b^2 = b^2$	What is the distance between the focus and the center? $c =$
	Write the equation		
~			
Graphs of Hyperbolas pp. 650–651	Supply the missi $\frac{(y+3)^2}{9} - \frac{(x-2)^2}{25}$	ing information for = 1.	
	Center	Identify <i>a</i> , <i>b</i> and <i>c</i> .	Identify co-vertices.
	Horizontal or Vertical	Identify vertices.	Identify foci.
Chapter 10	172	1	Glencoe Algebra 2

Identifying Conic Sections 10-6

NAME	DATE PERIOD
Lesson 10-6 (continued)	
Main Idea	Details
Conics in Standard Form p. 656	Write $x^2 - 6x + y^2 + 10y = -30$ in standard form and identify the type of conic section. Graph the conic section.
	$x^{2} - 6x + y^{2} + 10y = -30$
Identify Conic Sections	Complete the chart below. Include an example in each description.
p. 657	Parabola Ellipse
	using the discriminate to identify a conic section

Circle

K

Hyperbola

Solving Linear-Nonlinear Systems 10-7

What You'll Learn	Scan the text under the <i>Now</i> h will learn about in the lesson. 1. 2.	eading. List two things you
Active Vocabulary	Review Vocabulary Provide an a equations. (Lessons 3-1 and 3-2) Show a system of linear equations that has a solution of (3, -1). Write the equations below the graph.	Write a system of equations in standard form that is dependent. Write a system of equations in slope-intercept form that is inconsistent.

100-mile radius of the city of Memphis, Tennessee.

Main Idea	Details
Systems of Equations pp. 662–663	Solve the system of equations. Fill in missing verbal and mathematical steps.
	$x^{2} + y^{2} = 4$ y = x - 2 Given
	Substitute the second equation into the first
	$2x^{2} - 4x = 0$ 2x(x - 2) = 0 x = 0, 2
	y = 0 - 2 $y = -2$
	Substitute the second value of x into the linear equation.
	Write the solutions as ordered pairs.
Systems of Inequalities pp. 663–664	Explain what is meant by the intersection of the graphs of $x^2 + y^2 > 16$ and $y < -x^2 + 4$.

_ DATE _____ PERIOD __

NAME _

CHAPTER **Conic Sections**

Tie It Together

Fill in details in the graphic organizer.

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

DATE _

10 Conic Sections

Before the Test

Now that you have read and worked through the chapter, think about what you have learned and complete the table below. Compare your previous answers with these.

- 1. Write an A if you agree with the statement.
- **2.** Write a \mathbf{D} if you disagree with the statement.

Conic Sections	After You Read
• The shape of a parabola depends on the value of <i>a</i> in the equation.	
• An equation of a circle is $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$	
• A hyperbola has two axes of symmetry.	
• The equation of a vertical ellipse is $x^2 + y^2 = r^2$.	
• The cross section of a double cone will be a parabola, hyperbola, circle, or ellipse.	

Math Online Visit *glencoe.com* to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 10.

Are You Ready for the Chapter Test?

Use this checklist to help you study.

- $\hfill\square$ I used my Foldable to complete the review of all or most lessons.
- \Box I completed the Chapter 10 Study Guide and Review in the textbook.
- \Box I took the Chapter 10 Practice Test in the textbook.
- $\hfill\square$ I used the online resources for additional review options.
- \Box I reviewed my homework assignments and made corrections to incorrect problems.
- $\hfill\square$ I reviewed all vocabulary from the chapter and their definitions.

Study Tips

• On handouts, homework, and workbooks that can be written in, underline and highlight significant information.

_____ PERIOD .

Before You Read

NAME

Before you read the chapter, respond to these statements.

- 1. Write an A if you agree with the statement.
- **2.** Write a \mathbf{D} if you disagree with the statement.

Before You Read	Sequences as Functions
	• Each term in a geometric sequence is separated by a common difference.
	• Geometric means is the terms between two nonconsecutive terms in a geometric sequence.
	• An infinite geometric series can be convergent or divergent.
	• A recursive formula for a sequence means that every term is determined by one or more previous terms.
	• The Binomial Theorem can be used to find terms of Fibonacci sequence.

FOLDA BLES Study Organizer

Construct the Foldable as directed at the beginning of this chapter.

Note Taking Tips

• Before each lesson, skim through the lesson and write any questions that come to mind in your notes.

As you work through the lesson, record the answer to your question.

• Remember to always take notes on your own.

Don't use someone else's notes as they may not make sense.

Sequences and Series

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on infinite geometric series, one fact might be that if a sequence goes to infinity, it continues without end. After completing the chapter, you can use this table to review for your chapter test.

Lesson	Fact
11-1 Sequences as Functions	
11-2 Arithmetic Sequences and Series	
11-3 Geometric Sequences and Series	
11-4 Infinite Geometric Series	
11-5 Recursion and Iteration	
11-6 The Binomial Theorem	
11-7 Proof by Mathematical Induction	

11-1 Sequences as Functions

What You'll Learn	Skim the lesson. Write two things you already know about sequences as functions.
	1
	2.
Active Vocabulary	Review Vocabulary Describe how the functions $y = 2x$ and
	$y = 2^x$ behave as $x \to \infty$. (Lessons 2-2 and 8-1)
	New Vocabulary Write the correct term beside each definition.
►	a sequence which continues without end
►	the name given to the constant value that is added to a term in an arithmetic sequence in order to find a successive term
►	a set of numbers in a particular order or pattern
►	a sequence in which each term is determined by multiplying a nonzero constant by the previous term
►	the name given to each number in a sequence
►	a sequence in which each term is determined by adding a constant value to the previous term
►	the name given to the constant value that is multiplied by a term in an arithmetic sequence in order to find a successive term
►	a sequence which contains a limited number of terms

Lesson 11-1

11-2 Arithmetic Sequences and Series

What You'll Learn	Skim Lesson 11-2. Predict two things that you expect to learn based on the headings and the Key Concept box.
	1
	2
Active Vocabulary	New Vocabulary Write the definition next to each term.
$arithmetic\ means$ \blacktriangleright	
series 🕨	
$arithmetic \ series$ \blacktriangleright	
partial sum \blacktriangleright	
sigma notation 🕨	

Main Idea	Details
Arithmetic Sequences pp. 688–689	Provide a description and details for each part of the <i>n</i> th term formula for an arithmetic sequence given that you want to find the 13th term of the sequence 18, 23, 28, 33,
	$a_n = a_1 + (n-1)d^{k}$

_____ DATE _____ PERIOD __

Arithmetic Series pp. 690-691

Answer each question about the sigma notation shown.

- **1.** What is the first value of *x*? _____
- **2.** What is the last value of *x*? _____
- 3. How many terms will be summed? _____
- 4. What are the terms in the series?
- 5. What is the sum of the series?

11-3 Geometric Sequences and Series

What You'll Learn	Scan the text in Lesson 11-3. Write two facts you learned about geometric sequences and series as you scanned the text.
	1
	2

Active Vocabulary	Review Vocabulary Identify each sequence as arithmetic, geometric, or neither. Explain your reasoning. (Lesson 11-1)		
	$14, 11, 8, 5, 2, \ldots$	1, 4, 9, 16, 25,	$\frac{1}{4}, \frac{3}{16}, \frac{9}{64}, \frac{27}{256}, \dots$
	New Vocabulary Fil phrase.	l in each blank with	the correct term or
geometric means 🕨	the terms between	two	terms in
	a	sequence; To f	find them, you need
	to know the	rat	io, <i>r</i> . They are
	closely related to the	ne	
		of an arithmetic	e sequence.
geometric series 🕨	the sum of the		of a geometric

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

185

Lesson 11-3

Main Idea	Details
G eometric Sequences op. 696–697	Provide a description and details for each part of the <i>n</i> th term formula for an arithmetic sequence given that you want to find the 10th term of the sequence 3, 9, 27, 81,
	$a_n = a_1 \cdot r^{n-1}$
G eometric Series o. 698–99	Use the formula to find the sum of the geometric series given.
	$a_1 = 12, r = 2, \text{ and } n = 5$
	$S_{\square} = \frac{a_{\square} - a_{\square}r^{n}}{1 - r}$ $S_{\square} = \frac{\Box - \Box \cdot \Box}{1 - \Box}$ $S_{\square} = \frac{\Box - \Box \cdot \Box}{1 - \Box}$ $S_{\square} = \frac{\Box - \Box}{\Box} = \Box$
Helping You Rem	Ri thinks that the formula $a_n = a_1 \cdot r^{n-1}$

Infinite Geometric Series 11-4

What You'll Learn	Skim the Examples for Lesson 11-4. Predict two things you think you will learn about infinite geometric series. 1. 2.
Active Vocabulary	Review Vocabulary Describe the end behavior of the functions $f(x) = 2^x$ and $g(x) = 2^{-x}$ as $x \to \infty$. (Lesson 6-4) $f(x) = 2^x$
	New Vocabulary Match the term with its definition by drawing a line to connect the two.
convergent series	an infinite geometric series that does not have a sum
divergent series	continuing without end
infinity	an infinite geometric series that has a sum
	Vocabulary Link Look up the words <i>diverge</i> and <i>converge</i> in the dictionary. Use both words along with the words <i>road</i> , <i>train tracks</i> , <i>and crossed</i> in a sentence.

Lesson 11-4

Main Idea	Details		
Infinite Geometric Series	Answer the questions pertaining to the sigma notation shown below.		
pp. 705–707	$\sum_{k=1}^{\infty}$ 12 $\left(rac{1}{2} ight)^{^{k-1}}$		
	1. Is this a convergent or divergent series? How can you tell?		
	2. Is this an infinite or finite geometric series? How can you tell?		
	3. What is the first term of this series?		
	4. What is the common ratio?		
	5. What formula do you use to find the sum of an infinite		
	series? 6. What is the sum?		
Repeating Decimals	Write the repeating decimal $0.\overline{38}$ as a fraction.		
p. 707	Step 1: Write as an infinite series of decimals.		
	Step 2: Write as an infinite series of fractions.		
	Step 3: Determine the value of r .		
	Step 4: Use the sum formula.		

_ DATE ___

_____ PERIOD _

11-5 Recursion and Iteration

What You'll Learn	Scan lesson 11-5. L an outline of this le	ist two headings you esson.	would use to make
Active Vocabulary		Find the value of each $(1 - 2x^2 + 1) = 2x^2 + 1$	h composition given
	f(g(2))	<i>g</i> (<i>f</i> (2))	g(f(g(3)))
	New Vocabulary Wr	ite the definition nex	at to each term.
Fibonacci sequence 🕨			
recursive sequence 🕨			
explicit formula ▶			
recursive formula 🕨			
iteration >			

Lesson 11-5

Iteration

p. 716

Fill in each box to find the first three iterates x_1, x_2 , and x_3 of f(x) = 4x - 1 for an initial value of $x_0 = -2$.

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

11-6 The Binomial Theorem

What You'll Learn	Scan the text under the will learn about in the	ne <i>Now</i> heading. List two things you e lesson.
	1.	
	1	
	2	
Active Vocabulary	Review Vocabulary Exp $(2x + 1)^2$ and $(2x + 1)^4$	band the polynomial expressions . (Lesson 6-1)
	$(2x + 1)^2$	$(2x + 1)^4$
	New Vocabulary Label observed in Pascal's tr	the diagram by indicating the pattern riangle.
		3 = _ + _ from
		the row above
The sum of each row		
	-	1 1
The sums are the power of	ers 1	$\begin{array}{c c} 2 & 1 \\ 3 & 3 & 1 \end{array}$
	1 4	6 4 1
	1 5	
	-+_from the	As you follow this diagonal the
r	ow above	difference

by __each time.

NAME			DATE		PE	RIOD		
Lesson 11-6 (continue	ed)							
Main Idea			D	etails				
Pascal's Triangle p. 721	the n	e out Pascal's on–shaded l e left of the i	boxes to					
	$(a + b)^0$]		1				
	$(x + y)^1$] ←		x		у		
	$(m + n)^2$]⊷						
	$(r + s)^3$							-
	$(j + k)^4$]⊷∕						

The Binomial Theorem pp. 721-723

Summarize in your own words the characteristics of binomial expansions in the diagram below.

11-7 **Proof by Mathematical Induction**

What You'll Learn	Scan Lesson 11-7. List two headings you would use to make an outline of this lesson.
	1
	2.
Active Vocabulary	Review Vocabulary Describe the main method of proof that you used in Geometry. What were the main components of the proofs? (<i>Geometry prerequisite skill</i>)
	New Vocabulary Fill in each blank with the correct term or phrase.
mathematical induction ►	a method of statements that involve numbers; Step 1 is to "Show that the statement is for $n = 1$." Step 2 is to
	"Assume that the statement is true for some number" Step 3 is to "Show that the statement is true for"
induction hypothesis \blacktriangleright	the step in mathematical in which you the statement to be
	for some natural k

Counterexamples

p. 728

Check the statement $1+4+9+\ldots+n^2=rac{n(n^2+1)}{2}$ for the values n = 1, n = 2 and n = 3. Determine whether each is an example or a counterexample of the statement.

Sequences and Series

Tie It Together

Fill in details in each graphic organizer.

	Arithmetic	Geometric
Verbal Description		
Name Given to Constant Value		
Shape of Graph		
Formula for Finding <i>n</i> th term of a Sequence		
Formulas for Partial Sum of Series		
Formula for Sum of an Infinite Series		
Recursive Formulas for Sequences		

DATE .

Sequences and Series

Before the Test

Now that you have read and worked through the chapter, think about what you have learned and complete the table below. Compare your previous answers with these.

- 1. Write an **A** if you agree with the statement.
- 2. Write a **D** if you disagree with the statement.

Sequences and Series	After You Read
• Each term in a geometric sequence is separated by a common difference.	
• Geometric means is the terms between two nonconsecutive terms in a geometric sequence.	
• An infinite geometric series can be convergent or divergent.	
• A recursive formula for a sequence means that every term is determined by one or more previous terms.	
• The Binomial Theorem can be used to find terms of Fibonacci sequence.	

Math Online Visit glencoe.com to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 11.

Are You Ready for the Chapter Test?

Use this checklist to help you study.

- □ I used my Foldable to complete the review of all or most lessons.
- □ I completed the Chapter 11 Study Guide and Review in the textbook.
- □ I took the Chapter 11 Practice Test in the textbook.
- □ I used the online resources for additional review options.
- □ I reviewed my homework assignments and made corrections to incorrect problems.
- □ I reviewed all vocabulary from the chapter and their definitions.

Study Tips

Use flash cards to study for tests by writing the concept on one side of the card and its definition on the other.

Before You Read

Before you read the chapter, think about what you know about probability and statistics. List three things you already know about probability and statistics in the first column. Then list three things you would like to learn about them in the second column.

K What I know	W What I want to find out

FOLDABLES Study Organizer Cons

Construct the Foldable as directed at the beginning of this chapter.

Note Taking Tips

- When you take notes, include personal experiences that relate to the lesson and ways in which what you have learned will be used in your daily life.
- When you take notes, write questions you have about the lessons in the margin of your notes.

Then include the answers to these questions as you work through the lesson.

Probability and Statistics

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on conditional probability, one fact might be that a contingency table records data in which different possible situations result in different possible outcomes. After completing the chapter, you can use this table to review for your chapter test.

Lesson	Fact
12-1 Experiments, Surveys, and Observational Studies	
12-2 Statistical Analysis	
12-3 Conditional Probability	
12-4 Probability and Probability Distributions	
12-5 The Normal Distribution	
12-6 Hypothesis Testing	
12-7 Binomial Distributions	

12-1 Experiments, Surveys and Observational Studies

What You'll Learn	Scan the text under the Now heading. List two things you will learn about in the lesson. 1. 2.
Active Vocabulary	New Vocabulary Write the correct term beside each definition.
>	a survey whose design favors certain outcomes
►	in an experiment, the people, animals or objects given the treatment
►	a survey in which every member of a population is polled
►	a study in which individuals are observed and no attempt is made to influence the results
►	a group of people, animals, or objects being studied
►	when two events are shown to be related
►	when a sample is random and not based on any predetermined characteristics of the population
►	a study in which something is intentionally done to people, animals, or objects and then the response is observed
►	when one event is shown to be the direct cause of another event
►	those given the placebo or false treatment in a study
►	a portion of a population
►	an instrument used to collect information

Chapter 12

Surveys, Studies, and

Experiments

pp. 745-747

Main Idea

For each survey listed, provide a description of the population, a biased sample, and an unbiased sample.

Details

_____ PERIOD _

DATE _

· · · ·			-
Survey Purpose	Population	Biased Sample	Unbiased Sample
to determine if a levy for a school district is likely to pass or fail			
to determine the average number of minutes of television children at a preschool watch each day			

Distinguish Between Correlation and Causation

p. 747

Compare and contrast the terms correlation and causation.

Similarities	Differences

12-2 Statistical Analysis

What You'll Learn	Skim the Examples for Lesson 12-2. Predict two things you think you will learn about statistical analysis.
	1
	2
Active Vocabulary	New Vocabulary Write the definition next to each term.
univariate data 🕨	
measure of central tendency	
parameter 🕨	
statistic 🕨	
margin of sampling error \blacktriangleright	
measure of variation >	
variance/standard deviation	

Lesson 12-2

Main Idea		Details	
Measures of Central Tendency pp. 752–753	data given. Deter	ean, median, and mo mine which measure data. Explain your re	e best represent
	1, 4, 4	4, 8, 9, 11, 12, 13, 15, 3	9, 45
	Mean	Median	Mode
	The is	the best representation	n of the data
	since the set h	as outliers of and ne middle of the data.	and there are
Measures of Variation pp. 754–755		andard deviation of t ing each step in the	
	Data 54 58 75 76 77 78 95 98 100	→ (data -	e mean of the – mean) ² values is quare root of the mean of the – mean) ² values is
Helping You Ren if you break it down into for a set of data in a seri	steps. Write the proced	6	-

_____ DATE _____ PERIOD ____

Conditional Probability 12-3

What You'll Learn	Scan Lesson 12-3. List two headings you would use to make an outline of this lesson.
	1
	2
Active Vocabulary	Review Vocabulary Solve the probability problem. (Lesson P-4) A bag contains 16 marbles. Four of the marbles are blue
	and 12 of the marbles are green. Two marbles are randomly pulled from the bag. What is the probability that both marbles are blue?
	Compound Probability
	New Vocabulary Fill in each blank with the correct term or phrase.
conditional probability \blacktriangleright	the of an given that
	another event has already
contingency table \blacktriangleright	a table used to record in which different
	situations result in
	possible
relative frequency \blacktriangleright	values in a contingency associated with
	each of the possible

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Lesson 12-3

Main Idea				Details		
Conditional Probability p. 759		efine <i>P</i> (<i>B</i>) the Venn		of the geo	metric areas	s show
		$P(A) \left(P(A \text{ ar}) \right)$	nd B) P(B)	P(B	$ A) = \frac{\text{area of } }{\text{area of }}$	
Contingency Tables p. 759	su		ne survey bo		obability tha corn, given t	
		A survey as purchased.		hows this s	selection of sno	acks
				Snack		
		Gender	Hot Dog	Popcorn	Peanuts	
		Male	12	21	19	
		Female	13	8	25	
		mber of fen ought popc				
]_[
	the tota	al number o	of females			
	the tota	l number o the surve	f people in			
			<i>J</i>			
Helping You Ren	nemb	er _{A c}	lassmate is h	aving troul	ole rememberi	ing the
formula to use for condition memory?	ional pr	obability. V	What advice c	an you give	e to aid their	
memory.						

12-4 Probability and Probability Distributions

What You'll Learn	Skim the lesson. Write two things you already know about probability and probability distributions. 1. 2.
Active Vocabulary	New Vocabulary Write the correct term next to each definition.
►	a desired outcome
►	a probability distribution which has a finite number of possible outcomes
►	a function that maps the sample space to its probabilities
►	any outcome that is not a success
►	a distribution in which all of the probabilities are equal
►	a graph or table which visually represents a probability distribution
►	a ratio which measures the chances of an event occurring
►	the set of all possible outcomes
►	the weighted average of the values in a probability distribution
►	probabilities that are based on assumptions of what is expected to happen

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Lesson 12-4

NAME	DATE _	PERIOD
Lesson 12-4 (continued)		
Main Idea		Details
Probability pp. 764–766	Solve the probability pr A box contains 24 transistor transistors are sold at rand probabilities.	ors, 4 of which are defective. If a
	P(exactly 2 are defective)	<i>P</i> (none are defective)
	<i>P</i> (all are defective)	P(at least 1 is defective)
Probability Distributions	Use the probability dist expected number of del	ribution to determine the iveries per day.
pp. 766–767	Number of Arrangements6	7 8 9 1
	Probability 0.2	0.2 0.3 0.2 0.
E(x)	$) = \Box \bullet (\Box) + \Box \bullet (\Box) + \Box \bullet (\Box)$	
E(x)	= _ + _ + _ + _ + _ + _]
E(x)	=	
Holping You D	omombor	
Helping You R	emember Recognizing a co	ounterexample can help reinfo

your understanding of a concept. Explain why recording the number of inches of rain each day would not be considered a discrete probability distribution.

The Normal Distribution 12-5

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Main Idea	Det	tails
Normal and Skewed Distributions pp. 773–774	Describe the characteristic in your own words.	es of a normal distribution
	Measures of Central Tendency	End Behavior of the Curve
	Normal D	istribution
	I vor infait D	
	Area Under the Curve	Shape
The Empirical Rule pp. 774–775	The amount of weekly allo juniors is normally distribution and a standard deviation of students receive an allowat per week?	uted with a mean of \$30 of \$6. About how many
	How many standard deviations above the mean is \$42? What perce of students found in this of the curve	can be of students in this area of the curve?
1	Many students have represents a distribution that is pos y way to remember this?	e trouble remembering how itively skewed or negatively

_____ DATE _____ PERIOD __

12-6 Hypothesis Testing

What You'll Learn	Skim Lesson 12-6. Predict two things that you expect to learn based on the headings and the Key Concept box.
	1
	2
Active Vocabulary	New Vocabulary Write the definition next to each term.
inferential statistics \blacktriangleright	
statistical inference 🕨	
confidence interval 🕨	
hypothesis \blacktriangleright	
null hypothesis \blacktriangleright	
alternative hypothesis \blacktriangleright	

Binomial Distributions 12-7

What You'll Learn	Scan the text under the <i>Now</i> heading. List two things you will learn about in the lesson.
	1
	2
Active Vocabulary	Review Vocabulary Compare and contrast a continuous probability distribution and a discrete probability distribution. (Lessons 12-4 and 12-5)
	New Vocabulary Match the term with its definition by drawing a line to connect the two.
binomial experiment	estimated from observed simulations or experiments
experimental probability	a graph or table which shows the probabilities of the outcomes of a binomial experiment
binomial distribution	a random experiment with an outcome that is one of two simple events

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

esson 12-7 (continued) Main Idea		
Main Idea		
Main Idea		
Main Idea	D .	
	De	etails
-	-	l experiment is a binomial listed characteristics.
Possible	Outcomes	Number of Trials
	A coin is tossed a probability of tos	3 times. Find the sing exactly 2 heads.
Probabilit	y of Success	Independence
pp. 787–789 choice choices probab	questions on a test s. Fill in the formul ility that he will ge	e answers to all 6 multiple- c. Each question has 5 a used to determine the et at least 4 of the answers
$_{6}C_{4}\left(\begin{array}{c} \square \\ \square \end{array} \right) \left(\begin{array}{c} \square \\ \square \end{array} \right)$	$\begin{array}{c} + \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$	$ \Box + {}_{6}C_{6} \left(\Box \right) \left(\Box \right) $
Helping You Remember calculate binomial probabilities. What put into an expression like ${}_{6}C_{4}\left(\frac{1}{5}\right)^{4}\left(\frac{4}{5}\right)$	t is an easy way to re	ve trouble remembering how to emember which numbers to

CHAPTER **Probability and Statistics**

Tie It Together

Fill in each graphic organizer. Add details if space permits.

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Probability and Statistics

Before the Test

Review the ideas you listed in the table at the beginning of the chapter. Cross out any incorrect information in the first column. Then complete the table by filling in the third column.

К	W	L
What I know	What I want to find out	What I learned

Math Online Visit *glencoe.com* to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 12.

Are You Ready for the Chapter Test?

Use this checklist to help you study.

- \Box I used my Foldable to complete the review of all or most lessons.
- \Box I completed the Chapter 12 Study Guide and Review in the textbook.
- \Box I took the Chapter 12 Practice Test in the textbook.
- \Box I used the online resources for additional review options.
- \Box I reviewed my homework assignments and made corrections to incorrect problems.
- \Box I reviewed all vocabulary from the chapter and their definitions.

Study Tips

• Designate a place to study at home that is free of clutter and distraction. Try to study at about the same time each afternoon or evening so that it is part of your routine.

_ PERIOD _

Before You Read

Before you read the chapter, respond to these statements.

- 1. Write an A if you agree with the statement.
- **2.** Write a \mathbf{D} if you disagree with the statement.

Before You Read	Trigonometric Functions
	• A trigonometric ratio can be used to compared the sides of any triangle.
	• 2π radians = 360°
	• The Law of Cosines can be used to solve a triangle.
	• A periodic function has <i>x</i> -values that repeat at regular intervals.
	• A horizontal translation of a periodic function is a phase shift.

FOLDABLES Study Organizer

Construct the Foldable as directed at the beginning of this chapter.

Note Taking Tips

• When you take notes, look for written real-world examples in your everyday life.

Comment on how writers use statistics to prove or disprove points of view and discuss the ethical responsibilities writers have when using statistics.

• When you take notes, include visuals.

Clearly label the visuals and write captions when needed.

Trigonometric Functions

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on circular functions, one fact might be that a unit circle is a circle with a radius of 1 unit centered at the origin on the coordinate plane. After completing the chapter, you can use this table to review for your chapter test.

	Lesson	Fact
13-1 Ti Ti	rigonometric Functions in Right riangles	
13-2 A	ngles and Angle Measure	
13-3 Ti Ai	rigonometric Functions of General ngles	
13-4 La	aw of Sines	
13-5 La	aw of Cosines	
13-6 Ci	ircular Functions	
13-7 G	raphing Trigonometric Functions	
13-8 Tı	ranslations of Trigonometric Graphs	
13-9 In	nverse Trigonometric Functions	

Trigonometric Functions in Right Triangles 13-1

What You'll Learn	Skim the lesson. Write two things you already know about trigonometric functions in right triangles.
	1
	2.
Active Vocabulary	New Vocabulary Fill in each blank with the correct term or phrase.
reciprocal functions ►	The cosecant, secant, and cotangent ratios are reciprocals of the,, and
	ratios, respectively. These are called the reciprocal functions.
trigonometric function \blacktriangleright	A trigonometric function has a rule given by a trigonometric
trigonometric ratio 🕨	A trigonometric ratio compares the lengths of a triangle.
trigonometry 🕨	Trigonometry is the study of relationships among the of a right triangle.

NAME		DATE	
Lesson 13-1 (continued)			
Main Idea		Details	
Trigonometric Function for Acute Angles pp. 808–809	Suppose θ is the triangle. Comple labeling the appr	te each trigon	•
	$\sin\theta =$		$\csc \theta =$
	$\cos\theta = $		$\sec\theta = $
	$\tan \theta =$		$\cot heta =$
Use Trigonometric Functions pp. 810–812	Use a trigonomet Round to the nea		o find the value of <i>x</i> . mber.
		31°	x 15
Helping You Reme to know the relationships k you remember just one fact lengths of all the sides. Wh	between the lengths of t about this triangle, y	the sides of a 3 ou will always b	be able to figure out the

13-2 Angles and Angle Measure

What You'll Learn	Skim Lesson 13-2. Predict two things that you expect to learn based on the headings and the Key Concept box.
	1
	2.
Active Vocabulary	New Vocabulary Write the correct term next to each definition.
►	two or more angles in standard position with the same terminal side
►	the position of an angle if the vertex is at the origin and one ray is on the positive <i>x</i> -axis
>	the measure of an angle in standard position with a terminal side that intercepts an arc with the same length as the radius of the circle
>	the ray on the <i>x</i> -axis of an angle in standard position
►	the ray that rotates about the center of an angle in standard position
>	an angle that has its vertex at the center of the circle

Lesson 13-2

Main Idea	Details	
Angles in Standard Position pp. 817–818	Model a positive angle and a negative angle by sketching them on the coordinate grids below. Include the angle measures.	
	y 150° y -100° x	
Convert Between Degrees and Radians	Rewrite the degree measure in radians and the radian measure in degrees.	
op. 819–820	1. 50° 2. $\frac{3\pi}{4}$	
Helping You Rem	A good way to help you remember a	

13-3 Trigonometric Functions of General Angles

What You'll Learn	Scan Lesson 13-3. List two headings you would use to make an outline of this lesson.
	1
	2
Active Vocabulary	New Vocabulary Write the definition next to each term.
quadrantal angle 🕨	
reference angle 🕨	
	Vocabulary Link Recall the meaning of the word <i>quadrant</i> . Explain how this meaning makes sense in the context of a quadrantal angle.

Lesson 13-3

NAME	DATE	PERIOD
Main Idea	Det	ails
Trigonometric Functions of General Angles pp. 825–826	The terminal side of θ in statute the point at (-4, 0). Find the trigonometric functions of	e values of the six
	$\sin\theta =$	$\csc\theta = $
	$\cos\theta = $	$\sec\theta = $
	$\tan\theta =$	$\cot \theta =$
Trigonometric Functions with Reference Angles pp. 826–828	The Key Concept chart on p book summarizes the signs functions in the four quadr the trigonometric functions they are positive.	of the six trigonometric ants. Write the names of
		۶ <i>۷</i>

x x

Helping You Remember

A good way to remember a new concept is to explain it in your own words. Explain how to find the reference angles for an angle in standard position depending on which quadrant its terminal side lies in.

Law of Sines 13-4

What You'll Learn	Scan the text under the <i>Now</i> heading. List two things you will learn about in the lesson.	
	1	
	2	
Active Vocabulary	Review Vocabulary Write the definition next to each term. (Lesson 13-1)	
trigonometric ratio 🕨		
trigonometry 🕨		
	New Vocabulary Fill in each blank with the correct term or phrase.	
Law of Sines ►	The Law of Sines shows the relationships between the	
	of a triangle and the sines of the angles them.	
solving a triangle \blacktriangleright	Using given measures to find all unknown side lengths and of a triangle is called solving a triangle.	

Lesson 13-4

DATE ____

_____ PERIOD _

pp. 833–835

Helping You Remember

Suppose that you are taking a quiz and cannot remember whether the formula for the area of a triangle is Area $=\frac{1}{2}ab \cos C$ or Area $=\frac{1}{2}ab \sin C$. How can you quickly remember which of these is correct?

Law of Cosines 13-5

NAME	DATE	PERIOD
Lesson 13-5 (continued)		
Main Idea	Details	
Use the Law of Cosines to Solve Triangles pp. 841–842	Use the Law of Cosines to solve for tenth. S 75° 9 T R	RT to the nearest
Choose a Method to Solve Triangles pp. 842–843	Tell which method you would use to oblique triangle with the given info Law of Sines or Law of Cosines.	
	Solving Oblique Tria	ingles
	Given	Begin by Using
	two sides and an angle opposite one of them	
	three sides	
	two sides and their included angle	
	two angles and any sides	

Helping You Remember

It is often easier to remember a complicated procedure if you can break it down into small steps. Describe in your own words how to use the Law of Cosines to find the length of one side of a triangle if you know the lengths of the other two sides and the measure of the included angle. Use numbered steps. (You may use mathematical terms, but do not use any mathematical symbols.)

13-6 Circular Functions

What You'll Learn	Skim the Examples for Lesson 13-6. Predict two things you think you will learn about circular functions.	
	1	
	2.	
Active Vocabulary	New Vocabulary Match the term with its definition by drawing a line to connect the two.	
circular function	one complete pattern of a periodic function	
cycle	a function that has <i>y</i> -values that repeat at regular intervals	
period	a function that is defined using the unit circle	
periodic function	a circle with a radius of one unit centered at the origin on the coordinate plane	
unit circle	the horizontal length of one cycle of a periodic function	
	Vocabulary Link Describe how the revolutions of the pedals on a bicycle can be used as a model of a periodic function.	

_____ DATE _____ PERIOD ___ **Lesson 13-6** (continued) Main Idea **Details** The terminal side of angle θ in standard position intersects the unit circle at $P\left(\frac{4}{5}, \frac{3}{5}\right)$. Find $\cos \theta$ and **Circular Functions** p. 848 $\sin \theta$. $(0, 1)^{-} P \left(\frac{4}{5}\right)$ $\cos\theta =$ _____ (-1, 0)2 ŻΧ $\sin\theta =$ _____ .(0, -1). **Periodic Functions** Identify the period of the function graphed below. pp. 849-850

Helping You Remember

What is an easy way to remember the periods of

the sine and cosine functions in radian measure?

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Graphing Trigonometric Functions 13-7

What You'll Learn	Scan the text in Lesson 13-7. Write two learned about graphing trigonometric fu scanned the text.	
	1	
	2	
Active Vocabulary	Review Vocabulary Write the definition n	ext to each term
	(Lesson 13-2)	
initial side ►		
terminal side 🕨		
	New Vocabulary Fill in each blank with t phrase.	he correct term or
amplitude 🕨	The amplitude of the graph of a sine or o	cosine function
	equals half the difference between the	and
	values of the function.	с ·
frequency 🕨	Frequency is the number of function in a given unit of time.	of a periodic
Chapter 13	229	Glencoe Algebra 2

NAME	DATE .	PERIOD
Lesson 13-7 (continued)		
Main Idea		Details
Sine, Cosine, and Tangent Functions	Sketch the parent funct coordinate grid below.	tion $y = \tan \theta$ on the
pp. 855–858		
Graphs of Other Trigonometric Functions p. 858) is graphed below as a dashed on graphed as a solid line.
		4 3 2 1 4 3 2 1 4 4 3 2 1 4 4 4 4 4 4 4 4 4 4 4 4 4
Helping You Reme $y = a \sin b\theta$ and $y = a \cos b\theta$?	What is all easy	way to remember the periods of

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

13-8 Translations of Trigonometric Graphs

What You'll Learn	Scan the text under the <i>Now</i> heading. List two things you will learn about in the lesson.	
	1	
	2	
Active Vocabulary	New Vocabulary Label the diagrams with the correct terms	•
phase shift 🕨		
$vertical \ shift$ >		
midline 🕨		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

NAME	DATE	PERIOD
.esson 13-8 (continued)		
Main Idea	Detai	ls
Horizontal Translations p. 863	The parent function $y = \cos\theta$ i the function $y = \cos(\theta + 90^\circ)$ o	
Vertical Translations op. 864–866	Label the general sine function correct terms. Use <i>amplitude, vertical shift</i> .	
	$Y = a \sin b(\theta$	$(\theta - h) + k$
-	Many students have tr $(\theta + \alpha)$ or $y = \sin(\theta - \alpha)$ represents a so, explain a good way to remember w	

13-9 Inverse Trigonometric Functions

What You'll Learn	Skim the lesson. Write two things you already know about inverse trigonometric functions.
	1
	2
Active Vocabulary	New Vocabulary Write the definition next to each term.
Arccosine function \blacktriangleright	
Arcsine function \blacktriangleright	
Arctangent function >	
principal values 🕨	

Main Idea	Detail	S
nverse Trigonometric 'unctions p. 871–872	Identify the inverse trigonomeach graph.	etric function shown in $ \begin{array}{c} $
olve Equations by J sing Inverses . 873	If $\sin \theta = 0.16$, find θ to the nearly your work.	arest tenth degree. Show
Helping You Reme	he functions $y = \text{Sin } x, y = \text{Cos } x$, llso the range of functions $y = \text{Arcsir}$	ram.) _{sin}
	an x? (You may want to draw a diag.	tan

Trigonometric Functions

Tie It Together

Fill in the graphic organizer. Add details if space permits.

Function	In a Right Triangle	In a Unit Circle	Maximum Value	Minimum Value	Domain Restrictions	Reciprocal Function
Sine						
Cosine						
Tangent						
Cosecant						
Secant						
Cotangent						

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Trigonometric Functions

Before the Test

Now that you have read and worked through the chapter, think about what you have learned and complete the table below. Compare your previous answers with these.

- 1. Write an A if you agree with the statement.
- **2.** Write a \mathbf{D} if you disagree with the statement.

Trigonometric Functions	After You Read
• A trigonometric ratio can be used to compared the sides of any triangle.	
• 2π radians = 360°	
• The Law of Cosines can be used to solve a triangle.	
• A periodic function has <i>x</i> -values that repeat at regular intervals.	
• A horizontal translation of a periodic function is a phase shift.	

Math Online Visit *glencoe.com* to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 13.

Are You Ready for the Chapter Test?

Use this checklist to help you study.

- $\hfill\square$ I used my Foldable to complete the review of all or most lessons.
- \Box I completed the Chapter 13 Study Guide and Review in the textbook.
- □ I took the Chapter 13 Practice Test in the textbook.
- $\hfill\square$ I used the online resources for additional review options.
- $\hfill\square$ I reviewed my homework assignments and made corrections to incorrect problems.
- $\hfill\square$ I reviewed all vocabulary from the chapter and their definitions.

Study Tips

• Use the SR3Q method of reading: Survey, Question, Read, Recite, and Review. Survey the text by previewing the headings, boldface words, and examples; ask questions about what you survey, read with purpose, recite out loud the main points and concepts without looking at the text, and review your text notes or use the chapter review at the end of the chapter.

Before You Read

Before you read the chapter, think about what you know about trigonometric identities and equations. List three things you already know about them in the first column. Then list three things you would like to learn about them in the second column.

K What I know	W What I want to find out

FOLDABLES Study Organizer Construct the Foldable as directed at the beginning of this chapter.

• When you take notes, it may be helpful to sit as close as possible to the front of the class.

There are fewer distractions and it is easier to hear.

• If your instructor points out definitions or procedures from your text, write a reference page in your notes.

You can then write these referenced items in their proper place in your notes after class.

Trigonometric Identities and Equations

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on trigonometric identities, one fact might be that a trigonometric identity is an equation involving trigonometric functions that is true for all values for which every expression in the equation is defined. After completing the chapter, you can use this table to review for your chapter test.

Lesson	Fact
14-1 Trigonometric Identities	
14-2 Verifying Trigonometric Identities	
14-3 Sum and Difference of Angles Identities	
14-4 Double-Angle and Half-Angle Identities	
14-5 Solving Trigonometric Equations	

Trigonometric Identities 14-1

What You'll Learn	Scan the text under the <i>Now</i> heading. List two things you
	will learn about in the lesson.
	1
	2
Active Vocabulary	New Vocabulary Write the definition next to the term.
trigonometric identity \blacktriangleright	
	Vocabulary Link Describe what the word <i>identity</i> means in the context of the real world. Explain how this meaning makes sense as the word is applied to mathematical identities.

Lesson 14-1

Main Idea	Deta	ils
Find Trigonometric Values pp. 891–892	Complete each basic trigono Quotient Identities:	ometric identity below.
	1. $\tan\theta =$	2. $\cot \theta =$
	Reciprocal Identities:	
	3. $\sin\theta =$	4. $\cos\theta = $
	Pythagorean Identities:	
	5. $\tan^2 \theta + 1 =$	6. $\cot^2 \theta + 1 =$
Simplify Expressions pp. 892–893	Simplify the expression secθ in terms of secθ. Show your	
	A good way to rement already know. How can you use the ou learned in Chapter 13 to help yo	

14-2 Verifying Trigonometric Identities

What You'll Learn	Skim Lesson 14-2. Predict two things that you expect to learn based on the headings and the Key Concept box.		
	1		
	2.		
Active Vocabulary	Vocabulary Link The following statements are suggestions for verifying trigonometric identities. Fill in each blank with the correct term or phrase.		
	Substitute one or more basic trigonometric to simplify the expression.		
	Factor or multiply as necessary. You may have to multiply		
	both the numerator and by the same trigonometric expression.		
	Write each side of the identity in terms of sine and		
	only. Then simplify each side as much as possible.		
	The properties of equality do not apply to identities as with equations. Do not perform operations to the quantities from		
	each side of an identity.		

Lesson 14-2

NAME	DATE PERIOD
Lesson 14-2 (continued)	
Main Idea	Details
Transform One Side of an Equation pp. 898–899	Verify that $\frac{\sec\theta}{\tan\theta + \cot\theta} = \sin\theta$ is an identity.
pp. 030–033	
Transform Each Side of	Circle the correct answer.
an Equation	$\frac{\sec\theta}{\csc\theta} =$

Transform Each Side of	Circle the correct answer.	
an Equation	$\frac{\sec\theta}{\csc\theta} =$	
pp. 899–900	$\csc \theta$	
	A $\frac{1}{\sin\theta}$	$C \frac{1}{\cos \theta}$
	B $\cot\theta$	D $\tan \theta$

Helping You Remember

Many students have trouble knowing where to start in verifying a trignometric identity. What is a simple rule that you can remember that you can always use if you don't see a quicker approach?

14-3 Sum and Difference of Angles Identities

What You'll Learn	Scan the text in Lesson 14-3. Write two facts you learned about sum and difference of angles identities as you scanned the text.	
	1	
	2.	
Active Vocabulary	Review Vocabulary Fill in each blank with the correct term or phrase. (<i>Lesson 14-1</i>)	
trigonometric identity \blacktriangleright	A trigonometric identity is an equation involving	
	trigonometric that is true for all values for	
	which every expression in the equation is	
	Vocabulary Link Fill in the blanks to complete each identity.	
	$\sin(A + B) = \underline{\qquad} A \underline{\qquad} B$	
	+ <i>AB</i>	
	$\cos(A - B) = \underline{\qquad} A \underline{\qquad} B$	
	+ A B	
	$\tan(A+B) = \frac{\tan \underline{\qquad} + \tan \underline{\qquad}}{-\tan \underline{\qquad} \tan \underline{\qquad}}$	

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Lesson 14-3

NAME	DATE PERIOD
Lesson 14-3 (continued)	
Main Idea	Details
Sum and Difference Identities pp. 904–905	Follow the steps below to find the exact value of cos 105°. Step 1: Rewrite 105° as the sum of two more common angles. Step 2: Apply an angle sum identity. Step 3: Substitute the exact values and simplify.
Verify Trigonometric Identities p. 906	Verify that sin(θ – 90°) is an identity.
Helping You Rem signs to use on the right-h is an easy way to remember	and sides of the sum and difference of angles formulas. What

14-4 Double-Angle and Half-Angle Identities

What You'll Learn	Skim the lesson. Write two things you already know about double-angle and half-angle identities.	
	1	
	2	
Active Vocabulary	Review Vocabulary Fill in the blanks to complete each	
Active vocadulary	identity. (Lesson 14-3)	
	$\sin(A - B) = \underline{\qquad} A \underline{\qquad}$	
	<i>B</i> – <i>AB</i>	
	$\cos(A + B) = \underline{\qquad} A \underline{\qquad}$	
	<i>B</i> – <i>AB</i>	
	$\tan(A - B) = \frac{\tan \ \tan _ _}{_ + \tan _ _ \tan _ _}$	
	Fill in the blanks to complete each identity.	
	$\sin 2A = 2 \underline{\qquad} A \underline{\qquad} A$	
	$\cos 2A = \underline{\qquad} A - \underline{\qquad} A$	

Lesson 14-4

NAME	DATE PERIOD
Lesson 14.4 (continued)	
Main Idea	Detaile
Main Idea	Details
Double-Angle Identities op. 911-912	Find sin 2θ if $\sin\theta = \frac{4}{5}$ and θ is between 0° and 90°.
Sp. 011 012	
Half-Angle Identities pp. 912-914	Follow the steps below to find the exact value of sin 15°.
	Step 1: Rewrite 15° as
	the quotient of 30° and 2.
	Step 2: Apply a half angle identity.
	Step 3: Substitute the exact values and
	simplify.
Helping You Rem	ember There are many identities and formulas in n be difficult to remember them all. How can you obtain all
three of the identities for o	$\cos 2\theta$ by remembering only one of them and using a
Pythagorean Identity?	

14-5 Solving Trigonometric Equations

What You'll Learn	Skim the Examples for Lesson 14-5. Predict two things you think you will learn about solving trigonometric equations. 1.	
	2	
Active Vocabulary	Review Vocabulary Match each type of identity with the correct formula. (<i>Lessons 14-3 and 14-4</i>)	
sum of angles identity	$\cos 2 heta = 1 - 2\sin^2 heta$	
difference of angles identity	$\sin(A + B) = \sin A \cos A + \cos A \sin B$	
double-angle identity	$\tan\frac{\theta}{2} = \pm\frac{\sqrt{1-\cos\theta}}{1+\cos\theta}$	
half-angle identity	$\cos(A - B) = \cos A \cos B + \sin A \sin B$	
	New Vocabulary Write the definition next to the term.	
trigonometric equation \blacktriangleright		

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Main Idea	Details
Solve Trigonometric Equations	Compare and contrast trigonometric identities with trigonometric equations.
pp. 919–920	Similarities Differences
Extraneous Solutions op. 921–922	Solve the equation $\sin 2\theta = \cos \theta$ for $90^{\circ} \le \theta < 180^{\circ}$. Show your work.
-	A good way to remember something is to . How would you explain to a classmate the difference between identity and solving a trigonometric equation?

Trigonometric Identities and Equations

Tie It Together

Fill in the graphic organizer.

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

14 Trigonometric Identities and Equations

Before the Test

NAME

Review the ideas you listed in the table at the beginning of the chapter. Cross out any incorrect information in the first column. Then complete the table by filling in the third column.

К	W	L
What I know	What I want to find out	What I learned

Math Online Visit *glencoe.com* to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 14.

Are You Ready for the Chapter Test?

Use this checklist to help you study.

- $\hfill\square$ I used my Foldable to complete the review of all or most lessons.
- $\hfill\square$ I completed the Chapter 14 Study Guide and Review in the textbook.
- $\hfill\square$ I took the Chapter 14 Practice Test in the textbook.
- $\hfill\square$ I used the online resources for additional review options.
- $\hfill\square$ I reviewed my homework assignments and made corrections to incorrect problems.
- $\hfill\square$ I reviewed all vocabulary from the chapter and their definitions.

Study Tips

• On test day, look over the entire test to get an idea of its length and scope so that you can pace yourself. Answer what you know first, skipping over material you do not know. When finished, go back and check for errors. Do not change an answer unless you are certain you are correct.