In-Class Game

The Pythagorean Theorem Game

- Get Ready!

Separate the class into groups of four.

- The Pythagorean Theorem Game master, p. 8
- The Pythagorean Theorem Game Board master, p. 9
- The Pythagorean Theorem Game Cards masters, pp. 10-11
- index cards
- scissors @
- tape on or glue 呂
- 2 number cubes per group $\sqrt{61}$
- 4 different colored counters per group

- Get Set!

Make a copy of The Pythagorean Theorem Game master on page 8 for each student in the class. Photocopy The Pythagorean Theorem Game Board master on page 9 onto card stock for each group. Make a copy of The Pythagorean Theorem Game Cards masters on pages 10 and 11 for each group. Have students cut out the game cards, tape or glue them to the index cards, and draw a "?" on the reverse side.

Go!

- A player rolls both number cubes and substitutes the numbers into the Pythagorean Theorem for the lengths of the legs. Then the player moves around the board a distance that is closest to the value of c. For example, if a player rolls a 1 and a 2 , he or she would determine how many spaces to move as follows.

$$
\begin{aligned}
1^{2}+2^{2} & =c^{2} \\
1+4 & =c^{2} \\
5 & =c^{2} \\
\sqrt{5} & \approx 2.236 \text { or } 2 \quad \text { Always round to the nearest whole number. }
\end{aligned}
$$

- When a player lands on a space with a question mark, a question card is read to the player whose turn it is. If the player answers correctly, he or she can roll one number cube and advance that number of spaces. If the player answers incorrectly, the turn moves to the next player.
- To finish the game, the players must answer a question card correctly. If answered incorrectly, the player must go back to the space from which he or she started that turn. The first player around the board wins.
\qquad

In-Class Game

The Pythagorean Theorem Game

Work in groups of four.

- A player rolls both number cubes and substitutes the numbers on the number cubes into the Pythagorean Theorem for the lengths of the legs to find the value of the length of the hypotenuse. Then the player moves around the board a distance that is closest to the value of c. For example, if a player rolls a 1 and a 2, he or she would determine how many spaces to move as follows.

$$
\begin{aligned}
1^{2}+2^{2} & =c^{2} \\
1+4 & =c^{2} \\
5 & =c^{2} \\
\sqrt{5} & \approx 2.236
\end{aligned}
$$

Always round to the nearest whole number. Since 2.236 rounded to the nearest whole number is 2 , the player would move 2 spaces.

- When a player lands on a space with a question mark, a question card is drawn. Another player reads the question to the player whose turn it is. If the player answers the question correctly, he or she can roll one number cube and advance the resulting number of spaces. If the player answers incorrectly, the turn moves to the next player.
- To finish the game, the players must answer a question card correctly. If the card is answered incorrectly, the player must go back to the space from which he or she started that turn. The first player around the board wins.

In-Class Game

The Pythagorean Theorem Game Board

In-Class Game

The Pythagorean Theorem Game Cards

Find the missing member of	What is the length of the legs	True or false?
the Pythagorean triple	in a $45^{\circ}-45^{\circ}$ right triangle with	The Egyptians used the right
(7, ___ 25).	a hypotenuse of length $\sqrt{2}$?	triangle for land measurement.
Answer: 24	Answer: 1	Answer: true
Is (8, 15, 17) a Pythagorean	Find the length of the	Solve the equation
triple?	hypotenuse of a right triangle	$a^{2}+b^{2}=c^{2}$ for c.
	if the legs have lengths 1	
	and 2.	
Answer: yes	Answer: $\sqrt{5}$	Answer: $c=\sqrt{a^{2}+b^{2}}$
What is the measure of the	Using $a^{2}+b^{2}=c^{2}$, find b if	A number that is the square of
two nonright angles in an	$c=10$ and $a=6$.	a whole number is called a
isosceles right triangle?		___ square.
Answer: 45° and 45°	Answer: $b=8$	Answer: perfect
Solve the equation	What is the length of the	Is it true that if $a^{2}+b^{2}=c^{2}$,
$a^{2}+b^{2}=c^{2}$ for a.	diagonal of a rectangle with sides of lengths 5 and 12?	then $\frac{a^{2}}{c^{2}}+\frac{b^{2}}{c^{2}}=1$?
Answer: $a=\sqrt{c^{2}-b^{2}}$	Answer: 13	Answer: yes
True or false:	Have the person to your left	Is (16, 20, 35) a Pythagorean
Pythagoras lived about 500 A.D.	pick two whole numbers for	triple?
Answer: false (500 b.c.)	hypotenuse.	Answer: no

In-Class Game

The Pythagorean Theorem Game Cards

