\qquad
\qquad

Study Guide and Intervention

Writing Equations in Point-Slope Form

Point-Slope Form

Point-Slope Form
$y-y_{1}=m\left(x-x_{1}\right)$, where $\left(x_{1}, y_{1}\right)$ is a given point on a nonvertical line and m is the slope of the line

Example 1 Write the point-slope form of an equation for a line that passes through $(6,1)$ and has a slope of $-\frac{5}{2}$.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \quad \\
& y-1=-\frac{5}{2}(x-6) \quad \text { Point-slope form } \\
& y=-\frac{5}{2} ;\left(x_{1}, y_{1}\right)=(6,1)
\end{aligned}
$$

Therefore, the equation is $y-1=-\frac{5}{2}(x-6)$.

Example 2 Write the point-slope

 form of an equation for a horizontal line that passes through $(4,-1)$.$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) & & \text { Point-slope form } \\
y-(-1) & =0(x-4) & & m=0 ;\left(x_{1}, y_{1}\right)=(4,-1) \\
y+1 & =0 & & \text { Simplify. }
\end{aligned}
$$

Therefore, the equation is $y+1=0$.

Exercises

Write the point-slope form of an equation for a line that passes through each point with the given slope.

2.

3.

5. $(-7,2), m=6$
6. $(8,3), m=1$
7. $(-6,7), m=0$
8. $(4,9), m=\frac{3}{4}$
9. $(-4,-5), m=-\frac{1}{2}$
10. Write the point-slope form of an equation for the horizontal line that passes through (4, -2).
11. Write the point-slope form of an equation for the horizontal line that passes through ($-5,6$).
12. Write the point-slope form of an equation for the horizontal line that passes through (5, 0).
\qquad
\qquad

Study Guide and Intervention (continued)

Writing Equations in Point-Slope Form

Forms of Linear Equations

Slope-Intercept Form	$y=m x+b$	$m=$ slope; $b=y$-intercept
Point-Slope Form	$y-y_{1}=m\left(x-x_{1}\right)$	$m=$ slope; $\left(x_{1}, y_{1}\right)$ is a given point.
Standard Form	$A x+B y=C$	A and B are not both zero. Usually A is nonnegative and A, B, and C are integers whose greatest common factor is 1.

Example 1 Write $y+5=\frac{2}{3}(x-6)$ in standard form.

$$
\begin{aligned}
y+5 & =\frac{2}{3}(x-6) & & \text { Original equation } \\
3(y+5) & =3\left(\frac{2}{3}\right)(x-6) & & \text { Multiply each side by } 3 . \\
3 y+15 & =2(x-6) & & \text { Distributive Property } \\
3 y+15 & =2 x-12 & & \text { Distributive Property } \\
3 y & =2 x-27 & & \text { Subtract } 15 \text { from each side. } \\
-2 x+3 y & =-27 & & \text { Add }-2 x \text { to each side. } \\
2 x-3 y & =27 & & \text { Multiply each side by }-1 .
\end{aligned}
$$

Therefore, the standard form of the equation is $2 x-3 y=27$.

Example 2
 Write $y-2=-\frac{1}{4}(x-8)$
 in slope-intercept form.

$$
\begin{aligned}
y-2 & =-\frac{1}{4}(x-8) & & \text { Original equation } \\
y-2 & =-\frac{1}{4} x+2 & & \text { Distributive Property } \\
y & =-\frac{1}{4} x+4 & & \text { Add } 2 \text { to each side. }
\end{aligned}
$$

Therefore, the slope-intercept form of the equation is $y=-\frac{1}{4} x+4$.

Exercises

Write each equation in standard form.

1. $y+2=-3(x-1)$
2. $y-1=-\frac{1}{3}(x-6)$
3. $y+2=\frac{2}{3}(x-9)$
4. $y+3=-(x-5)$
5. $y-4=\frac{5}{3}(x+3)$
6. $y+4=-\frac{2}{5}(x-1)$

Write each equation in slope-intercept form.
7. $y+4=4(x-2)$
8. $y-5=\frac{1}{3}(x-6)$
9. $y-8=-\frac{1}{4}(x+8)$
10. $y-6=3\left(x-\frac{1}{3}\right)$
11. $y+4=-2(x+5)$
12. $y+\frac{5}{3}=\frac{1}{2}(x-2)$

