NAME

DATE__

PERIOD

Study Guide and Intervention

Alg1 7.0

Linear Functions

Identify Linear Equations A **linear equation** is an equation that can be written in the form Ax + By = C. This is called the **standard form** of a linear equation.

Standard Form of a Linear Equation	$Ax + By = C$, where $A \ge 0$, A and B are not both zero, and A, B, and					
	C are integers whose GCF is 1.					

Example 1 Determine whether y = 6 - 3x is a linear equation. If so, write the equation in standard form.

First rewrite the equation so both variables are on the same side of the equation.

y = 6 - 3x Original equation. y + 3x = 6 - 3x + 3x Add 3x to each side. 3x + y = 6 Simplify.

The equation is now in standard form, with A = 3, B = 1 and C = 6. This is a linear equation.

Example 2 Determine the ther 3xy + y = 4 + 2x is

whether 3xy + y = 4 + 2x is a linear equation. If so, write the equation in standard form.

Since the term 3xy has two variables, the equation cannot be written in the form Ax + By = C. Therefore, this is not a linear equation.

Exercises

Determine whether each equation is a linear equation. If so, write the equation in standard form.

1.
$$2x = 4y$$
2. $6 + y = 8$ 3. $4x - 2y = -1$ 4. $3xy + 8 = 4y$ 5. $3x - 4 = 12$ 6. $y = x^2 + 7$ 7. $y - 4x = 9$ 8. $x + 8 = 0$ 9. $-2x + 3 = 4y$ 10. $2 + \frac{1}{2}x = y$ 11. $\frac{1}{4}y = 12 - 4x$ 12. $3xy - y = 8$ 13. $6x + 4y - 3 = 0$ 14. $yx - 2 = 8$ 15. $6a - 2b = 8 + b$

16. $\frac{1}{4}x - 12y = 1$ **17.** $3 + x + x^2 = 0$ **18.** $x^2 = 2xy$

Study Guide and Intervention (continued)

Linear Functions

Graph Linear Equations The graph of a linear equations represents all the solutions of the equation. An x-coordinate of the point at which a graph of an equation crosses the x-axis in an *x*-intercept. A *y*-coordinate of the point at which a graph crosses the *y*-axis is called a y-intercept.

Example 1 Graph the equation y - 2x = 1by making a table.

Solve the equation for y.

$$y - 2x = 1$$
 Original equation.
 $y - 2x + 2x = 1 + 2x$ Add 2x to each side.
 $y = 2x + 1$ Simplify.

Select five values for the domain and make a table. Then graph the ordered pairs and draw a line through the points.

x	2 <i>x</i> + 1	у	(<i>x</i> , <i>y</i>)
-2	2(-2) + 1	-3	(-2, -3)
-1	2(-1) + 1	-1	(-1, -1)
0	2(0) + 1	1	(0, 1)
1	2(1) + 1	3	(1, 3)
2	2(2) + 1	5	(2, 5)

Example 2 Graph the equation 3x + 2y = 6 by using the x-intercept and y-intercept.

To find the *x*-intercept, let y = 0 and solve for *x*. The *x*-intercept is 2. The graph intersects the x-axis at (2, 0).

To find the *v*-intercept, let x = 0 and solve for *y*.

The *y*-intercept is 3. The graph intersects the *v*-axis at (0, 3).

Plot the points (2, 0) and (0, 3) and draw the line through them.

			y				
			_((), 3)		
			$\mathbf{\Lambda}$				
					(2	<u>2, 0</u>)
Ľ		0			\boldsymbol{V}		X
							V

Exercises

Graph each equation by making a table.

1. y = 2x

|--|

Graph each equation by using the x-intercept and y-intercept.

4. 2x + y = -2

5. 3	Bx	_	6	y	=	_	3			
					-	y				
	-					0			x	
					,	,				

