\qquad

Study Guide and Intervention

Linear Functions

Identify Linear Equations A linear equation is an equation that can be written in the form $A x+B y=C$. This is called the standard form of a linear equation.

Standard Form of a Linear Equation

$A x+B y=C$, where $A \geq 0, A$ and B are not both zero, and A, B, and C are integers whose GCF is 1 .

Example 1 Determine whether $y=6-3 x$

 is a linear equation. If so, write the equation in standard form.First rewrite the equation so both variables are on the same side of the equation.

$$
\begin{aligned}
y & =6-3 x & & \text { Original equation. } \\
y+3 x & =6-3 x+3 x & & \text { Add } 3 x \text { to each side. } \\
3 x+y & =6 & & \text { Simplify. }
\end{aligned}
$$

The equation is now in standard form, with $A=3$, $B=1$ and $C=6$. This is a linear equation.

Example 2 Determine

 whether $3 x y+y=4+2 x$ is a linear equation. If so, write the equation in standard form.Since the term $3 x y$ has two variables, the equation cannot be written in the form $A x+B y=C$. Therefore, this is not a linear equation.

Exercises

Determine whether each equation is a linear equation. If so, write the equation in standard form.

1. $2 x=4 y$
2. $6+y=8$
3. $4 x-2 y=-1$
4. $3 x y+8=4 y$
5. $3 x-4=12$
6. $y=x^{2}+7$
7. $y-4 x=9$
8. $x+8=0$
9. $-2 x+3=4 y$
10. $2+\frac{1}{2} x=y$
11. $\frac{1}{4} y=12-4 x$
12. $3 x y-y=8$
13. $6 x+4 y-3=0$
14. $y x-2=8$
15. $6 a-2 b=8+b$
16. $\frac{1}{4} x-12 y=1$
17. $3+x+x^{2}=0$
18. $x^{2}=2 x y$

DATE \qquad PERIOD \qquad

Study Guide and Intervention (continued)

Linear Functions

Graph Linear Equations The graph of a linear equations represents all the solutions of the equation. An x-coordinate of the point at which a graph of an equation crosses the x-axis in an \boldsymbol{x}-intercept. A y-coordinate of the point at which a graph crosses the y-axis is called a y-intercept.

Example 1
 Graph the equation $y-2 x=1$

 by making a table.Solve the equation for y.

$$
\begin{aligned}
y-2 x & =1 & & \text { Original equation. } \\
y-2 x+2 x & =1+2 x & & \text { Add } 2 x \text { to each side. } \\
y & =2 x+1 & & \text { Simplify. }
\end{aligned}
$$

Select five values for the domain and make a table. Then graph the ordered pairs and draw a line through the points.

\boldsymbol{x}	$2 \boldsymbol{x}+\mathbf{1}$	\boldsymbol{y}	$(\boldsymbol{x}, \boldsymbol{y})$
-2	$2(-2)+1$	-3	$(-2,-3)$
-1	$2(-1)+1$	-1	$(-1,-1)$
0	$2(0)+1$	1	$(0,1)$
1	$2(1)+1$	3	$(1,3)$
2	$2(2)+1$	5	$(2,5)$

Example 2 Graph the

 equation $3 x+2 y=6$ by using the \boldsymbol{x}-intercept and \boldsymbol{y}-intercept.To find the x-intercept, let $y=0$ and solve for x. The x-intercept is 2 . The graph intersects the x-axis at $(2,0)$. To find the y-intercept, let $x=0$ and solve for y.
The y-intercept is 3 . The graph intersects the y-axis at $(0,3)$.
Plot the points $(2,0)$ and $(0,3)$ and draw the line through them.

Exercises

Graph each equation by making a table.

1. $y=2 x$

2. $x-y=-1$

3. $x+2 y=4$

Graph each equation by using the \boldsymbol{x}-intercept and \boldsymbol{y}-intercept.
4. $2 x+y=-2$

5. $3 x-6 y=-3$

6. $-2 x+y=-2$

