\qquad PERIOD \qquad

Study Guide and Intervention

Alg1 8.0

Geometry: Parallel and Perpendicular Lines

Parallel Lines Two nonvertical lines are parallel if they have the same slope. All vertical lines are parallel.

Example Write the slope-intercept form for an equation of the line that passes through $(-1,6)$ and is parallel to the graph of $\boldsymbol{y}=\mathbf{2 x}+12$.

A line parallel to $y=2 x+12$ has the same slope, 2 . Replace m with 2 and $\left(x_{1}, y_{1}\right)$ with $(-1,6)$ in the point-slope form.

$y-y_{1}$	$=m\left(x-x_{1}\right)$		Point-slope form
$y-6$	$=2(x-(-1))$		$m=2 ;\left(x_{1}, y_{1}\right)=(-1,6)$
$y-6$	$=2(x+1)$		Simplify.
$y-6$	$=2 x+2$		Distributive Property
y	$=2 x+8$		Slope-intercept form

Therefore, the equation is $y=2 x+8$.

Exercises

Write the slope-intercept form for an equation of the line that passes through the given point and is parallel to the graph of each equation.
1.

2.

3.

4. $(-2,2), y=4 x-2$
5. $(6,4), y=\frac{1}{3} x+1$
6. $(4,-2), y=-2 x+3$
7. $(-2,4), y=-3 x+10$
8. $(-1,6), 3 x+y=12$
9. $(4,-6), x+2 y=5$
10. Find an equation of the line that has a y-intercept of 2 that is parallel to the graph of the line $4 x+2 y=8$.
11. Find an equation of the line that has a y-intercept of -1 that is parallel to the graph of the line $x-3 y=6$.
12. Find an equation of the line that has a y-intercept of -4 that is parallel to the graph of the line $y=6$.
\qquad
\qquad

Study Guide and Intervention (continued)

Geometry: Parallel and Perpendicular Lines

Perpendicular Lines Two non-vertical lines are perpendicular if their slopes are negative reciprocals of each other. Vertical and horizontal lines are perpendicular.

Example Write the slope-intercept form for an equation that passes through $(-4,2)$ and is perpendicular to the graph of $2 x-3 y=9$.
Find the slope of $2 x-3 y=9$.

$$
\begin{aligned}
2 x-3 y & =9 & & \text { Original equation } \\
-3 y & =-2 x+9 & & \text { Subtract } 2 x \text { from each side. } \\
y & =\frac{2}{3} x-3 & & \text { Divide each side by }-3 .
\end{aligned}
$$

The slope of $y=\frac{2}{3} x-3$ is $\frac{2}{3}$. So, the slope of the line passing through $(-4,2)$ that is perpendicular to this line is the negative reciprocal of $\frac{2}{3}$, or $-\frac{3}{2}$.
Use the point-slope form to find the equation.

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) & & \text { Point-slope form } \\
y-2 & =-\frac{3}{2}(x-(-4)) & & m=-\frac{3}{2} ;\left(x_{1}, y_{1}\right)=(-4,2) \\
y-2 & =-\frac{3}{2}(x+4) & & \text { Simplify. } \\
y-2 & =-\frac{3}{2} x-6 & & \text { Distributive Property } \\
y & =-\frac{3}{2} x-4 & & \text { Slope-intercept form }
\end{aligned}
$$

Exercises

Write the slope-intercept form for an equation of the line that passes through the given point and is perpendicular to the graph of each equation.

1. $(4,2), y=\frac{1}{2} x+1$
2. $(2,-3), y=-\frac{2}{3} x+4$
3. $(6,4), y=7 x+1$
4. $(-8,-7), y=-x-8$
5. $(6,-2), y=-3 x-6$
6. $(-5,-1), y=\frac{5}{2} x-3$
7. $(-9,-5), y=-3 x-1$
8. $(-1,3), 2 x+4 y=12$
9. $(6,-6), 3 x-y=6$
10. Find an equation of the line that has a y-intercept of -2 and is perpendicular to the graph of the line $x-2 y=5$.
11. Find an equation of the line that has a y-intercept of 5 and is perpendicular to the graph of the line $4 x+3 y=8$.
