

Contributing Author

Dinah Zike

Foldables

Consultant

Douglas Fisher, Ph.D.
Director of Professional Development
San Diego, CA

Glencoe

Copyright © by The McGraw-Hill Companies, Inc. All rights reserved. Printed in the United States of America. Except as permitted under the United States Copyright Act, no part of this book may be reproduced in any form, electronic or mechanical, including photocopy, recording, or any information storage or retrieval system, without prior written permission of the publisher.

Send all inquiries to:
The McGraw-Hill Companies
8787 Orion Place
Columbus, OH 43240-4027

Contents

CHAPTER 1
Foldables 1
Vocabulary Builder 2
1-1 Using a Problem-Solving Plan 4
1-2 Numbers and Expressions 7
1-3 Variables and Expressions 10
1-4 Properties 14
1-5 Variables and Equations 16
1-6 Ordered Pairs and Relations 19
1-7 Scatter Plots 23
Study Guide 27
CHAPTER 2
Foldables 31
Vocabulary Builder. 32
2-1 Integers and Absolute Value 34
2-2 Adding Integers 37
2-3 Subtracting Integers 41
2-4 Multiplying Integers 43
2-5 Dividing Integers 45
2-6 The Coordinate System 47
Study Guide 50
CHAPTER 3
Foldables 53
Vocabulary Builder 54
3-1 The Distributive Property 56
3-2 Simplifying Algebraic Expressions 59
3-3 Solving Equations by Adding or Subtracting 62
3-4 Solving Equations by Multiplying or Dividing 65
3-5 Solving Two-Step Equations 67
3-6 Writing Two-Step Equations 70
3-7 Sequences and Equations 72
3-8 Using Formulas 74
Study Guide 77
CHAPTER 4
Foldables 81
Vocabulary Builder. 82
4-1 Powers and Exponents 84
4-2 Prime Factorization 87
4-3 Greatest Common Factor 89
4-4 Simplifying Algebraic Fractions 91
4-5 Multiplying and Dividing Monomials 93
4-6 Negative Exponents 95
4-7 Scientific Notation 97
Study Guide 99
CHAPTER 5
Foldables 103
Vocabulary Builder 104
5-1 Writing Fractions as Decimals 106
5-2 Rational Numbers 109
5-3 Multiplying Rational Numbers 111
5-4 Dividing Rational Numbers 114
5-5 Adding and Subtracting Like Fractions 117
5-6 Least Common Multiple 119
5-7 Adding and Subtracting Unlike Fractions 122
5-8 Solving Equations with Rational Numbers 124
5-9 Measures of Central Tendency 126
Study Guide 129
CHAPTER 6
Foldables 133
Vocabulary Builder. 134
6-1 Ratios and Rates 136
6-2 Proportional and Nonproportional Relationships. 138
6-3 Using Proportions. 140
6-4 Scale Drawings and Models 142
6-5 Fractions, Decimals, and Percents 145
6-6 Using the Percent Proportion 148
6-7 Finding Percents Mentally 151
6-8 Using Percent Equations 153
6-9 Percent of Change 156
6-10 Using Sampling to Predict 158
Study Guide 161
CHAPTER 7
Foldables 165
Vocabulary Builder. 166
7-1 Functions 168
7-2 Representing Linear Functions 170

Contents

7-3 Rate of Change 173
7-4 Constant Rate of Change and Direct Variation 176
7-5 Slope 179
7-6 Slope-Intercept Form 182
7-7 Writing Linear Equations 184
7-8 Prediction Equations 188
Study Guide 191
CHAPTER 8
Foldables. 195
Vocabulary Builder 196
8-1 Solving Equations with Variables on Each Side 197
8-2 Solving Equations with Grouping Symbols 199
8-3 Inequalities 201
8-4 Solving Inequalities by Adding or Subtracting 204
8-5 Solving Inequalities by Multiplying or Dividing 206
8-6 Solving Multi-Step Inequalities 208
Study Guide 210
CHAPTER 9
Foldables. 213
Vocabulary Builder 214
9-1 Squares and Square Roots 216
9-2 The Real Number System 219
9-3 Triangles 221
9-4 The Pythagorean Theorem 223
9-5 The Distance Formula. 226
9-6 Similar Figures and Indirect Measurement 228
Study Guide 231
CHAPTER 10
Foldables. 235
Vocabulary Builder. 236
10-1 Line and Angle Relationships 238
10-2 Congruent Triangles 241
10-3 Transformations in the Coordinate Plane 244
10-4 Quadrilaterals 247
10-5 Polygons 249
10-6 Area: Parallelograms, Triangles, and Trapezoids 251
10-7 Circles: Circumference and Area 254
10-8 Area: Composite Figures 257
Study Guide 259
CHAPTER 11
Foldables 263
Vocabulary Builder 264
11-1 Three-Dimensional Figures 266
11-2 Volume: Prisms and Cylinders 269
11-3 Volume: Pyramids, Cones, and Spheres 272
11-4 Surface Area: Prisms and Cylinders 275
11-5 Surface Area: Pyramids and Cones 278
11-6 Similar Solids 280
Study Guide 283
CHAPTER 12
Foldables 287
Vocabulary Builder 288
12-1 Stem-and-Leaf Plots 290
12-2 Measures of Variation 294
12-3 Box-and-Whisker Plots 298
12-4 Histograms 301
12-5 Selecting an Appropriate Display 305
12-6 Misleading Graphs 307
12-7 Simple Probability 309
12-8 Counting Outcomes 311
12-9 Permutations and Combinations. 314
12-10 Probability of Composite Events 317
Study Guide 320
CHAPTER 13
Foldables 325
Vocabulary Builder 326
13-1 Polynomials. 328
13-2 Adding Polynomials 330
13-3 Subtracting Polynomials 332
13-4 Multiplying a Polynomial by a Monomial 334
13-5 Linear and Nonlinear Functions 336
13-6 Graphing Quadratic and Cubic Functions 339
Study Guide 342

Organizing Your Foldables

OLDABLES

Make this Foldable to help you organize and store your chapter Foldables. Begin with one sheet of 11 " $\times 17^{\prime \prime}$ paper.

STEP 1 Fold

Fold the paper in half lengthwise. Then unfold.

STEP 2. Fold and Glue

Fold the paper in half widthwise and glue all of the edges.

STEP 3 Glue and Label

Glue the left, right, and bottom edges of the Foldable to the inside back cover of your Noteables notebook.

Reading and Taking Notes As you read and study each chapter, record notes in your chapter Foldable. Then store your chapter Foldables inside this Foldable organizer.

Using Your
 Noteables"
 Interactive Study Notebook

This note-taking guide is designed to help you succeed in Pre-Algebra. Each chapter includes:

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc

NOTE-TAKING TIPS

Your notes are a reminder of what you learned in class. Taking good notes can help you succeed in mathematics. The following tips will help you take better classroom notes.

- Before class, ask what your teacher will be discussing in class. Review mentally what you already know about the concept.
- Be an active listener. Focus on what your teacher is saying. Listen for important concepts. Pay attention to words, examples, and/or diagrams your teacher emphasizes.
- Write your notes as clear and concise as possible. The following symbols and abbreviations may be helpful in your note-taking.

Word or Phrase	Symbol or Abbreviation	Word or Phrase	Symbol or Abbreviation
for example	e.g.	not equal	\neq
such as	i.e.	approximately	\approx
with	w/	therefore	\therefore
without	w/o	versus	vs
and	+	angle	\angle

- Use a symbol such as a star (\star) or an asterisk (*) to emphasize important concepts. Place a question mark (?) next to anything that you do not understand.
- Ask questions and participate in class discussion.
- Draw and label pictures or diagrams to help clarify a concept.
- When working out an example, write what you are doing to solve the problem next to each step. Be sure to use your own words.
- Review your notes as soon as possible after class. During this time, organize and summarize new concepts and clarify misunderstandings.

Note-Taking Don'ts

- Don't write every word. Concentrate on the main ideas and concepts.
- Don't use someone else's notes as they may not make sense.
- Don't doodle. It distracts you from listening actively.
- Don't lose focus or you will become lost in your note-taking.

1 The Tools of Algebra

GOLDABLES
Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.

Begin with a sheet of unlined paper.

STEP 1 Fold the short sides so they meet in the middle.

STEP 2 Fold the top to the bottom.

STEP 3 Unfold. Cut along the second fold to make four tabs.

STEP 4 Label each of the tabs as shown.

NOTE-TAKING TIP: When you take notes, be sure to describe steps in detail. Include examples of questions you might ask yourself during problem solving.

1

BUILD YOUR VOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 1.
As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

Vocabulary Term	Found on Page	Definition	Description or Example
algebra			
algebraic expression [al-juh-BRAY-ihk]			
conjecture [cuhn-JEHK-shoor]			
coordinate plane or coordinate system			
counterexample			
deductive reasoning			
domain			
equation			
evaluate			
[in DUHK-tihv]			

Vocabulary Term	Found on Page	Definition	Description or Example
numerical expression			
open sentence			
order of operations			
ordered pair			
properties			
range			
relation			
scatter plot			
solution			
variable			

1-1 Using a Problem-Solving Plan

EXAMPLE Use the Four-Step Problem-Solving Plan

MAIN IDEAS

- Use a four-step plan to solve problems.
- Choose an appropriate method of computation.

Remember IT

Always check to be sure your answer is reasonable. If the answer seems unreasonable, solve the problem again.

1 PIZZA The price of a large cheese pizza at Paul's Pizza is $\mathbf{\$ 9 . 2 5}$. You receive a $\mathbf{\$ 0 . 5 0}$ discount for each additional pizza ordered, up to 10 . So, one pizza costs $\$ 9.25$, two pizzas cost $\$ 8.75$ each, three pizzas cost $\$ 8.25$, and so on. If you need 8 pizzas for a party, what is the cost per pizza?

EXPLORE The problem gives the cost for the first pizza and the discount for each additional pizza ordered. Find the cost per pizza for 8 pizzas.

PLAN Look for a pattern in the costs. Extend the pattern to find the cost per pizza for 8 pizzas.

SOLVE First, find the pattern.

Now, extend the pattern.

CHECK It costs $\$ 9.25$ for one pizza with a discount of $\$ 0.50$ for each additional pizza ordered. For an order of 8 pizzas, the cost per pizza would be

FOLDABLES

Organize IT

Write this Your Turn Exercise under the Check tab of the Foldable. Then under the remaining tabs, record how you will explore, plan, and solve to reach a solution.

Check Your Progress

The cost of renting movies at Mike's Marvelous Movie House is advertised as $\$ 5$ for the first movie and $\$ 3.50$ for each additional movie. Find the cost of renting 6 movies.

BUILD YOUR VOCABULARY (page 2)

A conjecture is an \square guess.

When you make a conjecture based on a pattern of examples or past events, you are using inductive reasoning.

EXAMPLE Use Inductive Reasoning

2) a. Find the next term in $1,4,16,64,256, \ldots$

b. Draw the next figure in the pattern.

The shaded point on the triangle moves in the pattern: right, top, bottom, left, right, etc. If the pattern continues, the shaded point will be at the \square of the next figure.

Check Your Progress

a. Find the next term in $48,43,38,33,28, \ldots$
b. Draw the next figure in the pattern.

EXAMPL 5 Choose the Method of Computation
3
PLANETS The chart shows the distance of selected planets from the Sun. About how much farther is it from Earth to the Sun than from Mercury to the Sun?

Planet	Distance from Sun (millions of miles)
Mercury	36.00
Venus	67.24
Earth	92.90
Mars	141.71

EXPLORE You know the distance from Earth to the \square and the distance from \square to the Sun. You need to find about how much farther it is from

PLAN The question uses the word about, so an exact answer is not needed. We can solve the problem

Homework Assignment
using \square. Estimate each distance
and then \square.

SOLVE Distance from Earth to the Sun:

Distance from Mercury to the Sun: $36.0 \longrightarrow$

million miles further from the Sun than Mercury.

Check Your Progress SCHOOL ENROLLMENT East Elementary School has 792 students enrolled. West Elementary School has 518 students enrolled. About how many more

1-2 Numbers and Expressions

MAIN IDEAS

Use the order of operations to evaluate expressions.

- Translate verbal phrases into numerical expressions.

BUILD YOUR VOGABULARY (pages 2-3)

Numerical expressions contain a combination of numbers and operations such as addition, subtraction, multiplication, and division.

When you evaluate an expression, you find its numerical value.

To avoid confusion when evaluating expressions, mathematicians have agreed upon an order of operations.

EXAMPLE Evaluate Expressions

(1) Find the value of each expression.

a. $24 \div 8 \times 3$

b. $5(4+6)-7 \cdot 7$

c. $3[(18-6)+2(4)]$

$3[(18-6)+2(4)]$	$=3[\square+2(4)]$		Evaluate $(18-6)$.
	$=3(\square+\square)$		Multiply 2 and 4.
	$=3(\square)$		Add.
	$=\square$		Multiply.

Remember It

Grouping symbols include parentheses, brackets, and fraction bars.
d. $\frac{49+31}{19-14}$

$$
\frac{49+31}{19-14}
$$

$$
=(49+31) \square(19-14) \quad \begin{aligned}
& \text { Rewrite as a division } \\
& \text { expression. }
\end{aligned}
$$

Check Your Progress Find the value of each expression.
a. $63 \div 7+2$
b. $3(12-10)+14 \div 2$
c. $4[(3+8)-2(4)]$
d. $\frac{(21-3)}{4(2)+1}$

EXAMPLE Translate Phrases into Expressions

2) Write a numerical expression for each verbal phrase.

a. the quotient of eighteen and six

Phrase
the quotient of eighteen and six

Key Word

Expression \square
b. the sum of nine and five

Phrase the sum of nine and five

Key Word

Expression

Check Your Progress each verbal phrase.
a. the product of three and five
b. the difference of seventeen and six \square

EXAMPLE Use an Expression to Solve a Problem

3 EARNINGS Madison earns an allowance of $\$ 5$ per week. She also earns $\$ 4$ per hour baby-sitting, and usually baby-sits 6 hours each week. Write and evaluate an expression for the total amount of money she earns in one week.

First, write an expression.

Then evaluate the expression.

Madison earns \square in one week.

Check Your Progress

SHOPPING The Good Price Grocery Store advertises a special on 2-liter bottles of soft drinks. The first bottle purchased is $\$ 1.50$ and each bottle after that is $\$ 1.20$. Write and evaluate an expression for the total cost when 8 bottles are purchased.

1-3 Variables and Expressions

Main Ideas

- Evaluate expressions containing variables.
- Translate verbal phrases into algebraic expressions.

BUILD YOUR VOCABULARY (pages 2-3)
A variable is a \square for any \square.
An algebraic expression contains sums and/or products of

EXAMPLE Ev aluate Expressions

1 Evaluate $x-y+6$ if $x=27$ and $y=12$.
$x-y+6=\square$

Add
 and \square

Check Your Progress
Evaluate $12+a-b$ if $a=7$ and $b=11$.

EXAMPLE Ev aluate Expressions

2 Evaluate each expression if $x=3, y=4$, and $z=7$.
a. $6 y-4 x$

b. $\frac{(z-x)}{y}$

$$
\begin{array}{rll}
\frac{(z-x)}{y} & =\square) \div \begin{array}{l}
\text { Rewrite as a division } \\
\text { expression. }
\end{array} \\
& =(\square-\square \div \square & \begin{array}{l}
\text { Replace } z \text { with } 7, \\
x \text { with } 3, \text { and } y \text { with } 4 .
\end{array} \\
& =\square \div 4 & \\
& =\square \text { Subtract. } \\
& & \text { Divide. }
\end{array}
$$

c. $5 z+(x+4 y)-15$

$$
5 z+(x+4 y)-15
$$

$$
=5 \square+(\square+4 \cdot \square)-15 \quad \begin{aligned}
& \text { Replace } z \text { with } 7, x \text { with } \\
& 3, \text { and } y \text { with } 4 .
\end{aligned}
$$

$$
=5 \square+(\square+\square)-15 \quad \text { Multiply } \square \text { and } \square .
$$

$$
=5 \square+\square-15
$$

$$
\text { Add } \square \text { and } \square \text {. }
$$

$$
=\square+\square-15
$$

$$
\text { Multiply } \square \text { and } \square .
$$

$$
=\square-15
$$

$$
\text { Add } \square \text { and } \square \text {. }
$$

$$
=\square
$$

Subtract.

Check Your Progress Evaluate each expression if $m=9, n=4$, and $p=6$.

a. $5 p-3 m$ \square
b. $\frac{m n}{p}$ \square
c. $p+(8 n-3 m)$ \square

ReVIEW IT

List eight words or phrases that suggest addition or subtraction. (Prerequisite Skill)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\square

EXAMPLE Translate Verbal Phrases into Expressions

3 Translate each phrase into an algebraic expression.
a. 35 more than the number of tickets sold

b. the difference of six times a number and ten

Check Your Progress
Translate each phrase into an algebraic expression.
a. eight less than the number of cookies baked

b. the sum of twelve and five times a number

EXAMPLE Use an Expression to Solve a Problem

4) THEATER East Middle School sold tickets for a school play. The price of an adult ticket was $\$ 3$, and the price of a student ticket was $\mathbf{\$ 1}$.
a. Write an expression that represents the total amount of money collected.

$\$ 3$ for an adult ticket and $\$ 1$ for a student ticket

Let $a=$ number of adult tickets and $s=$ number of student tickets.
$\$ 3$ for an adult ticket and $\$ 1$ for a student ticket.

The expression is \square
b. Suppose 70 adult tickets and 85 student tickets were sold. How much money was collected?

$$
\begin{array}{rlrl}
3 a+1 s & =3(\square)+1(\square) & & a=70, s=85 . \\
& =\square & \text { Multiply. } \\
& =\square & \text { Add. }
\end{array}
$$

The amount of money collected was

Check Your Progress RETAIL The Read It Bookstore

 is advertising a sale. The price of hardback books is $\$ 9.50$ and the price of paperback books is $\mathbf{\$ 4 . 5 0}$.a. Write an expression that can be used to find the total amount of money spent at the bookstore.

Homework ASSIGNMENT

Page(s):
Exercises:

1-4
 Properties

Main IdeAs

- Identify and use properties of addition and multiplication.
- Use properties of addition and multiplication to simplify algebraic expressions.

Key Concepts

Commutative Properties of Addition and Multiplication The order in which numbers are added or multiplied does not change the sum or product.

Associative Properties of Addition and Multiplication The way in which numbers are grouped when added or multiplied does not change the sum or product.

Additive Identity When 0 is added to any number, the sum is the number.

Multiplicative Identity When any number is multiplied by 1 , the product is the number.

Multiplicative Property of Zero When any number is multiplied by 0 , the product is 0 .

BUILD YOUR VOGABULARY (page 3)

In algebra, properties are statements that are true for any numbers.

EXAMPLE Identify Properties

(1) Name the property shown by each statement.
a. $\mathbf{3} \cdot \mathbf{1 0} \cdot \mathbf{2}=\mathbf{3} \cdot \mathbf{2} \cdot \mathbf{1 0}$

The order of the numbers changed. This is the
\square
b. $(\mathbf{2}+5)+m=2+(5+m)$

The way in which numbers are grouped changed.

Check Your Progress
Name the property shown by each statement.
a. $(4 \cdot 6) \cdot 2=4 \cdot(6 \cdot 2)$

b. $12+9=9+12$ \square

EXAMPLE Mental Math

2 Find (18 • 20) • 5 mentally.

$$
\begin{array}{rlr}
(18 \cdot 20) \cdot 5 & =18 \cdot(\square) & \begin{array}{l}
\text { Associative Property of } \\
\text { Multiplication }
\end{array} \\
& =18 \cdot \square & \\
& =\square \text { Multiply } \square \text { and } \\
& \begin{array}{l}
\text { mentally. }
\end{array} \\
& \begin{array}{l}
\text { Multiply } 18 \text { and } \square
\end{array}
\end{array}
$$

BUILD YOUR VOGABULARY (page 3)

To simplify algebraic expressions means to write them in a
\square
The process of using facts, properties, or rules to

is called deductive reasoning.

EXAMPLE Simplify Algebraic Expressions
3 Simplify each expression.

Homework AssignMent

Page(s):
Exercises:
a. $5 \cdot(3 \cdot r)$

$5 \cdot(3 \cdot r)$	$=\square \quad$Associative Property of Multiplication
	$=\square \quad$ Substitution Property of Equality

b. $12+(x+18)$
$=12+\square$ Commutative Property of Addition

$$
\begin{gathered}
12+(x+18) \\
\quad=12+
\end{gathered}
$$

$$
\begin{aligned}
& =\square+x \quad \text { Associative Property of Addition } \\
& =\square \quad \text { Substitution Property of Equality }
\end{aligned}
$$

Check Your Progress
Simplify each expression.
a. $7+(12+m)$

b. $(6 \cdot a) \cdot 4$

1-5 Variables and Equations

MAIN IDEAS

- Identify and solve open sentences.
- Translate verbal sentences into equations.

BUILD YOUR VOCABULARY (pages 2-3)
A mathematical \square that contains an

open sentence.

true is called a solution.

EXAMPLE Solve an Equation

(1) Find the solution of $44+p=53$. Is it 11,9 , or 7 ?

Replace p with each value.

Value for \boldsymbol{p}	$44+\boldsymbol{p = 5 3}$	True or False?
11	$44+\square \stackrel{?}{=} 53$	\square
9	$44+\square ? 53$	\square
7	$44+\square \stackrel{?}{=} 53$	\square

Check Your Progress
Find the solution of $24-a=9$. Is it 11,13 , or 15 ?

EXAMPLE

2) TEST EXAMPLE Which value of \boldsymbol{x} makes the equation $4 x-1=11$ true?
A 5
B 4
C 3
D 2

Test each value.
$4 x-1=11$
$4(\square)-1=11$
$19 \square 11$

$4(\square)-1=11$

$$
4 x-1=11
$$

$$
4(\square)-1=11
$$

The answer is letter \square

Check Your Progress
Which value of x makes the equation $10+8 x=-6 ?$
F-2
G 0
H 2
J 4

EXAMPLE

3 MAPLE SYRUP It takes about 45 gallons of tree sap to make about 1 gallon of maple syrup. The table shows the relationship between the number of gallons of tree sap and the number of gallons of maple syrup.

Gallons of Tree Sap, \boldsymbol{t}	Gallons of Maple Syrup, \boldsymbol{m}
45	1
90	2
135	3
180	4

a. Given t, the number of gallons of tree sap used, write an equation to find m, the number of gallons of maple syrup.
(continued on the next page)

Homework Assignment

Page(s):
Exercises:

Number of gallons of tree sap is 45 times the number of gallons of maple syrup.
\square
\square
\square

The equation is \square
b. How many gallons of tree sap are needed to make 5 gallons?
$t=45 m$
$t=45($
$t=\square$

Check Your Progress

AUTO SERVICE It takes about 4 quarts of motor oil to fill the oil reservoir in an automobile. The table shows the relationship between the number of automobiles and the number of quarts of oil.

Number of Automobiles, \boldsymbol{a}	Quarts of Oil, \boldsymbol{q}
1	4
2	8
3	12
4	6

a. Given a, the number of automobiles, write an equation to find q, the number of quarts of oil needed. \square
b. How many quarts of oil are needed if the service shop needs to change the oil in 18 automobiles during the day? \square

1-6 Ordered Pairs and Relations

MAIN IDEAS

- Use ordered pairs to locate points.
- Use tables and graphs to represent relations.

BUILD YOUR VOCABULARY (pages 2-3)

The coordinate system is formed by the intersection of two number lines that meet at right angles at their zero points.

The \square is also called the coordinate plane.

An ordered pair of numbers is used to locate any
\square on a coordinate plane.

the x-coordinate.

EXAMPLE Graph Ordered Pairs

1 Graph each ordered pair on a coordinate system.
a. $(3,4)$

Step 1 Start at the \square
Step 2 Since the x-coordinate is 3 ,

Step 3 Since the y-coordinate is 4,

b. (0, 2)

Step 1 Start at the origin.
Step 2 Since the

is \square, you will not need to
 move to the right.

Step 3 Since the \square is 2 , move \square units up. Draw a dot.

WRITE IT

Where is the graph of $(5,0)$ located?

Check Your Progress coordinate system.
a. $(2,5)$
b. $(4,0)$

EXAMPLE Identify Ordered Pairs

(2) Write the ordered pair that names each point.

a. Point G

Start at the origin. Move right on the x-axis to find the x-coordinate of point G, which is \square. Move up the y-axis to find the y-coordinate, which is \square

The ordered pair for point G is \square

b. Point \boldsymbol{H}

Start at the origin. Move right on the x-axis to find the x-coordinate of point H, which is \square. Since the y-coordinate is \square , you will not need to move up.

The ordered pair for point H is \square

Check Your Progress

Write the ordered pair that names each point.
a. A

b. B

BUILD YOUR VOGABULARY (pages 2-3)

A set of \square such as $\{(1,2),(2,4),(3,0)$,
$(4,5)\}$ is a relation.
The domain of a relation is the set of \square coordinates.

The range of a relation is the set of \square coordinates.

EXAMPLE Relations as Tables and Graphs

3 Express the relation $\{(1,4),(2,2),(3,0),(0,2)\}$ as a table

Remember It

When stating the domain and range of a relation, each value is listed only once, even if it occurs more.
and as a graph. Then determine the domain and range.

\boldsymbol{x}	\boldsymbol{y}
\square	4
2	
3	
\square	2

The domain is
 The range is

Check Your Progress Express the relation $\{(4,1),(3,2)$, $(0,1),(2,3)\}$ as a table and as a graph. Then determine the domain and range.

1-6

EXAMPLE

4 EARNINGS Austin earns $\$ 5$ an hour doing yard work.
Suppose x represents the number of hours Austin works.
a. Make a table of ordered pairs in which the x-coordinate represents the hours worked and the y-coordinate represents the amount of money Austin earns for $1,2,3,4$, and 5 hours of work.
b. Graph the ordered pairs.

c. Describe the graph.
\square

Check Your Progress

BAKING Sue is following a recipe for cookies which requires 2 cups of sugar for each batch of cookies made. Suppose x represents the number of batches made.
a. Make a table of ordered pairs in which the x-coordinate represents the number of batches made and y represents the number of cups of sugar needed for $1,2,3,4$, and 5 batches made.
b. Graph the ordered pairs.

1-7 Scatter Plots

MAIN IDEAS
- Construct scatter plots.
- Analyze trends in
scatter plots.

BUILD YoUR YoaABULARY (pages 2-3)
A scatter plot is a \square that shows the
\square between two sets of data. The two
sets of data are graphed as \square on a
coordinate system.

EXAMPLE Construct a Scatter Plot

(1) BREAD The table shows the average cost of a loaf of bread from 1920-2000. Make a scatter plot of the data.

Year	1920	1930	1940	$\mathbf{1 9 5 0}$	$\mathbf{1 9 6 0}$	$\mathbf{1 9 7 0}$	$\mathbf{1 9 8 0}$	$\mathbf{1 9 9 0}$	$\mathbf{2 0 0 0}$
Cents	12	9	8	14	20	24	52	72	99

Let the horizontal axis, or
\square
Let the vertical axis, or

Then graph ordered pairs \square

Check Your Progress

BIRTH STATISTICS The table shows the number of babies born at Central Hospital during the past eight months. Make a scatter plot of the data.

Month	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.
Babies	12	21	17	9	15	26	18	11

1-7

Remember It

Data show a positive relationship if they appear to go uphill from left to right, and show a negative relationship if they appear to go downhill from left to right.

EXAMPLE Interpret Scatter Plots

2 Determine whether a scatter plot of the data for the following might show a positive, negative, or no relationship. Explain your answer.
height of basketball player and number of rebounds

As the height \square the
number of rebounds

\square relationship

Check Your Progress
Determine whether a scatter plot of the data for the following might show a positive, negative, or no relationship. Explain your answer.
outside temperature and heating bill

EXAMPLE Use Scatter Plots to Make Predictions

a. TEMPERATURE The table shows temperatures in degrees Celsius and the corresponding temperatures in degrees Fahrenheit. Make a scatter plot of the data.

${ }^{\circ} \mathbf{F}$	32	41	50	59	68	77	86
${ }^{\circ} \mathrm{C}$	0	5	10	15	20	25	30

Let the horizontal axis
represent degrees \square
Let the vertical axis represent degrees

Graph the data.

b. Does the scatter plot show a relationship between ${ }^{\circ} \mathrm{C}$ and ${ }^{\circ}$ F? Explain.

Yes, a \square relationship. As \square increase,
so do \square
c. Predict the Fahrenheit temperature for $35^{\circ} \mathrm{C}$.

By looking at the pattern on the graph, we can predict that the Fahrenheit temperature corresponding to $35^{\circ} \mathrm{C}$ would be about

Check Your Progress studying for a test and the corresponding test score.

Hours	3	2	5	1	4	2	6
Score	72	75	90	68	85	70	92

a. Make a scatter plot of the data.

1-7

b. Does the scatter plot show a relationship between hours studied and a student's test score? Explain.
\square
c. Predict the test score for a student who spends 7 hours studying.

STUDY GUIDE

FOLDABlES

Use your Chapter 1 Foldable to help you study for your chapter test.

Vocabulary PUZZLEMAKER

To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 1, go to:
glencoe.com

BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (pages 2-3) to help you solve the puzzle.

1-1
Using a Problem-Solving Plan
Underline the correct term or phrase to fill the blank in each sentence.

1. A \qquad is an educated guess. (reason, strategy, conjecture)
2. When you make a conjecture based on a pattern of examples or past events, you are using \qquad . (inductive reasoning, reasonableness, problem-solving)
3. What is the next term: $3,6,12,24 \ldots$ Explain.
\square
4. Complete this sentence. In the \square step of the four-step problem-solving plan, you check the reasonableness of your answer.

1-2

Numbers and Expressions
State whether each sentence is true or false. If false, replace the underlined word to make a true sentence.
5. Numerical expressions contain a combination of numbers and operations. \square
6. When you evaluate an expression, you find its numerical value.
\square

1-3

Variables and Expressions
State whether each sentence is true or false. If false, replace the underlined word to make a true sentence.
7. A variable is a placeholder for any operator. \square
8. Any letter can be used as a variable. \square
9. Name three things that make an algebraic expression.
\square
1-4
Properties
Match each statement with the property it shows.
10. $8 \cdot 2=2 \cdot 8$

11. $(3+2)+7=3+(2+7)$ \square
12. $3 x+0=3 x$ \square
13. $6(s t)=6 s(t)$ \square
14. $10+2=2+10$ \square
a. Additive Identity Property
b. Associative Property of Addition
c. Commutative Property of Addition
d. Associative Property of Multiplication
e. Commutative Property of Multiplication

1-5

Variables and Equations

Underline the correct term or phrase to fill the blank in each sentence.

15. A mathematical sentence that contains an equals sign ($=$) is called an \qquad . (equation, expression, operation)
16. A value for the variable that makes an equation \qquad is called a solution. (reasonable, true, false)
17. Consider $x-4=6$. Find a value for x that makes the sentence true and another value that makes it false.
\square

1-6

Ordered Pairs and Relations

For Exercises 18-20, use the relation $\{(2,1),(4,7),(3,2),(5,4)\}$.
18. Express the relation as a table.

19. Express the relation as a graph.

20. Determine the domain and range of the relation.
\square

1-7

Scatter Plots

Underline the correct term or phrase to complete each sentence about the relationship shown by a scatter plot.
21. For a positive relationship, as x increases, y (increases, decreases, stays constant).
22. For a negative relationship, as x increases, y \qquad (increases, decreases, stays constant).

The scatter plot compares the weights and heights of the players on a high school football team.
23. What type of relationship exists, if any?

24. Based on the scatter plot, predict the weight of

Heights of Football Players
 a 5 '5" player who decided to join the team.

ARE YOU READY FOR THE CHAPTER TEST?

Checklist

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 1.

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 1 Practice Test on page 73 of your textbook as a final check.

I used my Foldables or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 1 Study Guide and Review on pages 69-72 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may want to take the Chapter 1 Practice Test on page 73.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 1 Foldables.
- Then complete the Chapter 1 Study Guide and Review on pages 69-72 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 1 Practice Test on page 73.

Integers

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.

Begin with a piece of grid paper.

STEP 1 Fold in half.

STEP 2. Fold the top to the bottom twice.

en and Cut along the second fold to make four tabs.

STEP 3 Fold lengthwise. Draw a number line on the outside. Label each tab
 as shown.

NOTE-TAKING TIP: When searching for the main idea of a lesson, ask yourself, "What is this paragraph or lesson telling me?"

BUILD YOUR VOCABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 2.
As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

Vocabulary Term	Found on Page	Definition	Description or Example
absolute value			
additive inverse			
average			
coordinate			
inequality			

	Vocabulary Term	Found on Page	Definition	Description or Dxample
integer				

2-1 Integers and Absolute Value

MAIN IDEAS

- Compare and order integers.
- Find the absolute value of an expression.

Write It

List 5 words or phrases that indicate positive or negative numbers.
\qquad
\qquad
\qquad
\qquad

BUILD YOUR VOGABULARY (pages 32-33)

A negative number is a number less than zero.

Negative numbers like -8 , positive numbers like +6 , and \square are members of the set of integers. The \square that corresponds to a \square is called the coordinate of that point.

Any mathematical sentence containing \square or \square is called an inequality.

EXAMPLE Write Integers for Real-World Situations

1 Write an integer for each situation.

a. 32 feet underground

The integer is \square
b. 8 weeks after birth

The integer is \square

c. a loss of 6 pounds

The integer is \square

Check Your Progress

Write an integer for each situation.
a. a loss of 12 yards

b. 15 feet above sea level
c. the temperature decreased 4 degrees \square

EXAMPLE Compare Two Integers
2 Use the integers graphed on the number line below.

a. Write two inequalities involving 7 and -4.

Since 7 is to the \square of $-4,7 \square-4$.
Since -4 is to the \square of $7,-4 \square 7$.
b. Replace the with < or $>$ in -2 - 3 to make a true sentence.

So, $-2 \square 3$.

Check Your Progress

Use the integers graphed on the number line below.

a. Write two inequalities involving -4 and 1 .
\square
b. Replace the with $<,>$, or $=$ in $6-7$ to make a true sentence.

EXAMPLE Order Integers

3 WEATHER The high temperatures for the first seven days of January were $-8^{\circ}, 10^{\circ}, 2^{\circ},-3^{\circ},-11^{\circ}, 0^{\circ}$, and 1°. Order the temperatures from least to greatest.
Graph each integer on a number line.

The order from least to greatest is

Key Concept

Absolute Value The absolute value of a number is the distance the number is from zero on the number line. The absolute value of a number is always greater than or equal to zero.

Check Your Progress
FOOTBALL The yards gained during the first six plays of the football game were $5,-3,12$, $-9,6$ and -1 . Order the yards from least to greatest.
\square

BUILD YOUR YOGABULARY (page 32)

Two numbers have the same absolute value if they are on
\square sides of zero, and are the same \square
from zero.

EXAMPLE Expressions with Absolute Value

4 Evaluate each expression.

a. $|5|$

The graph of 5 is 5 units from 0 .

$$
|5|=\square
$$

b. $|-8|+|-1|$

$$
\begin{aligned}
|-8|+|-1| & =\square \\
& =\square \quad|-8|=\square,|-1|=\square \\
& \quad \text { Simplify. }
\end{aligned}
$$

Check Your Progress

Evaluate each expression.
a. $|-9|$
b. $|-3|+|2| \square$

EXAMPLE Algebraic Expressions with Absolute Value

ALGEBRA Evaluate the expression $|x|-8$ if $x=-2$.
 Simplify.

Check Your Progress
 ALGEBRA Evaluate the expression

 $5-|x|$ if $x=9$.
2-2 Adding Integers

EXAMPLE Add Integers on a Number Line

Main Ideas

- Add two integers.
- Add more than two integers.

(1) Find $3+4$.

Start at \square
Move \square units to the \square.
From there, move \square more units to the \square.
$3+4=\square$

Check Your Progress
Find $-2+-5$.
\square

EXAMPLE Add Integers with the Same Sign

2 Find $-5+(-4)$.

so the sum is \square

Check Your Progress Find $-3+-8$.

EXAMPLE Add Integers on a Number Line

3 Find 7 + (-11).

Start at \square
Move \square units to the \square
From there, move \square units to the \square
$7+(-11)=\square$

Check Your Progress
Find each sum.
a. $-5+8$
b. $3+(-6)$

EXAMPLE Add Integers with Different Signs

a. Find $-9+10$.

$$
\begin{array}{ll}
-9+10=\square & \text { To find }-9+10 \text {, subtract } \square \\
& \text { from } \square . \text { The sum is positive } \\
\text { because }|10|>|-9| .
\end{array}
$$

b. Find $8+(-15)$.

$$
8+(-15)=-7 \quad \text { To find } 8+(-15), \text { subtract }
$$

 from

The sum is negative because $|-15|>|8|$.

Check Your Progress
Find each sum.
a. $-6+11$
b. $4+(-7)$

FOLDABLES

ORGANIZE IT

Under the "+" tab, write a sum of integers with different signs, and explain how to add them on a number line.

BUILD YOUR VOGABULARY (pages 32-33)

Two numbers with same absolute value but different
\square are called opposites.

An integer and its \square are called additive inverses.

EXAMPLE

(5) WEATHER On February 1, the temperature at dawn was $-22^{\circ} F$. By noon, it has risen 19 degrees. What was the temperature at noon?

The temperature at noon was \square

Check Your Progress

HIKING Dave started his hike at
32 feet below sea level. During the hike he gained an altitude of 29 feet. At what altitude did Dave complete his hike?

Key Concept

Additive Inverse Property The sum of any number and its additive inverse is zero.

EXAMPLE Add Three or More Integers

a. Find $-8+(-4)+8$.

$$
-8+(-4)+8=-8+\square
$$

Commutative Property

$$
\begin{aligned}
& =\square+-4 \\
& =\square
\end{aligned}
$$

Additive Inverse Property

Identity Property of Addition
b. Find $6+(-3)+(-9)+2$.

$$
\begin{aligned}
6 & +(-3)+(-9)+2 \\
& =6+\square \\
& =[6+2]+\square \\
& =8+\square \text { or } \square
\end{aligned}
$$

Commutative Property

Associative Property

Simplify.

Check Your Progress

Find each sum.

b. $-2+11+(-4)+5$

2-3 Subtracting Integers

EXAMPLE Subtract a Positive Integer

Main Ideas

- Subtract integers.
- Evaluate expressions containing variables.

KEY Concept

Subtracting Integers To subtract an integer, add its additive inverse.

1) Find each difference.

a. $9-14$

To subtract 14, add \square.
Simplify.
b. $\mathbf{- 1 0 - 8}$
$-10-8=-10+\square$
$=\square$

To subtract 8, add \square.
Simplify.

Check Your Progress Find each difference.

a. 6-8
b. $-9-13$

EXAMPLE Subtract a Negative Integer

2 Find each difference.

a. 15 - (-4)

To subtract -4 , add \square

Simplify.
b. $-11-(-7)$
$-11-(-7)=-11+\square$

To subtract -7 , add \square Simplify.

Check Your Progress

Find each difference.
a. $8-(-2)$

b. $-12-(-5)$
\square

EXAMPLE Evaluate Algebraic Expressions
3 a. Evaluate $m-(-2)$ if $m=4$.

$$
\begin{array}{rlr}
m-(-2) & =\square-(-2) & \text { Replace } m \text { with } \square . \\
& =\square & \text { To subtract }-2, \text { add } \square . \\
& =\square & \text { Add } \square \text { and } \square .
\end{array}
$$

b. Evaluate $x-y$ if $x=-14$ and $y=-2$.
$x-y=\square-(\square)$
 and y with

To subtract -2 , add \square

$$
=\square
$$

Check Your Progress

a. Evaluate $p-(-6)$ if $p=-4$.

b. Evaluate $m-n$ if $m=-9$ and $n=-3$.

2-4 Multiplying Integers

EXAMPLE Multiply Integers with Different Signs

Main Ideas

Multiply integers.

- Simplify algebraic expressions.

KEY Concept

Multiplying Integers The product of two integers with different signs is negative.

The product of two integers with the same sign is positive.

1 Find 8(-9).
$8(-9)=\square$

The factors have different signs.
The product is \square

EXAMPLE Multiply Integers with the Same Sign
2 Find $-4(-16)$.
$-4(-16)=\square$

The two factors have the same sign.
The product is \square

Check Your Progress
Find each product.
a. $-4(12)$
\square
b. $-3(-8)$

EXAMPLE

3 TEST EXAMPLE A student missed only four problems on a test, each worth 20 points. What integer represents the total number of points earned for those questions?
A - 5
B - 20
C 24
D -80
$4(-20)=\square$ The product is \square
The answer is

Check Your Progress

TEST EXAMPLE A football team
loses 3 yards on each of 3 consecutive plays. What integer represents the total loss?
A -9
C 6
B -6
D 9
\square

Write IT

What is the name of the property that allows you to regroup the numbers and the variables being multiplied?
\qquad
\underline{L}
\qquad
\qquad
\qquad

Homework Assignment

Page(s):

Exercises:

EXAMPLE Simplify and Evaluate Algebraic Expressions
a. Simplify $8 a(-5 b)$.

$$
\begin{array}{rlrl}
8 a(-5 b) & =(8)(a)(-5)(b) & & \\
& =(8 \cdot-5)(a b) & & \begin{array}{l}
\text { Commutative Property of } \\
\text { Multiplication }
\end{array} \\
& =\square & & 8 \cdot-5=\square \\
& a \cdot b=\square
\end{array}
$$

b. Evaluate $-3 x y$ if $x=-4$ and $y=9$.

$$
\begin{aligned}
-3 x y & =-3 \square \\
& =\square \begin{array}{l}
\text { (9) } \\
\\
\end{array} \begin{array}{l}
\text { Associative Property of } \\
\text { Multiplication }
\end{array} \\
& =\square \text { The product of } \square \text { and } y=9 . \\
& =\square \begin{array}{l}
\text { and } \square \\
\text { is positive. }
\end{array} \\
& \text { The product of } \square
\end{aligned}
$$

Check Your Progress

a. Simplify $5 m(-7 n)$.

b. Evaluate $-9 a b$ if $a=-3$ and $b=-6$.

2-5 Dividing Integers

EXAMPLE Divide Integers with the Same Sign

Main Ideas

- Divide integers.
- Find the average of a set of data.

Key Concepts

Dividing Integers with the Same Sign The quotient of two integers with the same sign is positive.

Dividing Integers with Different Signs The quotient of two integers with different signs is negative.

1) a. Find $-28 \div(-4)$.
$-28 \div(-4)=\square$

b. Find $\frac{96}{8}$.

$$
\begin{aligned}
\frac{96}{8}=96 \div 8 & \\
& \begin{array}{l}
\text { The dividend and the divisor have } \\
\text { the same sign. }
\end{array} \\
& =\square
\end{aligned}
$$

The dividend and the divisor have the same sign. The quotient is

Check Your Progress

Find each quotient.

a. $35 \div 7$
b. $\frac{-64}{-4}$
\square

EXAMPLE Divide Integers with Different Signs

a. Find $54 \div(-3)$.
$54 \div(-3)=\square$
The signs are different. The quotient is \square
b. Find $\frac{-42}{6}$.

$$
\frac{-42}{6}=-42 \div 6
$$

The signs are different. The quotient is

Simplify.

Check Your Progress

Find each quotient.
a. $72 \div(-8)$
b. $\frac{-36}{4}$

EXAMPLE Evaluate Algebraic Expressions

3 Evaluate $6 x \div y$ if $x=-4$ and $y=-8$.

Check Your Progress
Evaluate $-4 m \div n$ if $m=-9$ and $n=-3$.

BUILD YOUR YOGABULARY (pages 32-33)

FOLDABLES

ORGANIZE IT

Describe how to find the average of a set of numbers in your own words under the " \div " tab.

Homework Assignment

2-6 The Coordinate System

EXAMPLE Write Ordered Pairs

MAIN IDEAS

- Graph points on a coordinate plane.
- Graph algebraic relationships.

Remember It

The coordinates in an ordered pair (x, y) are listed in alphabetical order.

1 Write the ordered pair that names each point.
a. P

The x-coordinate is \square

The y-coordinate is \square

The ordered pair is

b. \boldsymbol{Q}

The x-coordinate is \square

The y-coordinate is \square

The ordered pair is \square

Check Your Progress
Write the ordered pair that names each point.
a. M

b. N

c. $P \square$

BUILD YOUR VOCABULARY (pages 32-33)

The x-axis and the y-axis separate the coordinate plane into \square regions, called quadrants.

Review IT

Give a definition for the origin of a coordinate system. (Lesson 1-5)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

EXAMPLE Graph Points and Name Quadrant
2 Graph and label each point on a coordinate plane. Then name the quadrant in which each point lies.
a. $S(-1,-5)$

Start at the origin.

Then move \square units

and draw a dot. Quadrant \square

Then move \square units \square
and draw a dot. Quadrant \square
c. $\boldsymbol{T}(0,-3)$

Start at the origin.
Since the x-coordinate is 0 ,
the point lies on the \square.
Move 3 units down, and

draw a dot. Point T is not in any quadrant.

Check Your Progress

Graph and label each point on a coordinate plane. Name the quadrant in which each point lies.
a. $A(3,-4)$
b. $B(-2,1)$
c. $C(-4,0)$

EXAMPLE Graph an Algebraic Relationship

3 The difference between two integers is 4 . If x represents the first integer and y is subtracted from it, make a table of possible values for x or y. Then graph the ordered pairs and describe the graph.

First, make a table.
Choose values for x and y that have a difference of 4 .

$x-y=4$		
x	y	(x, y)
2	\square	\square
1	\square	\square
0	\square	\square
-1	\square	
-2	\square	

Then graph the ordered pairs on a coordinate plane.

The points on the graph are in a line that slants upward to the right. The line crosses the y-axis at -4 .

Check Your Progress
The sum of two integers is 3 . If x is the first integer and y represents the second number, make a table of possible values for x and y. Graph the ordered pairs and describe the graph.

Homework ASSIGNMENT

Page(s):
Exercises:

STUDY GUIDE

FOLDABLES

Use your Chapter 2 Foldable to help you study for your chapter test.

Vocabulary PUZZLEMAKER

To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 2, go to:
glencoe.com

BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (pages 32-33) to help you solve the puzzle.

2-1

Integers and Absolute Value

1. Order the integers $\{21,-1,9,7,0-4,-11\}$ from least to greatest.
\square
Evaluate each expression if $r=3, s=-2$, and $t=-7$.
2. $|t|-6$ \square
3. $12-|s-5|$ \square
4. $|s+t|-r$ \square
5. $|r t-1| \div s$ \square

2-2

Adding Integers

Find each sum.

6. $-52+9 \square$
7. $7+(-31)+4$ \square
8. $(-8)+22+(-15)+5$ \square 9. $6+(-10)+(-12)+4$ \square

2-3

Subtracting Integers

Find each difference.
\square
10. $-17-26$
11. $35-(-14)$ \square
12. $42-19$ \square 13. $11-(-18)$ \square

Evaluate each expression if $p=-6, q=9$, and $r=-2$.
14. $q-16$
15. $r-4$ \square
16. $p-q-r$ \square
17. $q-r-p$ \square

2-4

Multiplying Integers
Find each product.
18. $-4(-16)$ \square
19. $3(-4)(-11)(2)$ \square

Simplify each expression.
20. $5 b \cdot(-7 c)$ \square
21. $2 p(-7 q)(-3)$ \square

2-5

Dividing Integers

Find each quotient.
22. $72 \div-9$ \square
23. $-28 \div 4$ \square
24. $\frac{-49}{-7}$ \square
25. $\frac{-144}{18}$ \square
26. Find the average (mean) of $9,-6,11,7,2$, and -5 . \square

2-6

The Coordinate System
Name the ordered pair for each point graphed on the coordinate plane.
27. A

28. B

29. C

ARE YOU READY FOR THE CHAPTER TEST?

Checklist

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 2.

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 2 Practice Test on page 119 of your textbook as a final check.

I used my Foldables or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 2 Study Guide and Review on pages 116-118 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 2 Practice Test on page 119.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 2 Foldable.
- Then complete the Chapter 2 Study Guide and Review on pages 116-118 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 2 Practice Test on page 119.

Equations

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.

BUILD YOUR VOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 3.
As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

Vocabulary Term	Found on Page	Definition	Description or Example
area			
coefficient [koh-uh-FIHSH-ehnt]			
constant			
equivalent equations			
equivalent expressions			

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Vocabulary Term	Found on Page	Definition	Description or Example
inverse operations			
like terms			
perimeter			
sequence			
simplest form			

3-1 The Distributive Property

MAIN IDEAS

- Use the Distributive Property to write equivalent numerical expressions.
- Use the Distributive Property to write equivalent algebraic expressions.

Key Concept

Distributive Property
To multiply a number by a sum, multiply each number inside the parentheses by the number outside the parentheses.

FOLDABLES Include the Distributive Property in your Foldable.

BUILD YOUR VOCABULARY (pages 54-55)

The $\square 3(4+2)$ and $3 \cdot 4+3 \cdot 2$ are equivalent expressions because they have the same
\square 18.

EXAMPLE Use the Distributive Property

1 Use the Distributive Property to write each expression as an equivalent expression. Then evaluate the expression.
a. $4(5+8)$

b. $(6+9) 2$

$$
\begin{array}{rlr}
(\sqrt[4]{(6) 9) 2} & =\square+\square \\
& =\square+\square & \text { Multiply. } \\
& =\square & \text { Add. }
\end{array}
$$

Check Your Progress Use the Distributive Property to write each expression as an equivalent expression. Then evaluate the expression.
a. $3(9+2)$

b. $(7+3) 5$

EXAMPLE

2 RECREATION A Canoe Camping class costs $\$ 80$ per person, including the cost for canoe rental. The cost of food is an additional $\$ 39$ per person.
a. Write two equivalent expressions to find the total cost of one trip for a family of four.
METHOD 1 Find the cost for person, then multiply by

METHOD 2 Find the cost of \square classes and food for \square people.

b. Find the total cost.

$$
\begin{aligned}
4(\$ 80+\$ 39) & =\square+\square \\
& =\square+\square \\
& =\square
\end{aligned}
$$

Check Your Progress MOVIES The cost of a movie ticket is $\$ 7$ and the cost of a box of popcorn is $\$ 2$.
a. Write two equivalent expressions to find the total cost for a family of five to go to the movies if each member of the family gets a box of popcorn.

b. Find the total cost.

EXAMPLE Simplify Algebraic Expressions
3 Use the Distributive Property to write $2(x+4)$ as an equivalent algebraic expression.

Check Your Progress Use the Distributive Property to write $4(m+7)$ as an equivalent algebraic expression.

EXAMPLE Simplify Expressions with Subtraction

4. Use the Distributive Property to write each expression as an equivalent algebraic expression.
a. $4(x-2)$
$4(x-2)$

Homework

 AssignmentPage(s):
Exercises:

Simplify.
$=\square$

Definition of subtraction
b. $-2(n-3)$

$$
-2(n-3)
$$

Check Your Progress
Use the Distributive Property to write each expression as an equivalent algebraic expression.
a. 2($a-9)$
\square
b. $-7(b-3)$

3-2 Simplifying Algebraic Expressions

Main Ideas

- Use the Distributive Property to simplify algebraic expressions.

BUILD YOUR VOCABULARY (pages 54-55)

When plus or minus signs separate an algebraic expression into parts, each part is a term.

The \square part of a term that contains a variable is called the coefficient of the \square
Like terms are terms that contain the same \square such as $2 n$ and $5 n$ or $6 x y$ and $4 x y$.

A term without a variable is called a constant.

Remember It

If an expression does not have any plus or minus signs, then the entire expression is a single term.

EXAMPLE Identify Parts of Expressions

(1) Identify the terms, like terms, coefficients, and constants in the expression $\mathbf{4 x - x}+\mathbf{2 y - 3}$.
Rewrite $4 x-x+2 y-3$ as $4 x+(-x)+2 y+(-3)$.
The terms are
 and \square
The like terms are \square and

The coefficients are
 and \square
The constant is

Check Your Progress Identify the terms, like terms, coefficients, and constants in the expression $5 x+3 y-2 y+6$.

BUILD YOUR VOCABULARY (pages 54-55)
An algebraic expression is in simplest form if it has no
\square and no parentheses.

When you use the Distributive Property to \square like terms, you are simplifying the expression.

EXAMPLE Simplify Algebraic Expressions

Foldables

ORGANIZE IT

Under the Simplifying Expressions tab, explain how you know when an expression can be simplified. Write an expression that can be simplified and one that cannot.

Write It

What does it mean for two expressions to be equivalent?
\qquad
\square
\qquad
\qquad

2 Simplify each expression.

a. $8 n+4+4 n$

$$
8 n+4+4 n
$$

$$
=8 n+\square \quad \text { Commutative Property }
$$

$$
=\square \quad \text { Distributive Property }
$$

$$
=\square \quad \text { Simplify. }
$$

b. $6 x+4-5 x-7$

$$
\begin{array}{rlr}
6 x & +4-5 x-7 \\
& =6 x+4+\square+\square & \\
& =6 x+\square+4+\square & \text { Definition of subtraction } \\
& =\square+4+(-7) & \\
& \text { Distributive Property } \\
& =\square & \text { Simplify. }
\end{array}
$$

Check Your Progress Simplify each expression.
a. $5 x+3+7 x$
b. $3 m+9-m-6$

c. $7 b+3(c-2 b)$ \square

3 WORK Suppose you and a friend worked in the school store last week. You worked 4 hours more than your friend. Write an expression in simplest form that represents the total number of hours you both worked.

Your friend worked some hours. You worked 4 hours more than your friend.

Let $h=$ number of hours your friend worked.
Let $h+4=$ number of hours you worked.
Expression To find the total, add the expressions.

The expression \square represents the total number of hours you both worked.

Check Your Progress You and a friend went to the library. Your friend borrowed three more books than you did. Write an expression in simplest form that represents the total number of books you both borrowed.

3-3 Solving Equations by Adding or Subtracting

Main Ideas

- Solve equations by using the Subtraction Property of Equality.
- Solve equations by using the Addition Property of Equality.

BUILD YOUR VOCABULARY (pages 54-55)

Inverse operations "undo" each other.

The equations $\mathrm{x}+4=7$ and $x=3$ are equivalent equations because they have the same \square 3.

EXAMPLE Solve Equations by Subtraction

Solve $x+4=-3$.

$$
x+4=-3
$$

$x+4-\square=-3-\square \quad$ Subtract \square from each side.

Identity Property
To check your solution, replace x with \square
CHECK

$$
\square+4=-3
$$

$$
\square+4=-3
$$

$$
\square=-3
$$

The solution is number line.
\square To graph it, draw a dot at \square on a

Check Your Progress
Solve $y+7=3$. Check your solution and graph it on a number line.

Key Concept

Addition Property of Equality If you add the same number to each side of an equation, the two sides remain equal.

FOLDABLES Under the Equations: +, - tab, write one equation that can be solved by subtracting and one that can be solved by adding.

EXAMPLE Solve Equations by Adding

2) Solve $y-3=-14$

$$
\begin{aligned}
y-3 & =-14 & & \text { Rewrite } y-3 \text { as } \square \\
y+\square & =-14 & & \text { Add } \square \text { to each side. } \\
y+(-3)+\square & =-14+\square & & \text { Additive Inverse Property } \\
y+\square & =-14+\square & & \text { Identity Property }
\end{aligned}
$$

Check Your Progress Solve $x-2=-9$.
\square

EXAMPLE Use an Equation to Solve a Problem

3 ENTERTAINMENT Movie A earned $\$ 225$ million at the box office. That is $\mathbf{\$ 3 8}$ million less than Movie B earned. Write and solve an equation to find the amount Movie B earned.

Movie A earned $\$ 38$ million less than Movie B earned.

Let $B=$ amount Movie B earned.
Solve y $3=14$

Movie A earned $\$ 38$ million less than Movie B.

(continued on the next page)

Homework Assignment

Page(s):
Exercises:

3-4 Solve Equations by Multiplying or Dividing

EXAMPLE Solve Equations by Dividing

Main Ideas

- Solve equations by using the Division Property of Equality.
- Solve equations by using the Multiplication Property of Equality.

KEy CONCEPTS

Division Property of Equality When you divide each side of an equation by the same nonzero number, the two sides remain equal.

Multiplication Property of Equality When you multiply each side of an equation by the same number, the two sides remain equal.

1) Solve $7 x=-56$. Check your solution and graph it on a number line.

Check Your Progress Solve $4 x=-12$. Graph the solution on a number line.

EXAMPLE Use an Equation to Solve a Problem

(2) HOBBIES Esteban spent $\$ 112$ on boxes of baseball cards If he paid $\$ 14$ per box, how many boxes of cards did Esteban buy?

Foldables

Organize IT

Under the Equations: \times, \div tab, write one equation that can be solved by multiplying and one that can be solved by dividing.

Homework

 AssignmentPage(s):
Exercises:

Solve the equation.

Write the equation.

Divide each side by \square

Check Your Progress
TOY CARS Drew spent $\$ 18$ on toy cars. If the cars cost $\$ 2$ each, how many cars did Drew buy?

EXAMPLE Solve Equations by Multiplying

3 Solve $\frac{y}{-5}=-12$. Check your solution and graph it on a number line.

$$
\begin{array}{rlrl}
\frac{y}{-5} & =-12 & & \text { Write the equation. } \\
\frac{y}{-5} \square & =-12 \square & \begin{array}{l}
\text { Multiply each side by } \\
\text { to undo the division }
\end{array}
\end{array}
$$

Check Your Progress
Solve $\frac{m}{4}=-9$. Check your solution and graph it on a number line.

3-5 Solving Two-Step Equations

FOLDABLES

ORGANIZE IT

Under Two-Step Equations tab, write a two-step equation. Then write the order of the steps you would use to solve that equation.

b. $3=\frac{n}{3}+8$

$$
\begin{aligned}
3-\square & =\frac{n}{3}+8-\square & & \text { Subtract } \square \text { from each side. } \\
-5 & =\frac{n}{3} & & \text { Simplify. } \\
\square(-5) & =\left(\frac{n}{3}\right) \square & & \text { Multiply each side by } \square . \\
\square & =n & & \text { Simplify. }
\end{aligned}
$$

Check Your Progress Solve each equation.

a. $4 x+3=19$
b. $\frac{w}{6}-8=-4$

EXAMPLE

2 MEASUREMENT The formula $F=1.8 C+32$ is used to convert Celsius degrees to Fahrenheit degrees. Solve the equation to find the equivalent Celsius temperature for $59^{\circ} \mathrm{F}$.

\square	$=1.8 C+32$		Substitute 59° for F.
$59-\square$	$=1.8 C+32-\square$	Subtract \square from each side.	
27	$=1.8 C$		Simplify.
$\frac{27}{\square}$	$=\frac{1.8 C}{\square}$		Divide each side by 1.8.
\square			Simplify.

$59^{\circ} \mathrm{F}$ is equal to \square

Check Your Progress CELL PHONES Sue signed up for a cell phone plan that charges $\$ 19$ per month plus $\$ 0.10$ per minute used. Her first bill was $\$ 23.30$. Solve $19+0.10 x=23.30$ to find out how many minutes Sue used this month.

EXAMPLE Equations with Negative Coeff cients
3 Solve $5-x=7$.

$$
\begin{aligned}
5-\square & =7 & & \text { Identity Property } \\
5+(-1 x) & =7 & & \text { Definition of subtraction } \\
5+(-1 x)+(-5) & =7+(-5) & & \text { Add }-5 \text { to each side. } \\
(-1 x) & =\square & & \text { Simplify. } \\
\square & =\square & & \text { Divide each side by } \square .
\end{aligned}
$$

EXAMPLE Combine Like Terms Before Solving
(4) Solve $b-3 b+8=18$.

Check Your Progress Solve each equation.
b. $9=13-x+5 x$

3-6 Writing Two-Step Equations

EXAMPLE Translate Sentences into Equations

Main Ideas

- Write verbal sentences as two-step equations.
- Solve verbal problems by writing and solving two-step equations.

FOLDABLES

Organize IT

Under the Writing Equations tab, list two words or phrases that can be translated into each of the four basic operations.

(1) Translate twice a number increased by 5 equals - 25 into an equation.
\square

Check Your Progress Translate five times a number decreased by 9 equals -6 into an equation.

EXAMPLE Translate and Solve an Equation

2 Nine more than four times a number is 41. Find the number.

Check Your Progress Six less than three times a number is 15 . Find the number.

EXAMPIE Write and Solve a Two-Step Equation

3 EARNINGS Ms. Parsons earns $\mathbf{\$ 4 8 , 4 0 0}$ per year. This is $\$ 4150$ more than three times as much as her daughter earns. How much does her daughter earn?

Ms. Parsons earns $\$ 4150$ more than three times as much as her daughter.

Variable Let $d=$ daughter's earnings
three times as more much as

Subtract \square from each side.

Simplify.

Divide each side by \qquad
\square $=$ \square Simplify.

Ms. Parsons' daughter earns \square

Check Your Progress
SHOPPING Tami spent $\$ 175$ at the grocery store. That is $\$ 25$ less than four times as much as Ted spent. How much did Ted spend?

Homework Assignment

Page(s):
Exercises:

3-7 Sequences and Equations

EXAMPLE Describe an Arithmetic Sequence

Main Ideas

- Describe sequences using words and symbols.
- Find the terms of arithmetic sequences.

1 Describe the sequence $3,6,9,12, \ldots$ using words and symbols.

The difference of the term numbers is \square. The terms have a common difference of \square. Also, a term is \square times the \square. The equation \square describes the sequence.

Check Your Progress
Describe the sequence $7,14,21$, $28, \ldots$ using words and symbols.

EXAMPLE Find a Term in an Arithmetic Sequence 2 Find the 11 th term of $6,9,12,15, \ldots$.

The difference of the term numbers is \square
The terms have a common difference of \qquad
The common difference is \square times the \square of the term numbers. This suggests that \square However, you need to add \square to get the exact value of t. Thus, $t=\square$.

Check Your Progress
Find the $14^{\text {th }}$ term of $4,9,14$, 19,

EXAMPL

3 TELEPHONE CHARGES For a telephone call to India, a telephone company charges $\mathbf{\$ 8}$ for the first minute and $\$ 4$ for each additional minute. How much does it cost for a 10-minute call?

Make a table to organize the sequence and find a rule.

Number of Minutes (m)	1	2	3
Cost (c)	8	12	16

The difference of the term numbers is \square
The terms have a common difference of \square
The pattern in the table shows the equation \square If $c=\square$ and $m=\square$, then $c=\square$ or $c=\square$.

Check Your Progress
READING During one month, Mitch read 3 books. Each month after, he read only 2 books. After 12 months, how many books did Mitch read?

3-8 Using Formulas

Main Ideas

- Solve problems using formulas.
- Solve problems involving the perimeters and areas of rectangles.

Key Concept

Perimeter of a Rectangle The perimeter of a rectangle is twice the sum of the length and width.

BUILD YOUR VOGABULARY (pages 54-55)

A formula is an \square that shows a relationship among certain quantities.

The \square around a geometric figure is called the perimeter.

EXAMPLE Use the Distance Formula

1 TRAVEL If you travel 135 miles in 3 hours, what is your average speed in miles per hour?

$$
d=r t \quad \text { Write the formula. }
$$

$$
d=\square, t=\square
$$

Divide each side by \square Simplify.

Check Your Progress

VACATION If you drive 520 miles in 8 hours, what is your average speed in miles per hour?

EXAMPLE Find the Perimeters and Lengths of Rectangles

2 a. Find the perimeter of the rectangle.

FOLDABLES

Organize IT

Locate a rectangular object in your classroom and measure its length and width. Under the Formulas tab, describe how to determine its perimeter using the perimeter formula.

$$
\begin{aligned}
& P=\square \\
& P=\square \\
& P=\square \\
& P=\square
\end{aligned}
$$

Write the formula.

Add \square and

Simplify.
b. The perimeter of a rectangle is $\mathbf{6 0}$ feet. Its width is 9 feet. Find its length.

Check Your Progress

a. Find the perimeter of the rectangle.

b. The perimeter of a rectangle is 36 meters. Its width is 6 meters. Find its length.

Key Concept

Area of a Rectangle The area of a rectangle is the product of the length and width.

Homework Assignment

Page(s):

Exercises:
b. The area of a rectangle is 42 square inches. Its length is 14 inches. Find its width.
a. Find the area of a rectangle with length 11 yards and width 6 yards.

BRINGING IT ALL TOGETHER

STUDY GUIDE

Foldabiles

Use your Chapter 3 Foldable to help you study for your chapter test.

Vocabulary
 PUZZLEMAKER

To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 3, go to:

BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (pages 54-55) to help you solve the puzzle.

3-1

The Distributive Property

Match each expression with an equivalent expression.

1. $5(4+7)$

2. $(5+4) 7$

3. $-4(5+7)$

4. $(5-7) 4$

5. $-4(5-7)$

6. In rewriting $3(x+2)$, which term is "distributed" to the other terms in the expression? \square

3-2

Simplifying Algebraic Expressions

Underline the term that best completes each statement.
7. A term without a variable is a (coefficient, constant).
8. The expression $5 z+2 z+9+6 z$ has three (like terms, terms).

Simplify each expression.
9. $6 q+2 q$ \square 10. $12 y-y$ \square
11. $5+7 x-3$ \square 12. $4(b+1)+b$ \square

3-3

Solving Equations by Adding or Subtracting

Underline the term that best completes each statement.

13. To undo the addition of 8 in the expression $y+8$, you would add -8 . This is an example of (inverse operations, simplest form.)
14. The equations $x+3=12$ and $x=9$ are equivalent equations because they have the same (solution, variable).

Solve each equation.

15. $7+z=19$

16. $19=x-8$

17. Write and solve an equation for the sentence. The sum of -13 and a number is -16 .
\square

3-4

Solving Equations by Multiplying or Dividing

Solve each equation.

18. $3 m=39$

19. $\frac{c}{8}=-6$

20. What value of h makes $\frac{h}{-2}=16$ a true statement? \square
A -8
B -32
C 8
D 32

3-5

Solving Two-Step Equations

Solve each equation.

21. $4 y+3=15$

23. $9=\frac{b}{3}-12$

22. $17=6 q-7$

24. $31=2 x+6-7 x$

3-6

Writing Two-Step Equations

Translate each sentence into an equation. Then find the number.
25. Six decreased by four times a number is 18 .
\square
26. Thirteen more than the quotient of a number and 3 is -5 .

3-7

Sequences and Equations

Write an equation that describes each sequence. Then find the indicated term.
27. $9,10,11,12, \ldots ; 29$ th term
\square
28. $13,26,39,52, \ldots$; 13th term
\square

3-8
Using Formulas
29. What is the speed in miles per hour of a raft that travels 18 miles in 3 hours?

Find the perimeter and area of each rectangle.
30.

12 cm
31.

\square

Checklist

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 3.

ARE YOU READY FOR THE CHAPTER TEST?

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 3 Practice Test on page 173 of your textbook as a final check.

I used my Foldable or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 3 Study Guide and Review on pages 169-172 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 3 Practice Test on page 173.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 3 Foldable.
- Then complete the Chapter 3 Study Guide and Review on pages 169-172 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may want to take the Chapter 3 Practice Test on page 173.

Factors and Fractions

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.

Begin with four sheets of notebook paper.

STEP 1 Fold four sheets of notebook paper in half from top to bottom.

STEP 2 Cut along fold. Staple eight half-sheets together to form a booklet.
 Make the top tab 2 lines wide, the next tab 4 lines wide, and so on.

STEP 4 Label each of the tabs with the lesson number and title.

BUILD YOUR VOCABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 4.
As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

Vocabulary Term	Found on Page	Definition	Description or Example
algebraic fraction			
base			
composite number			
exponent			
factor			
factor tree			

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Vocabulary Term	Found on Page	Definition	Description or Example
greatest common factor (GFC)			
monomial			
power			
prime factorization			
prime number			
scientific notation			
standard form			
Venn Diagram			

4-1 Powers and Exponents

Main Ideas

- Write expressions using exponents.
- Evaluate expressions containing exponents.

BUILD YOUR VOGABULARY (pages 82-83)

In an expression like 2^{4}, the base is the number that is
\square
The exponent tells how many times the base is used as a
\square
The number that can be expressed using an \square called a power.

EXAMPLE Write Expressions Using Exponents

1 Write each expression using exponents.

a. 6•6•6•6

The base is \square. It is a factor \square times, so the exponent is

$6 \cdot 6 \cdot 6 \cdot 6=$ \square
b. p

The base is
 It is a factor \square time, so the exponent is

$p=\square$
c. $(-1)(-1)(-1)$

The base is \square. It is a factor \square times, so the exponent is \square
$(-1)(-1)(-1)=\square$
d. $(5 x+1)(5 x+1)$

The base is \square It is a factor \square times, so the exponent is \square

$$
(5 x+1)(5 x+1)=\square
$$

e. $\frac{1}{2} \cdot x \cdot x \cdot x \cdot x \cdot y \cdot y \cdot y$

First group the factors with like bases. Then write using exponents.

$$
\begin{aligned}
& =\frac{1}{2} \cdot(x \cdot x \cdot x \cdot x) \cdot(y \cdot y \cdot y) \\
& =\square
\end{aligned}
$$

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Write It

What is the difference between $(-5)^{2}$ and -5^{2} ? Explain.
\qquad
\qquad
\qquad

FOLDABLES

Organize IT

Under the tab for Lesson 4-1, write a summary about the relationship between base, exponent, and factor.

Check Your Progress

Write each expression using exponents.
a. $3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3$

b. $m \cdot m \cdot m$

c. $(-6)(-6)(-6)(-6)$

d. $(4-2 x)(4-2 x)$

e. $9 \cdot a \cdot a \cdot a \cdot b \cdot b \cdot b \cdot b \cdot b$

EXAMPLE Ev aluate Expressions

2 Evaluate each expression.

a. $4^{2}=$ \square

$$
=\square
$$

Multiply.

b. $2 \cdot 3^{2}=2 \cdot$

$$
=\square
$$

Multiply.

Check Your Progress

Evaluate each expression.
a. 3^{4}
\square
b. $4^{3} \cdot 2$
\square

EXAMPLF

3 Evaluate each expression.

a. $r^{3}-3$ if $r=-2$

$$
\begin{array}{rlrl}
r^{3}-3 & =(\square)^{3}-3 & & \text { Replace } r \text { with } \square \\
& =(\square)(\square)(\square 3 & & \text { Rewrite } \square \square^{3} . \\
& =\square-3 & & \text { Multiply. } \\
& =\square \square
\end{array}
$$

b. $x\left(y^{2}+2\right)^{2}$ if $x=2$ and $y=-2$

$$
\begin{array}{rlr}
x\left(y^{2}+2\right)^{2} & =(\square)\left[(\square)^{2}+2\right]^{2} & \begin{array}{l}
\text { Replace } x \text { with } 2 \text { and } \\
y \text { with }-2 .
\end{array} \\
& =(2)[\square]^{2} & \begin{array}{l}
\text { Rewrite }(-2)^{2}
\end{array} \\
& =(2)(\square))^{2} & \\
& =(2)(\square) \text { Simplify. } \\
& =\square
\end{array}
$$

b. $m(5-n)^{3}$ if $m=-3$ and $n=3$

Evaluate each expression.
a. $100-x^{4}$ if $x=2$

Homework Assignment

Page(s):
Exercises:

4-2 Prime Factorization

BUILD YOUR VOGABULARY (pages 82-83)

MAIN IDEAS

- Write the prime factorization of composite numbers.
- Factor monomials.

A prime number is a whole number that has exactly two factors, 1 and itself.

A composite number is a whole number that has more than two factors.

EXAMPLE Identify Numbers as Prime or Composite

Remember It

Zero and 1 are neither prime nor composite.
(1) Determine whether each number is prime or composite.
a. 31

Find factors of 31 by listing the whole number pairs whose product is 31 .
$31=\square$
The number 31 has only two factors. So, it is
$\mathrm{a} \square$ number.
b. 36

Find factors of 36 by listing the whose product is 36 .

\square

$36=\square$

$36=\square$
The factors of 36 are \square
Since the number has more than two factors, it is a
\square

Check Your Progress

Determine whether each number is prime or composite.
a. 49 \square
b. 29 \square

FOLDABLES'

ORGANIZE IT

Under the Lesson 4-2 tab, describe how to use a factor tree to find the prime factorization of a number.

Homework Assignment

Page(s):
Exercises:

BUILD YOUR VOGABULARY (page 83)

When a composite number is expressed as the product of prime factors, it is called the prime factorization of the number.

One way to find the prime factorization of a number is to use a factor tree.

To factor a number means to write it as a product of its factors.

EXAMPLE Write Prime Factorization

(2) Write the prime factorization of 56.

The prime factorization of 56 is \square

EXAMPLE F actor Monomials

a. Factor $16 p^{2} q^{4}$.

$$
16 p^{2} q^{4}=2 \cdot 2 \cdot 2 \cdot 2 \cdot p^{2} \cdot q^{4}
$$

b. Factor $-21 x^{2} y$.

$$
\begin{aligned}
-21 x^{2} y & =-1 \cdot \square \cdot \square \cdot x^{2} \cdot y \\
& =-1 \cdot \square \cdot \square \cdot \square \cdot \square \cdot \square
\end{aligned}
$$

Check Your Progress

a. Write the prime factorization of 72 .

b. Factor $12 a^{3} b$.
c. Factor $-18 m n^{2}$.

4-3 Greatest Common Factor (GCF)

Main Ideas

Find the greatest common factor of two or more numbers or monomials.

- Use the Distributive Property to factor algebraic expressions.

BUILD YOUR VOGABULARY (page 83)

A Venn diagram shows the relationship among sets

in a rectangle.
 more numbers is called the greatest common factor (GCF).

EXAMPLE Find the GCF

FOLDABLES

ORGANIZE IT

Under the Lesson 4-3 tab, describe the two methods for finding the GCF of two or more numbers.

(1) Find the GCF of 16 and 24.

Method 1 List the factors.
factors of 16 : \square
factors of 24: \square

The greatest common factor of 16 and 24 is \square

Method 2 Use prime factorization.
$16=2 \cdot 2 \cdot(2) \cdot 2$
$24=2 \cdot 2 \cdot(2) \cdot 3$
The GFC is the product of the common \square
$2 \cdot 2 \cdot 2=$ \square

Check Your Progress

Find the GCF of 18 and 30.

EXAMPLE Find the GCF of Monomials

2) Find the GCF of $18 x^{3} y^{2}$ and $42 x y^{2}$.

Completely factor each expression.

The GCF of $18 x^{3} y^{2}$ and $42 x y^{2}$ is \square or \square

Check Your Progress

Find the GCF of $32 m n^{4}$ and $80 m^{3} n^{2}$.

ReVIEW IT

Name the operations that are combined by the Distributive Property. (Lesson 3-1)
\qquad
\qquad
\qquad
\qquad

Homework Assignment

Page(s):

Exercises:

EXAMPLE F actor Expressions

(3) Factor $3 x+12$.

First, find the GCF of $3 x$ and 12.
$3 x=$
$12=2 \cdot 2 \cdot\left(\begin{array}{l}3 \cdot x \\ 3\end{array}\right]$
The GCF is

Now, write each term as a product of the
 and its remaining factors.
$3 x+12=3(\square)+3(\square)$

$$
=3(\square)
$$

\square

Check Your Progress
Factor $4 x+20$.

4-4 Simplifying Algebraic Fractions

Main IdeAs
 - Simplify fractions using the GCF.
 - Simplify algebraic fractions.

Write It

Describe the result if a common factor other than the GCF is used to simplify a fraction.
\qquad
\qquad
The \square of 16 and 24 is \square - \square
\square
\square

Divide the numerator and
denominator by the \square

2 $\frac{72}{120}$

Check Your Progress
Write each fraction in simplest form.
a. $\frac{12}{40}$
b. $\frac{48}{80}$

Foldables

Organize IT

Under the Lesson 4-4 tab, explain how to simplify both numeric and algebraic fractions.

Homework Assignment

Page(s):
Exercises:

EXAMPLE

3 TEST EXAMPLE 250 pounds is what part of 1 ton?
A $\frac{1}{10}$
B $\frac{1}{8}$
C $\frac{1}{4}$
D $\frac{1}{2}$

There are \square pounds in \square ton. Write the fraction

So, 250 pounds is \square of 1 ton. The answer is \square.

Check Your Progress
TEST EXAMPLE 80 feet is what part of 40 yards?
A $\frac{2}{3}$
B $\frac{1}{2}$
C $\frac{3}{40}$
D $\frac{1}{3}$

EXAMPLE Simplify Algebraic Fractions

(4) Simplify $\frac{20 m^{3} n^{2}}{65 m n}$.

$\underline{20 m^{3} n^{2}}$	$\cdot \frac{1}{5} \cdot n_{n}^{1} \cdot m \cdot m \cdot n^{\frac{1}{n}} \cdot n$	Divide the numerator and
$65 m n$	$\underset{1}{\square} \cdot 13 \cdot \not \varliminf_{1} \cdot \AA_{1}$	the denominator by the GCF.
$=$		Simplify.

$$
\text { Check Your Progress } \text { Simplify } \frac{14 x^{4} y^{2}}{49 x^{2} y^{2}} \text {. }
$$

4-5 Multiplying and Dividing Monomials

EXAMPLE Multipl y Powers

Main Ideas

- Multiply monomials.
- Divide monomials.
(1) Find $3^{4} \cdot 3^{6}$.

Check Your Progress
Find $4^{3} \cdot 4^{5}$

EXAMPLE Multipl y Monomials

2 Find each product.
a. $\boldsymbol{y}^{4} \cdot \boldsymbol{y}$

b. $\left(3 p^{4}\right)\left(-2 p^{3}\right)$

The common base is p.

exponents.

Check Your Progress
Find each product.
a. $w^{2} \cdot w^{5}$
\square
b. $\left(-4 m^{3}\right)\left(6 m^{2}\right)$
\square

Key Concept

Quotient of Powers You can divide powers with the same base by subtracting their exponents.

FOLDABLES'

ORGANIZE IT

Under the tab for Lesson 4-5, write a summary of the way you can use exponents to multiply and divide polynomials.

Homework Assignment

EXAMPLE Divide Powers

3 a. Find $\frac{8^{11}}{8^{5}}$.

$$
\frac{8^{11}}{8^{5}}=\square=\square
$$

b. Find $\frac{x^{12}}{x}$.

Check Your Progress
a. $\frac{7^{5}}{7^{3}}$

Find each quotient.

b. $\frac{r^{4}}{r^{1}}$

EXAMPLE

4) FOLDING PAPER If you fold a sheet of paper in half, you have a thickness of 2 sheets. Folding again, you have a thickness of 4 sheets. Continue folding in half and recording the thickness. How many times thicker is a sheet that has been folded 4 times than a sheet that has not been folded?

Write a \square expression to compare the thicknesses.

The sheet that has been folded 4 times is \square times thicker than a sheet that has not been folded.

Check Your Progress RACING Car A can run at a speed of 2^{8} miles per hour and car B runs at a speed of 2^{7} miles per hour. How many times faster is car A than car B?

4-6 Negative Exponents

EXAMPLE Use Positive Exponents

MAIN IDEAS

- Write expressions using negative exponents.
- Evaluate numerical expressions containing negative exponents.

Remember It

A negative exponent in an expression does not change the sign of the expression.

1 Write each expression using a positive exponent.

a. 3^{-4}

b. m^{-2}

Check Your Progress
Write each expression using a positive exponent.
a. 5^{-3}
b. y^{-6}

EXAMPLE Use Negative Exponents

2 Write $\frac{1}{125}$ as an expression using a negative exponent.

Check Your Progress Write $\frac{1}{32}$ as an expression using a negative exponent.

EXAMPLE Use Exponents to Solve a Problem

FOLDABLES

ORGANIZE IT

Under the tab for Lesson 4-6, explain negative exponents. Give an example of a number written with a negative exponent and an equivalent expression using a positive exponent.

Homework

 Assignment

3 ATOM An atom is an incredibly small unit of matter. The smallest atom has a diameter of approximately $\frac{1}{10}$ of a nanometer, or 0.0000000001 meter. Write the decimal as a fraction and as a power of 10.
$0.0000000001=\square$
Write the decimal as a fraction.

$=\square$

$$
10,000,000,000=\square
$$

Definition of negative exponent

Check Your Progress

AIR POLLUTION Small particles in the air produced by a combustion process are called smoke. These particles are usually less than one micrometer, or 0.000001 m , in size. Write the decimal as a fraction and as a power of 10 .

EXAMPLE Algebraic Expressions with Negative Exponents

4) Evaluate r^{-2} if $r=-4$.
$r^{-2}=(\square)^{-2} \quad$ Replace r with \square.
$=\square$
Definition of \square exponent

$$
=\square \quad \text { Find }(-4)^{2} .
$$

Check Your Progress Evaluate d^{-3} if $d=5$.

4-7 Scientific Notation

EXAMPLE Express Numbers in Standard Form

Main Ideas

- Express numbers in standard form and in scientific notation.
- Compare and order numbers written in scientific notation.

Key Concept

Scientific Notation A number is expressed in scientific notation when it is written as the product of a factor and a power of 10. The factor must be greater than or equal to 1 and less than 10.

(1) Express each number in standard form.

a. 4.395×10^{4}

b. 6.79×10^{-6}

$=0.00000679$
Move the decimal point

\square

Check Your Progress

Express each number in

 standard form.a. 2.614×10^{6}
b. 8.03×10^{-4}

EXAMPLE Express Numbers in Scientif c Notation

2 Express each number in scientific notation.
a. 800,000

$$
=8.0 \times \square
$$

The decimal point moves \square places. The exponent is
\square

FOLDABLES

ORGANIZE IT

Under the tab for Lesson 4-7, explain the significance of a positive or negative exponent in scientific notation. Give an example of a number with each, written in both standard form and in scientific notation.

Homework

 Assignment
Page(s):

Exercises:
b. 0.0119
$0.0119=\square \times \square$ The decimal point moves

The exponent is

Express each number in scientific notation.
a. 65,000

b. 0.00042

EXAMPL ${ }^{\text {E }}$ Compare Numbers in Scientif c Notation

3 SPACE The diameters of Mercury, Saturn, and Pluto are 4.9×10^{3} kilometers, 1.2×10^{5} kilometers, and 2.3×10^{3} kilometers, respectively. List the space objects in order of increasing diameter.
First, order the numbers according to their exponents. Then, order the numbers with the same exponent by comparing the factors.

Step 1

$\begin{array}{ccc}\text { Step } 2 & 2.3 \times 10^{3} \square & \square .9 \times 10^{3} \\ & \text { Mercury } & \square \\ & \text { Pluto } & \square\end{array}$
So, the order is \square

Check Your Progress Order the numbers $6.21 \times 10^{5}, 2.35$ $\times 10^{4}, 5.95 \times 10^{9}$, and 4.79×10^{4} in decreasing order.
\square

BRINGING IT ALL TOGETHER

STUDY GUIDE

Foldables

Use your Chapter 4 Foldable to help you study for your chapter test.

VOCABULARY
 PUZZLEMAKER

To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 4, go to:
glencoe.com

BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (pages 82-83) to help you solve the puzzle.

4-1
 Powers and Exponents

Write each expression using exponents.

1. $4 \cdot 4 \cdot 4 \cdot 4$

2. $(-2)(-2)(-2)$

3. $5 \cdot r \cdot r \cdot m \cdot m \cdot m$

Evaluate each expression if $\boldsymbol{x}=3, \boldsymbol{y}=1$, and $\boldsymbol{h}=\mathbf{- 2}$.
4. $3 h$

5. $h x^{3}$

6. $4(2 x-4 y)^{3}$
\square
\square

4-2

Prime Factorization
Write the prime factorization of each number. Use exponents for repeated factors.
7. 64

8. 126

9. 735
\square

Factor each monomial completely.
10. $32 a c$

11. $49 s^{3} t$

13. $25 p q^{4}$
\square

4-3

Greatest Common Factor (GCF)

Find the GCF of each set of numbers or monomials.
14. 25,45 \square
15. $36,54,66$ \square
16. $28 a^{2}, 42 a b^{3}$ \square

Factor each expression.
17. $7 x+14 y$ \square
18. $50 s-10 s t$
\square

4-4

Simplifying Algebraic Fractions

19. Six ounces is what part of a pound? \square
20. Use a Venn diagram to explain how to simplify $\frac{18}{45}$.

4-5

Multiplying and Dividing Monomials

Find each quotient.
21. $\frac{4^{6}}{4^{4}} \square$
22. $\frac{(-3)^{3}}{(-3)} \square$
23. $\frac{p^{2} \cdot p^{3}}{p^{4}}$ \square

Find a match for each product.
24. $2^{4} \cdot 2^{3}$ \square a. 4^{7}
b. 4^{12}
c. 2^{7}
25. $4^{3} \cdot 4^{4}$

d. 2^{12}
26. $2^{5} \cdot 2^{7}$ \square

4-6

Negative Exponents
Write each expression using a positive exponent.
27. $8^{-3} \square$
28. $5^{-10} \square$
29. x^{-2}

Evaluate each expression if $s=4$ and $t=3$.

31. $(s t)^{-1} \square$
32. s^{-t} \square

4-7

Scientific Notation
Tell direction and the number of places you need to move the decimal point to write each number in standard notation.
33. 2.3×10^{4}

34. 1.5×10^{-7}

35. 7.1×10^{11}

36. The table at the right shows the average wave lengths of 3 types of radiation. Write the radiation types in order from longest to shortest wave length.
\square

Radiation	Wave length (meters)
X-rays	5.0×10^{-9}
Yellow light	5.8×10^{-7}
Blue light	4.7×10^{-7}

ARE YOU READY FOR THE CHAPTER TEST?

Checklist

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 4.

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 4 Practice Test on page 223 of your textbook as a final check.

I used my Foldable or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 4 Study Guide and Review on pages 219-222 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may want to take the Chapter 4 Practice Test on page 223.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 4 Foldables.
- Then complete the Chapter 4 Study Guide and Review on pages 219-222 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 4 Practice Test on page 223.

5 Rational Numbers

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.

Begin with two sheets of $8 \frac{1}{2}^{\prime \prime} \times 11^{\prime \prime}$ paper.

STEP 1 Fold the first two sheets in half from top to bottom. Cut along fold from edges to margin.

STEP 2 Fold the third sheet in half from top to bottom. Cut along fold from margin to edge.

NOTE-TAKING TIP: As you read each lesson, list examples of ways the new knowledge has been or will be used in your daily life.

BUILD YOUR VOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 5.
As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

Vocabulary Term	Found on Page	Definition	Description or Example
bar notation			
common multiple			
dimensional analysis [duh-MEHN-chuhn-uhl]			
least common denominator (LCD)			
least common multiple (LCM)			

Vocabulary Term	Found on Page	Definition	Description or Example
measure of central tendency			
median			
mixed number			
mode			
multiple			
multiplicative inverse			
[muhl-tuh-PLIH-kuh- tihv IHN-vuhrs]			
rational number [RASH-nuhl]			
reciprocal [rih-SIHP-ruh-kuhl]			
repeating decimal			

5-1 Writing Fractions as Decimals

EXAMPLE Write a Fraction as a Terminating Decimal

MAIN IDEAS

- Write fractions as terminating or repeating decimals.
- Compare fractions and decimals.

FOLDABLES

ORGANIZE IT

Under the tab for Lesson 5-1, write an example of when you might want to change two fractions to decimals in order to determine which is larger.

(1) Write $\frac{1}{16}$ as a decimal.

METHOD 1 Use paper and pencil. Divide 1 by 16.

METHOD 2 Use a calculator.

So, $\frac{1}{16}=$ \square

EXAMPLE Write a Mixed Number as a Decimal
(2) Write $1 \frac{1}{4}$ as a decimal.

Check Your Progress
Write each fraction or mixed number as a decimal.
a. $\frac{5}{8}$
b. $2 \frac{3}{5}$

BUILD YOUR VOcABULARY (pages 104-105)
A decimal with one or more \square that repeat
forever is called a repeating decimal.
You can use bar notation to indicate that a digit repeats forever.

EXAMPL: Write Fractions as Repeating Decimals
3 Write each fraction as a decimal. Use a bar to show a repeating decimal.
a. $- \frac { 4 } { \mathbf { 3 3 } } \longrightarrow 3 3 \longdiv { - 4 . 0 0 0 0 \ldots }$
The digits \square repeat.

$$
-\frac{4}{33}=\square
$$

b. $\frac { \mathbf { 2 } } { \mathbf { 1 1 } } \rightarrow 1 1 \longdiv { 0 . 1 8 1 8 \ldots } \begin{array} { l } { 2 . 0 0 0 0 \ldots } \\ { \hline } \end{array}$

The digits \square repeat.

$$
\frac{2}{11}=\square
$$

Check Your Progress
Write each fraction as a decimal. Use a bar to show a repeating decimal.
a. $-\frac{2}{3}$
b. $\frac{4}{15}$ \square

EXAMPLE Compare Fractions and Decimals
4. Replace \bigcirc with $<,>$, or $=$ to make $0.7 \bigcirc \frac{13}{20}$ a true sentence.
$0.7 \bigcirc \frac{13}{20} \quad$ Write the sentence.
$0.7 \bigcirc$ Write $\frac{13}{20}$ as a decimal.

In the tenths place,

On a number line, 0.7 is to the right of 0.65 , so 0.7 \square $\frac{13}{20}$.

Homework Assignment

Page(s):
Exercises:

EXAMPLE Compare Fractions to Solve a Problem

(5) GRADES Jeremy got a score of $\frac{\mathbf{1 6}}{\mathbf{2 0}}$ on his first quiz and $\frac{\mathbf{2 0}}{\mathbf{2 5}}$ on his second quiz. Which grade was the higher score?

Write the fractions as \square and then compare
the
\qquad

Quiz \#1: $\frac{16}{20}=\square$ Quiz \#2: $\frac{20}{25}=\square$

The scores were the same, \square

Check Your Progress

BAKING One recipe for cookies requires $\frac{5}{8}$ of a cup of butter and a second recipe for cookies requires $\frac{3}{5}$ of a cup of butter. Which recipe uses less butter?
Check Your Progress
Replace with $<,>$, or $=$ to make $\frac{3}{8} \bigcirc 0.4$ a true sentence.
\square
\square

5-2 Rational Numbers

Main Ideas

- Write rational numbers as fractions.
- Identify and classify rational numbers.

BUILD YOUR VOGABULARY (page 105)

A number that can be written as a \square is called a rational number.

EXAMPLE Write Mixed Numbers and Integers as Fractions

(1) Write each rational number as a fraction.

Foldables
Organize IT
In your notes, describe the fractions you use during a normal day at school and at home.

a. $-4 \frac{3}{8}=\square$
Write $-4 \frac{3}{8}$ as an \square fraction.
b. $10=$ \square

EXAMPL ${ }^{-1}$ Write Terminating Decimals as Fractions

(2) Write 0.26 as a fraction or mixed number in simplest form.

Check Your Progress
Write each number as a fraction or mixed number in simplest form.
a. $2 \frac{3}{5}$

b. -6
c. 0.84

Write It

What would you multiply each side by if three digits repeat? Explain.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Homework

 AssignmentPage(s):
Exercises:

110

EXAMPLE Classify Numbers

4) Identify all sets to which the number 15 belongs.

15 is a \square number, an \square, a natural
number, and a rational number.

Check Your Progress
Identify all sets to which the number

5-3 Multiplying Rational Numbers

EXAMPLE Multiply Fractions

Main IdeAs

- Multiply positive and negative fractions.

Use dimensional analysis to solve problems.
(1) Find $\frac{2}{5} \cdot \frac{5}{8}$. Write the product in simplest form.

KEY Concept

Multiplying Fractions To multiply fractions, multiply the numerators and multiply the denominators.

EXAMPLE Multiply Negative Fractions

2 Find $-\frac{1}{4} \cdot \frac{2}{7}$. Write the product in simplest form.

$$
\begin{aligned}
-\frac{1}{4} \cdot \frac{2}{7} & =-\frac{1}{4} \cdot \frac{1}{2} & & \text { Divide } 2 \text { and } 4 \text { by their GCF, } \square . \\
& =-\frac{1 \cdot 1}{2 \cdot 7} & & \text { Multiply the numerators and multiply } \\
& =\square & & \text { the denominators. }
\end{aligned}
$$

EXAMPLE Multiply Mixed Numbers

3 Find $1 \frac{1}{2} \cdot 3 \frac{2}{3}$. Write the product in simplest form.

$$
\begin{array}{rlrl}
1 \frac{1}{2} \cdot 3 \frac{2}{3} & =\frac{3}{2} \cdot \frac{11}{3} & & \text { Rename the mixed numbers. } \\
& =\frac{1}{2} \cdot \frac{11}{2} & & \text { Divide by the GCF, } \square . \\
& =\square \\
& =\square \text { or } \square & & \text { Multiply. } \\
& & \text { Simplify. }
\end{array}
$$

FOLDABLES

ORGANIZE IT

Under the tab for Lesson 5-3, write an expression in which you would multiply rational numbers and explain what it means.

Check Your Progress

Find each product. Write in simplest form.
a. $\frac{3}{8} \cdot \frac{2}{9}$ \square b. $\frac{6}{14} \cdot-\frac{21}{40}$ \square c. $2 \frac{2}{7} \cdot 3 \frac{1}{4}$

EXAMPLE

DONATIONS Rasheed collects cash donations for underprivileged children every October. This October he collected \$784. Last year he collected $\frac{5}{8}$ as much. How much did Rasheed collect last October?
To find how much Rasheed collected last October, multiply

$$
\begin{array}{ll}
=\frac{788}{1} \cdot \frac{5}{8} & \text { Divide by } \\
=\square \text { or } \square & \text { Simplify. }
\end{array}
$$

Divide by the GCF, \square

Rasheed collected \square last October.

Check Your Progress

SHOPPING Melissa is buying a sweater originally priced for $\$ 81$. The sweater is discounted by $\frac{2}{3}$. Find the amount of the discount.

EXAMPLE Multiply Algebraic Fractions

5 Find $\frac{3 p^{2}}{q} \cdot \frac{q^{2}}{r}$. Write the product in simplest form.

$$
\begin{aligned}
\frac{3 p^{2}}{q} \cdot \frac{q^{2}}{r} & =\frac{3 p \cdot p}{\notin} \cdot \frac{\stackrel{1}{q} \cdot q}{r} & & \text { The GCF of } q^{2} \text { and } q \text { is } \square . \\
& =\square & & \text { Simplify. }
\end{aligned}
$$

Check Your Progress Find $\frac{5 m n^{3}}{p^{2}} \cdot \frac{m p}{n^{2}}$.

> BUILD YOUR VOCABULARY (page 104)
> Dimensional analysis is the process of including when you compute. You
> can use dimensional analysis to check whether your answers are reasonable.

EXAMPLE Use Dimensional Analysis

6 TRACK The track at Cole's school is $\frac{1}{4}$ mile around. If Cole runs one lap in two minutes, how far (in miles) does he run in 30 minutes?

Distance equals the rate multiplied by the time.

Let $d=$ distance, $r=$ rate, and $t=$ time.

$$
d=r t
$$

$d=\square$ mile per 2 minutes $\cdot \square$ minutes

Divide by the common factors and units.

Homework Assignment

Page(s):
Exercises:

Check Your Progress WALKING Bob walks $\frac{2}{3}$ mile in
12 minutes. How far does he walk in 30 minutes?

5-4 Dividing Rational Numbers

Main IdeAs

Divide positive and negative fractions using multiplicative inverses.

- Use dimensional analysis to solve problems.

Key Concepts

Inverse Property of Multiplication The product of a number and its multiplicative inverse is 1 .

Dividing Fractions To divide by a fraction, multiply by its multiplicative inverse.

BUILD YOUR VOCABULARY (page 105)

Two numbers whose \square is \square are called multiplicative inverses or reciprocals.

EXAMPLE Find Multiplicatives Inverses

1 Find the multiplicative inverse of $\frac{6}{7}$.

The product is 1 .
The multiplicative inverse or reciprocal of $\frac{6}{7}$ is

EXAMPL 5 Divide by a Fraction or Whole Number

2 Find each quotient. Write in simplest form.
a. $\frac{4}{5} \div \frac{3}{10}$

$$
\begin{array}{rlrl}
\frac{4}{5} \div \frac{3}{10} & =\frac{4}{5} \cdot \square & & \text { Multiply by the multiplicative } \\
& =\frac{4}{5} \cdot \frac{\lambda_{1}^{2}}{3} & & \text { Divide } \frac{3}{10} . \\
& =\square \text { and } \square \text { by their } \\
& \text { or } \square & \text { Simplify. }
\end{array}
$$

b. $\frac{5}{6} \div 3$

| $\frac{5}{6} \div 3$ | $=\frac{5}{6} \div \square \quad$ Write 3 as \square. |
| ---: | :--- | ---: | :--- |
| | $=\frac{5}{6} \cdot \square \quad$ Multiply by the multiplicative inverse of $\frac{3}{1}$. |
| | $=\square \quad$ Simplify. |

FOLDABLES

ORGANIZE IT

Under the tab for Lesson 5-4, write a word problem in which you would divide rational numbers to solve the problem.

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

EXAMPLE Divide by a Mixed Number
3 Find $4 \frac{2}{3} \div-3 \frac{1}{9}$. Write the quotient in simplest form.

$$
\begin{array}{rlrl}
4 \frac{2}{3} \div-3 \frac{1}{9} & =\square \div \square & \begin{array}{l}
\text { Rename the mixed } \\
\text { as } \square
\end{array} \\
& =\square \cdot \square & \begin{array}{l}
\text { Multiply by the multi } \\
\text { inverse of } \square \\
\\
\end{array} & =\frac{14}{8} \cdot-\frac{3_{1}^{3}}{28}
\end{array} \quad \begin{array}{ll}
\text { Divide out common }
\end{array}
$$

$$
=\square \text { or } \square
$$

Simplify.

EXAMPLE Divide by an Algebraic Fraction

(4) Find $\frac{5 x}{8 y} \div \frac{10}{16 y}$. Write the quotient in simplest form.

$$
\begin{aligned}
& 5 x \cdot 10 \quad 5 x \quad \text { Multiply by the multiplicative } \\
& \frac{5 x}{8 y} \div \frac{10}{16 y}=\frac{5 x}{8 y} \cdot \square
\end{aligned}
$$

$$
\begin{aligned}
& =\square \text { or } \square \quad \text { Simplify. } \\
& \text { Divide out common factors. } \\
& \text { Simplify. }
\end{aligned}
$$

Check Your Progress

a. Find the multiplication inverse of $\frac{4}{9}$. \square
Find each quotient. Write in simplest form.
b. $\frac{3}{8} \div \frac{5}{6}$
c. $\frac{5}{12} \div 10$

d. $3 \frac{3}{4} \div 2 \frac{5}{8}$
e. $\frac{6 m}{10 p} \div \frac{9 m}{4}$

EXAMPLE

(3) TRAVEL How many gallons of gas are needed to travel $78 \frac{3}{4}$ miles if a car gets $25 \frac{1}{2}$ miles per gallon?

To find how many gallons, divide
 by
 gallons of gas are needed.

Homework Assignment

Page(s):
Exercises:

5-5 Adding and Subtracting Like Fractions

EXAMPLE Ad d Fractions

Main Ideas

- Add like fractions.
- Subtract like fractions.

KEy CONCEPTS

Adding Like Fractions To add fractions with like denominators, add the numerators and write the sum over the denominator.

Subtracting Like Fractions To subtract fractions with like denominators, subtract the numerators and write the difference over the denominator.

1 Find $\frac{3}{4}+\frac{3}{4}$. Write the sum in simplest form.
$\frac{3}{4}+\frac{3}{4}=\frac{\square}{\square}$

Simplify and rename as a mixed number.

EXAMPLE Add Mixed Numbers

2 Find $3 \frac{4}{9}+8 \frac{2}{9}$. Write the sum in simplest form.

$$
\begin{aligned}
& 3 \frac{4}{9}+8 \frac{2}{9}=(\square)+\square) \\
&=\square+\frac{\square}{\text { Add the whole numbers }} \begin{array}{l}
\text { and fractions separately. }
\end{array} \\
&=\square \text { or } \square \\
& \text { Add the numerators. } \\
& \text { Simplify. }
\end{aligned}
$$

EXAMPLE Subtract Fractions

3 Find $\frac{11}{12}-\frac{5}{12}$. Write the difference in simplest form.

The denominators are the same. Subtract the numerators.

Simplify.

FOLDABLES

ORGANIZE IT

Under the tab for Lesson 5-5, describe real-life situations in which you would add or subtract rational numbers.

Homework Assignment
Page(s):
Exercises:

5-6 Least Common Multiple

Main Ideas

- Find the least common multiple of two or more numbers.
- Find the least common denominator of two or more fractions.

BUILD YOUR VOGABULARY (pages 104-105)

A multiple of a number is a \square of that number and a whole number.

Sometimes numbers have some of the \square multiples. These are called common multiples.

The least of the nonzero common multiples of two or more numbers is called the least common multiple (LCM).

EXAMPLE Find the LCM

1 Find the LCM of 168 and 180.
Number Prime Factorization Exponential Form

The prime factors of both numbers are \square
Multiply the greatest powers of \square appearing in either factorization.

EXAMPLE The LCM of Monomials

(2) Find the LCM of $12 x^{2} y^{2}$ and $6 y^{3}$.

$12 x^{2} y^{2}$	$=\square$
$6 y^{3}$	$=\square$
LCM	$=\square$
	$=\square$

Multiply the greatest power of each prime factor.

Check Your Progress
Find the least common denominator (LCM) of each pair of numbers or monomials.
a. 144,96
b. $18 a b^{3}, 24 a^{2} b$
\square

BUILD YOUR YOCABULARY (page 104)

The least common denominator (LCD) of two or more fractions is the \square of the \square

EXAMPLE Find the LCD

3 Find the LCD of $\frac{7}{8}$ and $\frac{13}{20}$.

The LCD of $\frac{7}{8}$ and $\frac{13}{20}$ is \square

Check Your Progress
Find the least common denominator
(LCD) of $\frac{5}{9}$ and $\frac{11}{12}$.

EXAMPLE Compare Fractions

(4) Replace with $<,>$, or $=$ to make $\frac{7}{15} \bigcirc \frac{3}{7}$ a true statement.

The LCD of the fractions is
 or \square
Rewrite the fractions using the LCD and then compare the

Check Your Progress
Replace with $<,>$, or $=$ to make
$\frac{5}{21} \bigcirc \frac{9}{14}$ a true statement.

EXAMPLE Order Rational Numbers

5 FOOTBALL Dane's football team usually practices for $2 \frac{1}{2}$ hours. The table below

Mon	Tues	Wed	Thurs
$-\frac{3}{8}$	$1 \frac{3}{4}$	$-\frac{5}{6}$	$1 \frac{2}{3}$

Step 1 Order the negative fractions first. The LCD of 6 and 8

$-\frac{5}{6}=$ \square

$$
-\frac{3}{8}=\square
$$

Compare the negative fractions. Since $-\frac{20}{24} \square-\frac{9}{24}$, then $-\frac{5}{6} \square-\frac{3}{8}$.
Step 2 Order the positive fractions. The LCD of 3 and 4

Compare the positive fractions. Since $1 \frac{8}{12} \square 1 \frac{9}{12}$, then $1 \frac{2}{3} \square 1 \frac{3}{4}$.

from shortest to longest is \square

Check Your Progress

to greatest.
a. $-1 \frac{1}{3},-1 \frac{5}{6},-1 \frac{3}{4},-1 \frac{1}{2}$
b. $\frac{17}{32}, \frac{5}{8}, \frac{9}{16}, \frac{25}{64}$

5-7 Adding and Subtracting Unlike Fractions

EXAMPLE Add Unlike Fractions

MAIN IDEAS

- Add unlike fractions.
- Subtract unlike fractions.

1 Find $\frac{3}{4}+\frac{1}{7}$. Write the sum in simplest form.

$$
\frac{3}{4}+\frac{1}{7}=\frac{3}{4} \cdot \square+\frac{1}{7} \cdot \square \quad \begin{aligned}
& \text { Use } 4 \cdot 7 \text { or } \square \\
& \text { common denominator. }
\end{aligned}
$$

$$
=\square+\square
$$

Rename each fraction with the common denominator. Add the numerators.

$$
=\square
$$

EXAMPLE Add Fractions and Mixed Numbers

Key Concept

Adding Unlike Fractions To add fractions with unlike denomintors, rename the fractions with a common denominator. Then add and simplify.

2 Find each sum. Write in simplest form.

a. $\frac{5}{6}+\left(-\frac{3}{10}\right)$

$$
\begin{array}{rll}
\frac{5}{6}+\left(-\frac{3}{10}\right) & =\frac{5}{6} \cdot \square+\left(-\frac{3}{10}\right) \cdot \square+\square & \left.\begin{array}{l}
\text { The LCD is } \square \\
\\
\end{array}\right)=\begin{array}{l}
\text { Rename each } \\
\text { fraction with the } \\
\text { LCD. }
\end{array} \\
& =\square \text { or } \square & \begin{array}{l}
\text { Add the } \\
\text { numerators. } \\
\text { Simplify. }
\end{array}
\end{array}
$$

b. $2 \frac{1}{8}+\left(-3 \frac{2}{3}\right)$
$2 \frac{1}{8}+\left(-3 \frac{2}{3}\right)=\frac{\square}{8}+\left(-\frac{\square}{3}\right)$
Write the mixed numbers as improper fractions.

Rename fractions Using the LCD, \square.
$=\square$ Add the numerators.

Key Concept

Subtracting Unlike Fractions To subtract fractions with unlike denominators, rename the fractions with a common denominator. Then subtract and simplify.

FOLDABLES Under the tab for Lesson 5-7, describe a situation in which you would add or subtract unlike fractions.

Homework

 ASSIGNMENT```
Exercises:
```


## Check Your Progress

Find each sum. Write in simplest form.
a. $\frac{2}{3}+\frac{1}{8}$
b. $\frac{5}{12}+\frac{5}{9}$
c. $4 \frac{2}{5}+\left(-6 \frac{2}{3}\right)$


## EXAMPLE Subtract Fractions and Mixed Numbers

3 Find each difference. Write in simplest form.
a. $\frac{9}{16}-\frac{5}{8}$

$$
\begin{array}{rlr}
\frac{9}{16}-\frac{5}{8} & =\frac{9}{16}-\frac{5}{8} \cdot \square & \text { The LCD is } \square . \\
& =\frac{9}{16}-\square & \\
& =\square & \text { Rename } \frac{5}{8} \text { using the LCD. } \\
& & \text { Subtract the numerators. }
\end{array}
$$

b. $4 \frac{2}{3}-3 \frac{6}{7}$

$$
4 \frac{2}{3}-3 \frac{6}{7}=\frac{\square}{3}-\frac{\square}{7} \quad \begin{aligned}
& \text { Write the mixed numbers } \\
& \text { as improper fractions. }
\end{aligned}
$$



Rename the fractions using the LCD. Subtract the numerators.

Simplify.

## Check Your Progress

Find each difference. Write in simplest form.
a. $\frac{11}{12}-\frac{2}{9}$
b. $3 \frac{5}{6}-2 \frac{1}{8}$


## 5-8 Solving Equations with Rational Numbers

## EXAMPLE Solve by Using Addition and Subtraction

## Main IDEA

- Solve equations containing rational numbers.


## 1 Solve each equation.

a. $\boldsymbol{m}+\mathbf{8 . 6}=\mathbf{1 1 . 2}$

## ReView IT

Which properties allow you to add or subtract the same number from each side of an equation? (Lesson 3-3)
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$$
\begin{aligned}
& m+8.6=11.2 \quad \text { Write the equation. } \\
& m+8.6-\square=11.2-\square \\
& m \text { Subtract } \square \text { from each side. } \\
& m \quad \text { Simplify. }
\end{aligned}
$$

$$
5
$$

b. $y-\frac{3}{8}=\frac{3}{4}$

$$
\begin{array}{cl}
y-\frac{3}{8}=\frac{3}{4} & \text { Write the equation. } \\
y-\frac{3}{8}+\square=\frac{3}{4}+\square & \text { Add } \square \text { to each side. } \\
y=\frac{3}{4}+\square & \text { Simplify. } \\
\text { Rename the fractions using }
\end{array}
$$

## Check Your Progress Solve.

a. $15.4=b+9.3$ $\square$ b. $\frac{2}{3}=x-\frac{1}{2}$ $\square$

## EXAMPLE Solve by Using Division

Solve $9 a=3.6$
$9 a=3.6 \quad$ Write the equation.

$a=\square$

Divide each side by $\square$

Simplify.

FOLDABLES

## ORGANIZE IT

Under the tab for Lesson 5-8, write an equation involving fractions that can be solved using division. Solve your problem.


Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

## Homework Assignment

Page(s):
Exercises:

## EXAMPLE Solve by Using Multiplication

(3) Solve $-\frac{3}{5} t=-6$.

$$
-\frac{3}{5} t=-6 \quad \text { Write the equation. }
$$

$\square\left(-\frac{3}{5} t\right)=\square(-6) \quad$ Multiply each side by


## Check Your Progress

Solve.
a. $-6 m=-4.8$
b. $-\frac{5}{8} a=-10$
$\square$

## EXAMPLE

4. CEREAL Torrey eats $\frac{5}{6}$ cup of cereal each morning and another $\frac{2}{3}$ cup as a snack after school. If one box of cereal contains 10 cups of cereal, how many days will the box last?
The amount of cereal that Torrey eats each day is

$$
\frac{5}{6}+\frac{2}{3}=\frac{5}{6}+\square=\square \text { or } 1 \frac{1}{2} \text { cups. } 1 \frac{1}{2} \text { cups per day times }
$$

the number of days equals 10 cups of cereal. If $d$ represents the number of days, then $\square d=\square$.


The box of cereal will last approximately $6 \frac{1}{2}$ days.
Check Your Progress
Each morning Michael buys a cappuccino for $\$ 4.50$ and each afternoon he buys a regular coffee for $\$ 1.25$. If he put aside $\$ 30$ to buy coffee drinks, how many days will the money last?

## 5-9 Measures of Central Tendency

## EXAMPLE Find the Mean, Median, and Mode

## MAIN IDEAS

- Use the mean, median, and mode as measures of central tendency.
- Choose an appropriate measure of central tendency and recognize measures of statistics.


## KEy CONCEPTS

Measures of Central Tendency
mean the sum of the data divided by the number of items in the data set
median the middle number of the ordered data, or the mean of the middle two numbers
mode the number or numbers that occur most often

## (1)

a. MOVIES The revenue of the 10 highest grossing movies as of 2004 are given in the table. Find the mean, median, and mode of the revenues.

| Top 10 Movie Revenues <br> (millions of \$) |  |
| :---: | :---: |
| 436 | 249 |
| 373 | 187 |
| 371 | 176 |
| 279 | 173 |
| 261 | 163 |

$$
\begin{aligned}
\text { mean } & =\frac{\text { sum of revenues }}{\text { number of movies }} \\
& =\frac{436+373+371+279+261+249+187+176+173+163}{\square} \text { or } \\
& =\frac{\square}{\square}
\end{aligned}
$$

The mean revenue is $\square$
To find the median, order the numbers from least to greatest.


The median revenue is


There is $\square$ because each number in the set occurs $\square$

FOLDABLES

## Organize IT

Under the tab for Lesson 5-9, explain the differences between mean, median, and mode.

b. OLYMPICS The line plot shows the number of gold medals earned by each country that participated in the 2002 Winter Olympic games in Salt Lake City, Utah. Find the mean, median, and mode for the gold medals won.

mean $=\frac{6(0)+3(1)+5(2)+3(3)+3(4)+2(6)+1(10)+1(11)+1(12)}{25}=3.16$

There are $\square$ numbers. The median number is the middle in an ordered data list. The median is $\square$ The number
$\square$ occurs most frequently in the set of data. The mode
is


## Check Your Progress

a. TEST SCORES The test scores for a class of nine students are $85,93,78,99,62,83,90,75$, and 85 . Find the mean, median, and mode of the test scores.

b. FAMIILIES A survey of school-age children shows the family sizes displayed in the line plot. Find the mean, median, and mode.

median, and mode.


## BRINGING IT ALL TOGETHER

## STUDY GUIDE

## FOLDABLES

Use your Chapter 5 Foldable to help you study for your chapter test.

## Vocabulary <br> PUZZLEMAKER

To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 5, go to:
glencoe.com

## BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (pages 104-105) to help you solve the puzzle.

## 5-1

Fractions as Decimals
Write each fraction or mixed number as a decimal. Use a bar to show a repeating decimal.

1. $\frac{5}{6}$
2. $\frac{7}{8}$
3. $-4 \frac{1}{11}$

$\square$

Replace each $\bigcirc$ with $<,>$, or $=$ to make a true sentence.
4. $-5.43 \bigcirc-5.62$ $\square$ 5. $\frac{4}{5} \bigcirc \frac{9}{11} \square$
6. $0.76 \bigcirc \frac{23}{29}$


## 5-2

## Rational Numbers

Write each decimal as a fraction or mixed number in simplest form.
7. 0.62

8. 3.48

9. $1 . \overline{7}$


## 5-3 <br> Multiplying Rational Numbers

Find each product. Write in simplest form.
10. $\frac{3}{5}\left(-\frac{2}{3}\right)$
11. $-\frac{4}{15}\left(-\frac{55}{6}\right)$
12. $\frac{p}{15} \cdot \frac{3}{p^{2}}$

$\square$

5-4

## Dividing Rational Numbers

Find each quotient. Write in simplest form.
13. $\frac{2}{9} \div\left(\frac{1}{8}\right)$
14. $-\frac{3}{11} \div\left(\frac{7}{22}\right)$
15. $\frac{5 p q}{t} \div \frac{6 q}{t}$

16. Holly is wallpapering her kitchen. How many $8 \frac{1}{2}$ feet lengths of wallpaper can she cut from a roll of wallpaper that is $59 \frac{1}{2}$ feet long?

## 5-5

## Adding and Subtracting Like Fractions

Find each sum or difference. Write in simplest form.
17. $\frac{3}{10}+\frac{6}{10}$
18. $-\frac{3}{11}-\left(\frac{9}{11}\right)$
19. $-3 \frac{7}{18} m+5 \frac{5}{18} m$


## 5-6

Least Common Multiple
Find the least common multiple (LCM) of each set of numbers of monomials.
20. 12, 42 $\square$ 21. $8,12,18$ $\square$ 22. 14, 63 $\square$
Find the least common denominator (LCD) of each pair of fractions.
23. $\frac{5}{6}, \frac{7}{15}$ $\qquad$ 24. $\frac{11}{18}, \frac{23}{32} \square$
25. $\frac{1}{6} x y, \frac{7}{9} y \square$

## 5-7

## Adding and Subtracting Unlike Fractions

Find each sum or difference. Write in simplest form.
26. $\frac{4}{7}+\frac{2}{5}$
27. $\frac{5}{8}-\frac{9}{20}$
28. $6 \frac{1}{9}-4 \frac{5}{12}$


## 5-8

Solving Equations with Rational Numbers
Match each equation with the appropriate first step of its solution.
29. $y-6=11.8$ $\square$ a. Multiply each side by 6 .
b. Add 6 to each side.
30. $6+x=-9$ $\square$ c. Subtract 6 from each side.
31. $\frac{c}{6}=\frac{1}{2}$ $\square$ d. Divide each side by -6 .
e. Multiply each side by -6 .
32. $-\frac{1}{6} p=-\frac{1}{6} \quad \square$
33. Dividing by a fraction is the same as multiplying by the
$\square$

## 5-9

Measures of Central Tendency
Find the mean, median, and mode for each set of data. If necessary, round to the nearest tenth.
34. 6, 8, 12, 7, 6, 11, 20 $\square$
35.9.2, 9.7, 8.6, 9.8, 9.9, 8.9, 9.0, 8.5
$\square$
36. Which measure of central tendency is most affected by an extreme value?

## ARE YOU READY FOR THE CHAPTER TEST?

## Checklist

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 5.

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 5 Practice Test on page 285 of your textbook as a final check.

I used my Foldables or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 5 Study Guide and Review on pages 281-284 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may want to take the Chapter 5 Practice Test on page 285.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 5 Foldables.
- Then complete the Chapter 5 Study Guide and Review on pages 281-284 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 5 Practice Test on page 285.


Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.


## BUILD YOUR VOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 6.
As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

| Vocabulary Term | Found <br> on Page | Definition | Description or <br> Example |
| :--- | :--- | :--- | :--- |
| biased sample |  |  |  |
| constant of <br> proportionality |  |  |  |
| cross products |  |  |  |
| discount |  |  |  |
| nonproportional |  |  |  |
| percent |  |  |  |
| percent equation |  |  |  |
| percent proportion |  |  |  |


| Vocabulary Term | Found on Page | Definition | Description or Example |
| :---: | :---: | :---: | :---: |
| population |  |  |  |
| proportion |  |  |  |
| proportional |  |  |  |
| rate |  |  |  |
| ratio |  |  |  |
| sample |  |  |  |
| scale |  |  |  |
| scale drawing or scale model |  |  |  |
| scale factor |  |  |  |
| simple interest |  |  |  |
| unbiased sample |  |  |  |
| unit rate |  |  |  |

## 6-1 Ratios and Rates

## MAIN IDEAS

- Write ratios as fractions in simplest form.
- Determine unit rates.


## ReVIEW IT

What does it mean for a fraction to be in simplest form? (Lesson 4-4)
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\square$

## BUILD YOUR VOGABULARY (pages 134-135)


$\square$
A rate is a $\square$ of two $\square$
having different kinds of units.

When a rate is simplified so that it has a denominator of $\square$, it is called a unit rate.

## EXAMPLE Write Ratios as Fractions

1 Express the ratio 10 roses out of 12 flowers as a fraction in simplest form.


The ratio of roses to flowers is $\square$ to $\square$. This means that for every $\square$ flowers, $\square$ of them are roses.

## EXAMPLE Write Ratios as Fractions

2 Express the ratio 21 inches to 2 yards as a fraction in simplest form.


Written in simplest form, the ratio is $\square$

Check Your Progress in simplest form.
a. 8 golden retrievers out of 12 dogs

b. 4 feet to 18 inches


## EXAMPLE Compare Unit Rates

3 SHOPPING A 12-oz bottle of cleaner costs $\$ 4.50$. A 16-oz bottle of cleaner costs $\$ 6.56$. Which costs less per ounce?
Find and compare the unit rates of the bottles.

$$
\frac{\$ 4.50}{12 \text { ounces }}=\frac{\square}{1 \text { ounce }} \quad \frac{\$ 6.56}{16 \text { ounces }}=\frac{\square}{1 \text { ounce }}
$$

The $\square$ bottle has the lower $\square$

## EXAMPLE Con vert Rates

4. ANIMALS A snail moved 30 feet in $\mathbf{2}$ hours. How many inches per minute did the snail move?
You need to convert feet to inches and hours to minutes.

$$
\frac{30 \mathrm{ft}}{2 \mathrm{hr}}=\frac{30 \mathrm{ft}}{2 \mathrm{hr}} \cdot \frac{12 \mathrm{in} .}{1 \mathrm{ft}} \div \frac{60 \mathrm{~min}}{1 \mathrm{hr}}
$$

$$
=\frac{30 \mathrm{ft}}{2 \mathrm{hr}} \cdot \frac{12 \mathrm{in} .}{1 \mathrm{ft}} \cdot \square \text { Write the reciprocal of } \frac{60 \mathrm{~min}}{1 \mathrm{hr}} .
$$



Divide the common factors and units. Simplify.

## Homework

 AssignmentPage(s):
Exercises:

Check Your Progress
a. SHOPPING A 6-pack of a soft drink costs $\$ 1.50$. A 12-pack of a soft drink costs $\$ 2.76$. Which pack costs less per can?

b. JOGGING Dave jogs 2 miles in 22 minutes. How many feet per second is this?

## 6-2 Proportional and Nonproportional Relationships

## MAIN IDEAS

- Identify proportional and nonproportional relationships in tables and graphs.
- Describe a proportional relationship using an equation.


## BUILD YOUR VOGABULARY (pages 134-135)

Ratios and rates that are constant are $\square$ relationships contain ratios or rates that are not constant.

## EXAMPLE Identify Proportional Relationships

1 Determine whether the set of numbers in each table is proportional.
a.

| Baseballs | 1 | 2 | 3 | 4 |
| :--- | :---: | :---: | :---: | :---: |
| Cost (dollars) | 2 | 3 | 4 | 5 |

Write the ratio of

$\square$ for each number of baseballs in simplest form.

$$
\begin{array}{llll}
\frac{1}{2} & \frac{2}{3} & \frac{3}{4} & \frac{4}{5}
\end{array}
$$

The rates are
 , so the number of baseballs is
 to the cost.
b.

| Time (seconds) | 1 | 2 | 3 | 4 |
| :--- | :---: | :---: | :---: | :---: |
| Distance (inches) | 4 | 8 | 12 | 16 |

Write the ratio of $\square$ to
 for each time in simplest form.

$$
\frac{1}{4} \quad \frac{2}{8}=\frac{1}{4} \quad \frac{3}{12}=\frac{1}{4} \quad \frac{4}{16}=\frac{1}{4}
$$

The rates are $\square$ , so time is $\square$ to the distance.

Check Your Progress
Determine whether the set of numbers in each table is proportional.
a.

| Chaperones | 1 | 2 | 3 | 4 |
| :--- | :---: | :---: | :---: | :---: |
| Students | 15 | 30 | 45 | 60 |

b.

| Number of Classes | 1 | 2 | 3 | 4 |
| :--- | :---: | :---: | :---: | :---: |
| Cost (dollars) | 12 | 22 | 30 | 38 |

## EXAMPLE

(2) WORK Nina charges $\$ 5$ for each day of pet sitting. Write an equation relating the cost of pet sitting to the number of days. What would be the cost of pet sitting for 4 days? Determine the $\square$ between the cost and number of days.

$$
\frac{\text { cost }}{\text { day }}=\$ 5
$$


$c=5 d \quad$ Write the equation
$=5(\square) \quad$ Replace $\square$ with the number of days.
$\square$ Multiply.

## Homework Assignment

Page(s):
Exercises:

## 6-3 Using Proportions

## MAIN IDEAS

- Solve proportions.
- Use proportions to solve real-world problems.


## EXAMPLE Solve Proportions

## Key Concepts

Proportion A proportion is an equation stating that two ratios are equal.

Property of Proportions The cross products of a proportion are equal.

A proportion is a statement of In the proportion $\frac{a}{b}=\frac{c}{d}$, the called the cross products of the proportion.

## Solve each proportion.

a. $\frac{c}{36}=\frac{9}{15}$

$$
\begin{aligned}
\frac{c}{36} & =\frac{9}{15} \\
c \cdot 15 & =36 \cdot 9
\end{aligned}
$$



## BUILD YOUR VOGABULARY (pages 134-135)

$\square$ of two $\square$
$\square$ $a d$ and $c b$ are

Cross products
Multiply.


Divide.
b. $\frac{16}{v}=\frac{4.8}{1.5}$

$$
\begin{array}{rlr}
\frac{16}{v} & =\frac{4.8}{1.5} & \\
16 \cdot 1.5 & =v \cdot 4.8 & \\
\square & =\square & \\
\square & =\square & \text { Multiply. } \\
\square & & \text { Divide. } \\
\square & v &
\end{array}
$$

## Check Your Progress Solve each proportion.

a. $\frac{x}{12}=\frac{3}{8}$ $\square$ b. $\frac{5}{m}=\frac{3}{4.2}$ $\square$

## EXAMPLE

2 ARCHITECTURE An architect builds a model of a building before the actual building is built. The model is 8 inches tall and the actual building will be 22 feet tall. The model is 20 inches wide. Find the width of the actual building.

Write and solve a proportion using ratios that compare actual height to model height.
$\frac{\text { actual height }}{\text { model height }}=\frac{\text { actual width }}{\text { model width }}$


## 6-4 $\quad$ Scale Drawings and Models

## MAIN IDEAS

- Use scale drawings.
- Construct scale drawings.


## Remember It

When finding the scale factor, be sure to use the same units of measure.

## BUILD YOUR VOCABULARY (page 135)

A scale drawing or scale model is used to represent an object that is too $\square$ or too $\square$ to be drawn or built at actual size.

The $\square$ of a length on a scale drawing or model to the corresponding length on the real object is called the scale factor.

## EXAMPLE Find Actual Measurements

1) MAP A map has a scale of 1 inch $=8$ miles. Two towns are 3.25 inches apart on the map. What is the actual distance between the two towns?

METHOD 1 Let $x$ represent the actual distance between the two towns. Write and solve a proportion.
$\underset{\text { actual distance } \longrightarrow}{\quad \text { map distance } \longrightarrow} \frac{1 \text { inch }}{8 \text { miles }}=\square \frac{\text { inches }}{\text { miles }} \longleftarrow$ map distance
The actual distance between the two towns is $\square$

METHOD 2 The actual distance is proportional to the distance on the scale drawing with a ratio of


Find the scale factor.


Convert 8 miles to inches.

The scale factor is $\square$ So, the actual distance
is $\square$ times the map distance.

$$
\begin{aligned}
a & =506,880 \mathrm{~m} & \text { Write the } \\
& =506,880(\square) \text { or } \square & \text { Simplify. }
\end{aligned}
$$

The actual distance is $1,647,360$ inches or $\square$

## Check Your Progress

A scale drawing of a new house has a scale of 1 inch $=4$ feet. The height of the living room ceiling is 2.75 inches on the scale drawing. What is the actual height of the ceiling?

## EXAMPLE Determine the Scale

2 MODEL CAR A model car is 4 inches long. The actual car is 12 feet long. What is the scale of the model?



Find the cross products.

$=$


Simplify.


Divide each side by 4 .

$$
x=\square
$$

The scale is $\square$

Check Your Progress A model log cabin is 12 inches high. The actual log cabin is 42 feet high. What is the scale of the model?

## Write IT

What two numbers do you need to construct a scale drawing of an object?
$\qquad$
$\qquad$
$\qquad$

Homework Assignment

| Page(s): |
| :--- |
| Exercises: |

## 6-5 Fractions, Decimals, and Percents

## MAIN IDEAS

- Express percents as fractions and vice versa.
- Express percents as decimals and vice versa.


## BUILD YOUR YOGABULARY (page 134)

A percent is a ratio that compares a number to 100 .

## EXAMPLE Percents as Fractions

1) Express each percent as a fraction in simplest form.
a. $\mathbf{6 0 \%}=\frac{60}{100}$

b. $\mathbf{1 0 4 \%}=\frac{104}{100}$

c. $\mathbf{0 . 3} \%=\frac{0.3}{100}$
d. $\mathbf{5 6} \frac{\mathbf{1}}{4} \%=\frac{56 \frac{1}{4}}{100}$

$$
=\frac{0.3}{100} \cdot
$$

$$
=56 \frac{1}{4} \div
$$




## EXAMPLE Fractions as Percents

2) Express each fraction as a percent.

## Key Concepts

Percents and Decimals
To write a percent as a decimal, divide by 100 and remove the percent symbol.

To write a decimal as a percent, multiply by 100 and add the percent symbol.
a. $\frac{19}{20}=$

b. $\frac{8}{5}=$ $\square$ or $\square$

## Check Your Progress

Express each percent as a fraction in simplest form.
a. $35 \%$

b. $160 \%$

c. $0.8 \%$
d. $32 \frac{1}{2} \%$


Express each fraction as a percent.
e. $\frac{17}{25}$ $\square$ f. $\frac{14}{10}$
$\square$

## FOLDABLES

## Organize IT

Under each tab of your Foldable, describe a real-life situation where it would be helpful to convert to a fraction, decimal, or percent.


## EXAMPLE Percents as Decimals

## (3) Express each percent as a decimal.

Divide by 100 and remove the $\%$.
a. $\mathbf{6 0 \%}=60 \%=\square$
b. $\mathbf{7 \%}=07 \%=\square$
c. $658 \%=6.58=\square$
d. $\mathbf{0 . 4 \%}=00.4=\square$

## EXAMPLE Decimals as Percents

## 4. Express each decimal as a percent.

Multiply by 100 and add the $\%$.
a. $0.4=0.40=\square$
b. $\mathbf{0 . 0 5}=0.05=\square$

## EXAMPLE Fractions as Percents

5 Express each fraction as a percent. Round to the nearest tenth percent, if necessary.
a. $\frac{5}{8}=0.625=$ $\square$ b. $\frac{\mathbf{1}}{\mathbf{3}}=0.333 \ldots \approx \square$
c. $\frac{9}{1000}=0.009=$ $\square$ d. $\frac{\mathbf{2 3}}{\mathbf{1 4}} \approx 1.643=\square$

## Check Your Progress

Express each percent as a decimal.
a. $84 \%$
b. $7 \% \square$
c. $302 \%$

d. $0.9 \%$ $\square$

Express each decimal as a percent.
e. 0.84
f. 0.01


Express each fraction as a percent. Round to the nearest tenth percent, if necessary.
g. $\frac{3}{8}$
h. $\frac{5}{12}$

i. $\frac{13}{1000}$
j. $\frac{21}{17}$ $\square$

EXAMPLE Compare Numbers
(6) BAKERY A baker said that $25 \%$ of his customers buy only bread and $\frac{2}{5}$ of his customers buy only cookies. Which group is larger?

that buy only $\square$ is larger.

Check Your Progress
SCHOOL The school principal states that $\frac{3}{8}$ of the students are involved in instrumental music while $42 \%$ are involved in vocal music. Which group is larger?

## Homework

 AssignmentPage(s):
Exercises:

## 6-6 Using the Percent Proportion

## Main IDEA

- Use the percent proportion to solve problems.


## Key Concept

## Percent Proportion

$\frac{\text { part }}{\text { whole }}=\frac{\text { percent }}{100}$

## BUILD YOUR VOCABULARY (page 134)

In a percent proportion, one of the numbers, called the part, is being $\square$ to the $\square$, called the base, or whole.

## EXAMPLE Find the Percent

(1) a. Twenty is what percent of 25 ?

Twenty is being compared to 25 . So, $\square$ is the part and
$\square$ is the whole. Let $n$ represent the


$=\frac{n}{100}$ Write the percent proportion.

Simplify.

So, 20 is
 of 25 .

## b. What percent of 8 is $\mathbf{1 2}$ ?

Twelve is being compared to 8 . So, $\square$ is the part and $\square$ is the whole. Let $n$ represent the $\square$


Write the percent proportion.


Find the cross products.


$$
=n
$$

Simplify.
So, $\square$ of 8 is 12 .

EXAMPLE Find the Part
(2) What number is $8.8 \%$ of 20 ?

The percent is $\square$ , and the whole is $\square$

Let $n$ represent the $\square$


Write the percent proportion.

$=$


Find the cross products.


Simplify.

So, $8.8 \%$ of 20 is $\square$

EXAMPLE Find the Whole
3 Seventy is $28 \%$ of what number?

The percent is $\square$ and the part is $\square$

Let $n$ represent the $\square$


Write the percent proportion.


Find the cross products.


So, 70 is $28 \%$ of $\square$

Check Your Progress
Use the percent proportion to solve each problem. Round to the nearest tenth.
a. Twelve is what percent of 40 ?

## Homework Assignment


b. What percent of 20 is 35 ?

c. What number is $42.5 \%$ of 90 ?
$\square$
d. Ninety is $24 \%$ of what number?
$\square$

## EXAMPLE Apply the Percent Proportion

4) TENNIS From the years 1999 through 2005, Serena Williams won the U.S. Open Tennis Championships two times and Wimbledon two times. What percent of both tournaments combined during those years was Serena Williams the women's champion? Round to the nearest tenth.

The part is $\square$ and the whole is $\square$ Let $n$ represent the percent.

$=\frac{n}{100}$


Check Your Progress
BAKE SALE At the school bake sale, 23 chocolate chip cookies, 18 oatmeal raisin cookies, and 7 peanut butter cookies were sold. If the sale started with a total of 90 cookies, what percent of the cookies were sold?


## 6-7 Finding Percents Mentally

## EXAMPLE Find Percent of a Number Mentally

## Main Ideas

- Compute mentally with percents.
- Estimate with percents.

FOLDABLES

## OrGANIZE IT

Under the percents tab of your Foldable, write the percent-fraction equivalents found on page 327 of your textbook.


1 Find the percent of each number mentally.
a. $50 \%$ of 46


So, $50 \%$ of 46 is

b. $\mathbf{2 5 \%}$ of $\mathbf{8 8}$


Think:


So, $25 \%$ of 88 is

c. $\mathbf{7 0 \%}$ of $\mathbf{1 1 0}$


Check Your Progress Find the percent of each number mentally.
a. $50 \%$ of 82
b. $25 \%$ of 36

c. $80 \%$ of 60


## EXAMPLE Estimate Percents

2
a. Estimate $22 \%$ of 494.


494 is about


So, $22 \%$ of 494 is about $\square$
b. Estimate $\frac{1}{4} \%$ of 1219 .

c. Estimate $\mathbf{1 5 5 \%}$ of 38.


Check Your Progress Estimate.
a. $38 \%$ of 400
$\square$
b. $\frac{1}{5} \%$ of 2482
$\qquad$
c. $183 \%$ of 93
$\square$

## 6-8 Using Percent Equations

## Main Ideas

- Solve percent problems using percent equations.
- Solve real-life problems involving discount and interest.


## BUILD YOUR YOGABULARY (page 134)

The percent equation is an equivalent form of the percent $\square$ in which the percent is written as a decimal.

## EXAMPLE Find the Part

1) Find 38\% of 22.

The percent is
 and the whole is $\square$ You need to find the $\square$ Let $n$ represent the part.
$n=\square$ Write 38\% as the decimal

$\square$ Simplify.

So, $38 \%$ of 22 is $\square$

## EXAMPLE Find the Percent

## (2) 19 is what percent of 25 ?

You know that the whole is $\square$ and the part is $\square$
Let $n$ represent the percent.

$=n$
Divide each side by


Simplify.
So, 19 is $\square$ of 25 .

## Check Your Progress

a. Find $64 \%$ of 48 .

b. 8 is what percent of 25 ?


EXAMPLE Find the Whole
3) 84 is $16 \%$ of what number?

You know that the part is


Let $n$ represent the whole.


Write $16 \%$ as the decimal $\square$

Divide each side by $\square$ Simplify.

So, 84 is $16 \%$ of $\square$

## Check Your Progress <br> 315 is $42 \%$ of what number?

## BUILD YOUR YOGABULARY (page 134)

Discount is the amount by which the regular price of an item is reduced.

## EXAMPLE Find Discount

(4)
JEWELRY The regular price of a ring is $\$ 495$. It is on sale at a $20 \%$ discount. What is the sale price of the ring?

## METHOD 1

First, use the percent equation to find $20 \%$ of 495 . Let $d$ represent the discount.

$d=\square$ Simplify.
Then, find the sale price.


Subtract the discount from the original price.

The sale price is $\square$

## METHOD 2

A discount of $20 \%$ means the ring will cost $\square$
$\square$
or $\square$ of the original price. Use the percent equation to find $80 \%$ of 495 . Let $s$ represent the sale price.
$s=0.80(495)$
$s=\square$

The whole is
 and the percent is


The sale price of the ring will be $\square$

## Check Your Progress

RETAIL The regular price of a stereo system is $\$ 1295$. The system is on sale at a $15 \%$ discount. Find the sale price of the stereo system.

## BUILD YOUR YOGABULARY (page 135)

Simple interest is the amount of money paid or earned for the use of money.

## EXAMPLE Apply Simple Interest Formula

(5) BANKING Suppose you invest $\$ 2000$ at an annual interest rate of $4.5 \%$. How long will it take for it to earn $\$ 495$ in interest?

$$
\begin{aligned}
I & =p r t & & \text { Simple interest formula } \\
495 & =2000(0.045) t & & I=495, p=2000, r=0.045
\end{aligned}
$$



Simplify.

$\square$

$$
=t
$$

Simplify.

## Homework Assignment

Page(s):
Exercises:

Divide each side by $\square$

It will take $\square$ years to earn $\$ 495$.

## Check Your Progress

BANKING Suppose you invest $\$ 3500$ at an annual interest rate of $6.25 \%$. How long will it take for it to earn $\$ 875$ ?

## 6-9 Percent of Change

## Main Ideas

- Find percent of increase.
- Find percent of decrease.


## BUILD YOUR VOCABULARY (page 134)

A percent of change tells the $\square$ an amount has increased or decreased in relation to the $\square$ amount.

## EXAMPL F Find Percent of Change

(1) Find the percent of change from 325 to 390 .

Step 1 Subtract to find the amount of change.


Step 2 percent of change $=\frac{\text { amount of change }}{\text { original amount }}$

$$
=\square=\square \text { or } \square
$$

The percent of change from 325 to 390 is $\square$

## EXAMPLE Find Percent of Increase

2 TUITION In 1965, when John entered college, the tuition per year was $\$ 7500$. In 2000, when his daughter went to the same school, the tuition was $\$ 25,500$. Find the percent of change.

Step 1 Subtract to find the amount of change.


Step 2 percent of change $=\frac{\text { amount of change }}{\text { original tuition }}$

$$
=\square=\square \text { or } \square
$$

The percent of change is $\square$

## Check Your Progress

a. Find the percent of change from 84 to 105.
$\square$
b. TEXTBOOKS In 1990, the price of a textbook was $\$ 38$. In 2000 , the price of the same textbook was $\$ 81$. Find the percent of change.

## FOLDABLES'

## ORGANIZE IT

On the back of your Foldable, describe how to find a percent of increase and a percent of decrease.

## Homework Assignment

Page(s):<br>Exercises:

## 6-10 Using Sampling to Predict

## MAIN IDEAS

- Identify various sampling techniques.
- Determine the validity of a sample and predict the actions of a larger group.


## BUILD YOUR VOGABULARY (pages 134-135)

A subgroup or subset of a population used to represent the whole is a called a $\square$ An $\square$ sample is a random sample that is representative of a larger sample.

A sample is a sample that is not representative of the population.

## EXAMPLE Identify and Describe Sample

1 Identify the sample as biased or unbiased and describe its type.
a. Mr. Ackermen needs several volunteers to collect homework before each class. He randomly calls out a color and whoever is wearing that color is chosen.

Since the population is all $\square$ and they are selected randomly from students wearing a certain color, the sample is an

b. A hardware store wants feedback on their products and service. They include a telephone number on each receipt so customers can voluntarily call and participate.
Since the customers at this particular store probably prefer this store's products and service, the sample is
 The sample is a $\square$ since only customers of this store are given the chance to participate in the survey. It is also a since only those who want to participate will respond.

Check Your Progress
Identify the sample as biased or unbiased and describe its type.
a. To determine peoples favorite snack food, the first ten customers leaving a candy store are surveyed.
b. To determine 5 students to be class volunteers for the day, each student in the class is given a number. A computer is used to randomly select 5 numbers and the students with those numbers are chosen as the class volunteers.

## EXAMPLE Using Sampling to Predict

2 a. SPORTS Mr. Bacon surveyed every tenth student in the hallway to see which sport they preferred watching. $44 \%$ preferred football, $28 \%$ basketball, $20 \%$ soccer, and $8 \%$ tennis. Is this sampling method valid? If so, out of 560 students in the entire school, how many would you expect to say they preferred watching football?

This is an
since Mr. Bacon selected students according to a specific
$\square$ So, this sampling method is $\square$
Since $44 \%$ of those surveyed preferred watching

preferred watching football in the entire school, find $\square$

(continued on the next page)

## Homework Assignment


$n=$ $\square$
$\square$ Multiply.

So, you would expect about $\square$ students prefer watching $\square$.
b. MUSIC A middle school planned to play music during lunch. To determine what type of music students preferred, 25 students with MP3 players were randomly surveyed and asked what type of music they preferred. Sixteen said they preferred country music. Is this sampling method valid? If so, how many of the 535 students in the school would you expect to prefer country music?

students were surveyed. Therefore, this sampling method will not produce an $\square$ and $\square$ prediction of the type of music students prefer.

Check Your Progress
a. COLORS To determine favorite colors, students wearing either blue or red were surveyed. $32 \%$ preferred blue, $29 \%$ red, $23 \%$ yellow, and $16 \%$ green. Is this sampling method valid? If so, out of the 450 students in the entire school, how many would you expect to say they prefer red?

b. TELEVISIONS Jason surveyed every fifth classmate to find out how many televisions each had in their home. $63 \%$ responded that they had three or more televisions in their home. Is this sampling method valid? If so, how many of the 845 students in the school should Jason expect to have three or more televisions in their home?

## 6

## BRINGING IT ALL TOGETHER

## STUDY GUIDE

## FOLDABLES'

Use your Chapter 6 Foldable to help you study for your chapter test.

## Vocabulary

PUZZLEMAKER
To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 6, go to:
glencoe.com

## BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (pages 134-135) to help you solve the puzzle.

## 6-1 <br> Ratios and Rates

Underline the correct term or phrase to fill the blank in each sentence.

1. A is a ratio of two measurements having different kinds of units. (fraction, unit, rate)
2. A unit rate has a $\qquad$ of 1. (numerator, denominator, simplest form)
3. A ratio is a comparison of two numbers by $\qquad$ . (addition, multiplication, division)
4. Express the ratio 16 novels out of 40 books as a fraction in simplest form. $\square$

## 6-2

Proportional and Nonproportional Relationships
Determine whether the set of numbers in each table are proportional.
5.

| Number of Guests | 6 | 7 | 8 | 9 | 10 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Cost (dollars) | 42 | 49 | 56 | 63 | 70 |

$\square$
6.

| Number of hours | 1 | 2 | 4 | 6 | 7 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Price (dollars) | 14 | 23 | 41 | 59 | 68 |

$\square$

6-3

## Using Proportions

Solve each proportion.
7. $\frac{8}{45}=\frac{1.6}{x}$
8. $\frac{y}{12}=\frac{1.6}{4}$
9. $\frac{5}{24}=\frac{z}{72}$


## 6-4

## Scale Drawings and Models

10. A swimming pool is 36 feet long and 15 feet wide. Make a scale drawing of the pool that has a scale of $\frac{1}{4} \mathrm{in}$. $=3 \mathrm{ft}$.

11. The right arm of the Statue of Liberty is 42 feet long. A scale model of the statue has a 3 -inch long right arm. What is the scale of the model?


## 6-5 <br> Fractions, Decimals, and Percents <br> Underline the greatest number in each set. <br> 12. $\left\{\frac{4}{7}, 45 \%, 0.42,5\right.$ out of 8$\}$ <br> 13. $\left\{\frac{2}{11}, 11 \%, 0.17,1\right.$ out of 12$\}$

## 6-6

## Using the Percent Proportion

14. 11 is $20 \%$ of what number? $\square$
15. What is $36 \%$ of 75 ?
16. 18 is what percent of 60 ? $\square$

## 6-7

## Finding Percents Mentally

## Estimate.

17. $\frac{2}{3} \%$ of 155
18. $147 \%$ of 78

19. $84 \%$ of 31


## 6-8

## Using Percent Equations

Solve each problem using the percent equation.
20. 7 is what percent of 25 ?

$\mathbf{2 2 .} 32$ is $5 \%$ of what number?

21. What is $40.4 \%$ of 50 ?

23. Find $140 \%$ of 75 .

24. A CD player is on sale at a $20 \%$ discount. If it normally sells for $\$ 49.95$, what is the sale price?
25. What is the annual interest rate if $\$ 2800$ is invested for 4 years and $\$ 364$ in interest is earned? $\square$

## 6-9

## Percent of Change

26. A $\$ 775$ computer is marked down to $\$ 620$.

Find the percent of change. $\square$
27. Refer to the table shown. Which school had the smallest percent of increase in the number of students from 1994 to 2004?
$\square$

| School | $\mathbf{1 9 9 4}$ | $\mathbf{2 0 0 4}$ |
| :---: | :---: | :---: |
| Oakwood | 672 | 702 |
| Jefferson | 433 | 459 |
| Marshall | 764 | 780 |

## 6-10

## Using Sampling to Predict

28. COOKIES The students in the life skills class took a survey during lunch time about the type of cookies they should make for the bake sale. They randomly surveyed a total of 67 students and their results are shown in the table. Is this sampling method valid? If so, how many of the cookies should be peanut butter if they make 800 cookies? Explain your reasoning.

| Type | Number |
| :--- | :---: |
| Chocolate Chip | 29 |
| Peanut butter | 15 |
| Chocolate | 12 |
| Sugar | 11 |

## Checklist

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 6.

## ARE YOU READY FOR THE CHAPTER TEST?

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 6 Practice Test on page 353 of your textbook as a final check.

I used my Foldables or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 6 Study Guide and Review on pages 348-352 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may want to take the Chapter 6 Practice Test on page 353.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 6 Foldables.
- Then complete the Chapter 6 Study Guide and Review on pages 348-352 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 6 Practice Test on page 353.



## Functions and Graphing

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.

## Begin with an $11^{\prime \prime} \times 17^{\prime \prime}$ sheet of paper.

STEP 1 Fold the short sides so they meet in the middle.


## STEP 2 Fold the top

 to the bottom.

STEP 3 Open and cut along second fold to make four tabs. Staple a sheet of grid paper inside.


STEP 4 Add axes as shown. Label the quadrants on the tabs.

## BUILD YOUR VOCABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 7.
As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

| Vocabulary Term | Found <br> on Page | Definition | Description or <br> Example |
| :--- | :--- | :--- | :--- |
| constant of <br> variation <br> [VEHR-ee-Ay-shuhn] |  |  |  |
| constant rate of change |  |  |  |
| direct variation |  |  |  |
| function |  |  |  |
| line of fit |  |  |  |
| linear equation |  |  |  |
| [LINH-ee-uhr] |  |  |  |


| Vocabulary Term | Found <br> on Page | Definition | Description or <br> Example |
| :--- | :--- | :--- | :--- |
| linear relationships |  |  |  |
| rate of change |  |  |  |
| slope |  |  |  |
| v-intercept |  |  |  |
| slope-intercept form |  |  |  |
| [IHNT-uhr-sehpt] |  |  |  |

## 7-1 <br> Functions

## BUILD YOUR VOGABULARY (page 166)

## MAIN IDEAS

- Determine whether relations are functions.
- Use functions to describe relationships between two quantities.


## Remember It

If any vertical line drawn on the graph of a relation passes through no more than one point on the graph, then the relation is a function. This is a vertical line test.

A function is a special relation in which each member of the domain is paired with exactly one member in the range.

## EXAMPLE Ordered Pairs and Tables as Functions

Determine whether each relation is a function. Explain.
a. $\{(-3,-3),(-1,-1),(0,0),(-1,1),(3,3)\}$

b.

| $x$ | 7 | 6 | 5 | 2 | -3 | -6 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $y$ | 2 | 4 | 6 | 4 | 2 | -2 |

$\square$ , each $x$ value is paired
with $\qquad$

## Check Your Progress <br> Determine whether each

 relation is a function. Explain.a. $\{(2,5),(4,-1),(3,1),(6,0),(-2,-2)\}$

b.

| $\boldsymbol{x}$ | 3 | 1 | -1 | -3 | 1 | -5 |
| :--- | :--- | :--- | ---: | ---: | ---: | ---: |
| $\boldsymbol{y}$ | 5 | 4 | 3 | -4 | 2 | $\mathbf{1}$ |



## EXAMPLE Use a Graph to Identify Functions

Determine whether the graph is a function. Explain.
$\square$ , it passes the $\square$


## FOLDABLES

## ORGANIZE IT

In your notes, draw a graph of a relation that is a function and a graph of a relation that is not a function. Explain why the second relation is not a function.


## Homework Assignment

Page(s):
Exercises:

Check Your Progress
Determine whether the graph is a function. Explain.


## EXAMPLE

## 3 BUSINESS The table

 shows the number of boxes made.| Number of Hours | Number of Boxes |
| :---: | :---: |
| 0 | 0 |
| 10 | 3000 |
| 20 | 6000 |
| 30 | 9000 |

a. Do these data represent a function? Explain.

; for each 10 hours, only $\square$ of boxes is made.
b. Describe how box production is related to hours of operation.
As the number of hours $\square$, the number of
boxes produced $\square$

## Check Your Progress

BUSINESS The table shows the number of chairs made.

| Number of Hours | Number of Boxes |
| :---: | :---: |
| 5 | 120 |
| 10 | 240 |
| 15 | 360 |
| 20 | 480 |

a. Do these data represent a function? Explain.
$\square$
b. Describe how chair production is related to hours of operation.

## 7-2 Representing Linear Functions

## MAIN IDEAS

- Solve linear equations with two variables.
- Graph linear equations using ordered pairs.


## BUILD YOUR VOGABULARY (page 166)

A linear equation in two variables is an equation in which the $\square$ appear in $\square$ terms and neither variable contains an $\square$ other than 1.

## EXAMPLE Use a Table of Ordered Pairs

1 Find four solutions of $y=4 x+3$.
Choose four values for $x$. Then substitute each value into the equation to solve for $y$.

| $\boldsymbol{x}$ | $\boldsymbol{y}=4 \boldsymbol{x}+\mathbf{3}$ | $\boldsymbol{y}$ | $(\boldsymbol{x}, \boldsymbol{y})$ |
| :---: | :---: | :---: | :---: |
| 0 | $y=4 \square+3$ | $\square$ | $\square$ |
| 1 | $y=4 \square+3$ | $\square$ | $\square$ |
| 2 | $y=4 \square+3$ | $\square$ | $\square$ |
| 3 | $y=4 \square+3$ | $\square$ | $\square$ |

Four solutions are $\square, \square, \square$, and $\square$.

Check Your Progress
Find four solutions of $y=2 x-4$.


## EXAMPLE Solve an Equation for $y$

2) BUSINESS At a local software company, Level 1 employees $x$ earn $\$ 48,000$ and Level 2 employees $y$ earn $\$ 24,000$. Find four solutions of $48,000 x+24,000 y$ $=216,000$ to determine how many employees at each level the company can hire for $\mathbf{\$ 2 1 6 , 0 0 0}$.
$48,000 x+24,000 y=216,000 \quad$ Write the
 equation.

Subtract

from each side.


$$
y=\square \quad \text { Simplify. }
$$

Divide each
side by


Choose four $x$ values and substitute them into

| $\boldsymbol{x}$ | $\boldsymbol{y = 9}-\mathbf{2 x}$ | $\boldsymbol{y}$ | $(x, y)$ |
| :---: | :---: | :---: | :---: |
| 0 | $y=9-2$ | $\square$ | $\square$ |
| 1 | $y=9-2$ | $\square$ | $\square$ |
| 2 | $y=9-2$ | $\square$ | $\square$ |
| 3 | $y=9-2$ | $\square$ | $\square$ |

$(0, \square) 0$ Level 1, $\square$ Level 2
$(1, \square) 1$ Level 1, $\square$ Level 2
$(2, \square) 2$ Level 1, $\square$ Level 2
$(3, \square) 3$ Level 1, $\square$ Level 2
The company can hire 0 Level 1 and Level 2 employees,
1 Level 1 and Level 2 employees, 2 Level 1 and

Level 2 employees, or 3 Level 1 and
Level 2 employees.

Check Your Progress BOOKS At a local bookstore, hardbacks are on sale for $\$ 6$ and paperbacks are on sale for $\$ 3$. Bob has $\$ 42$ to spend on books. Find four solutions to determine how many books of each type Bob can buy with his $\$ 42$.

## EXAMPLE Graph a Linear Equation

## 3 Graph $y=x-3$ by plotting ordered pairs.

First, find ordered pair solutions.

| $\boldsymbol{x}$ | $\boldsymbol{y}=\boldsymbol{x}-\mathbf{3}$ | $\boldsymbol{y}$ | $(\boldsymbol{x}, \boldsymbol{y})$ |
| :---: | :---: | :---: | :---: |
| -1 | $y=\square-3$ | $\square$ | $\square$ |
| 0 | $y=\square-3$ | $\square$ | $\square$ |
| 1 | $y=\square-3$ | $\square$ | $\square$ |
| 2 | $y=\square-3$ | $\square$ | $\square$ |

Plot these ordered pairs and draw a line through them. The line is a complete graph of the function.


## Check Your Progress

Graph $y=5-x$ by plotting ordered pairs.


## 7-3 Rate of Change

## MAIN IDEAS

- Find rates of change.
- Solve problems involving rates of change.


## BUILD YOUR VOGABULARY (page 167)

 $\mathrm{A} \square$ in one $\square$another quantity is called the rate of change. another quantity is called the rate of change.

## EXAMPL

1) SCHOOL The graph shows Jared's quiz scores for the first five weeks after he joined a study group. Find the rate of change from Week 2 to Week 5.



So, the expected rate of change in quiz scores is an increase of about $\square$ per week.

## Check Your Progress

SUMMER CAMP The graph shows the number of campers enrolled at a summer camp during its first five years of operation. Find the rate of change from Year 2 to Year 5.


## EXAMPLE Compare Rates of Change

2 INCOME The table shows the yearly incomes of two families. Compare the rates of change.

| Year | Income (\$) |  |
| :---: | :---: | :---: |
|  | Milers | Joneses |
| 2001 | 49,000 | 50,000 |
| 2002 | 51,000 | 52,000 |
| 2003 | 52,500 | 54,500 |
| 2004 | 55,000 | 57,000 |

Milers' rate of change $=\frac{\text { change in } y}{\text { change in } x}$


Joneses' rate of change $=\frac{\text { change in } y}{\text { change in } x}$


The income of the Joneses increases at a faster rate than the income of the Milers.


## Check Your Progress

INCOME The table shows the yearly incomes of two families. Compare the rates of change.

| Year | Income (\$) |  |
| :---: | :---: | :---: |
|  | Longs | Greens |
| 1998 | 45,000 | 43,000 |
| 1999 | 48,000 | 46,000 |
| 2000 | 51,500 | 49,500 |
| 2001 | 55,000 | 54,000 |

## 7-4 Constant Rate of Change and Direct Variation

## MAIN IDEAS

- Identify proportional and nonproportional relationships by finding a constant rate of change.
- Solve problems involving direct variation.


## BUILD YOUR VOGABULARY (pages 166-167)

$\square$ have straight line graphs.

## EXAMPLE Use a Graph to Find a Constant Rate of Change

1 SOCCER The graph shows Yen's soccer goals for the ten-week season. Find the constant rate of change from Week 2 to Week 8. Describe what the rate means.
Choose any two points on the line
 and find the rate of change between them. We will use the points at $(2,1)$ and $(8,5)$.

rate of change $=\frac{\text { change in goals }}{\text { change in time }}$


The rate of change $\square$ goals per week means that Yen scored
$\square$ goals every $\square$ weeks.

## Check Your Progress

SCHOOL The graph shows the number of students at Lincoln Elementary school. Find the constant rate of change from 2002 to 2005. Describe what the rate means.



## EXAMPLE Use Direct Variation to Solve Problems

3
LANDSCAPING As it is being dug, the depth of a wide hole for a backyard pond is recorded in a table.
a. Write an equation that relates time and hole depth.

Step 1 Find the value of $k$

| Time (min) | Hole Depth (in.) |
| :---: | :---: |
| $\boldsymbol{x}$ | $\boldsymbol{y}$ |
| 10 | 8 |
| 20 | 15 |
| 30 | 24 |
| 40 | 31 | using the equation $y=k x$.

Choose any point in the table. Then solve for $\qquad$ $y=k x \quad$ Direct Variation


Step 2 Use $\square$ to write an equation.

$$
y=k x \quad \text { Direct Variation }
$$


b. Predict how long it will take to dig a depth of 36 inches.

## HOMEWORK ASSIGNMENT

Page(s):
Exercises:

## BUILD YOUR YOGABULARY (page 167)

## MAIN IDEA

- Find the slope of a line.

Slope describes the of a line. It is the ratio of the rise, or the $\square$ change, to the run, or the
$\square$ change.

## EXAMPLE Use a Graph to Find Slope

## (1) Find the slope of each line.

## Key Concept

Slope The slope $m$ of a line passing through points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is the ratio of the difference in $y$-coordinates to the corresponding difference in $x$-coordinates.
a.


$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Definition of slope

$\left(x_{1}, y_{1}\right)=(0,1)$
$\left(x_{2}, y_{2}\right)=(1,4)$


The slope is $\square$
b.

$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$


$$
\begin{aligned}
& \left(x_{1}, y_{1}\right)=(3,1) \\
& \left(x_{2}, y_{2}\right)=(-3,3)
\end{aligned}
$$

$$
m=\square \text { or } \square
$$

Definition of slope

The slope is
$\square$

FOLDABLES'

## ORGANIZE IT

In your notes, write a sample equation for each slope: positive, negative, zero, and undefined. Then graph each equation and write its slope.


## EXAMPLE Positive and Negative Slopes

2 Find the slope of the line that passes through each pair of points.
a. $B(2,7), C(-3,-2)$
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad$ Definition of slope
$m=\begin{aligned} & \square=\begin{array}{l}\left(x_{1}, y_{1}\right)=(2,7), \\ \left(x_{2}, y_{2}\right)=(-3,-2)\end{array}\end{aligned}$
$m=\square$
b. $F(-5,1), G(-3,-6)$

$$
\begin{array}{ll}
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} & \text { Definition of slope } \\
m=\square & \begin{array}{l}
\left(x_{1}, y_{1}\right)=(2,7), \\
\left(x_{2}, y_{2}\right)=(-3,-2)
\end{array} \\
m=\square &
\end{array}
$$

## Check Your Progress

Find the slope of each line.
a.

b.


## FOLDABLES

## Organize IT

In your notes, write an example of a linear equation in slopeintercept form. Graph the equation using its slope and $y$-intercept and list the steps involved.


## Write It

What are the two ways to interpret a negative slope when graphing an equation?
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Homework

 AssignmentPage(s):
Exercises:
$\qquad$


## EXAMPLE Graph an Equation

1) Graph $y=-3 x+9$ using the slope and $y$-intercept.

Step 1 Find the slope and $y$-intercept.

$$
\text { slope }=\square \quad y \text {-intercept }=\square
$$

Step 2 Graph the $y$-intercept point at $\square$

Step 3 Write the slope $\square$ as $\square$
Use it to locate a second point on the line.


Another point on the line is at $\square$

Step 4 Draw a line through the two points.


## Check Your Progress

Graph $y=\frac{2}{3} x+4$ using the slope and $y$-intercept.


## 7-7 Writing Linear Equations

## EXAMPLE Write Equations From Slope and $y$-Intercept

## MAIN IDEAS

- Write equations given the slope and $y$-intercept, a graph, a table, or two points.


## (1) Write an equation in slope-intercept form for the line

 having slope of $-\frac{1}{4}$ and a $\boldsymbol{y}$-intercept of 7 .$$
\begin{aligned}
& y=m x+b \\
& y=-\frac{1}{4} x+7
\end{aligned}
$$

Slope-intercept form


## EXAMPLE Write an Equation From a Graph

2 Write an equation in slope-intercept form for the line graphed.

The $y$-intercept is $\square$ From $\square$ you can go up $\square$ unit and to the
$\square$ one unit to another point on
 the line. So, the slope is $\square$ $y=m x+b \quad$ Slope-intercept form $y=\square x+\square \quad$ Replace $m$ with $\square$ and $b$ with $\square$. $y=\square$ Simplify.

Check Your Progress
a. Write an equation in slope-intercept form for the line having slope of -3 and a $y$-intercept of -5 .

b. Write an equation in slope-intercept form for the line graphed.


EXAMPLE Write an Equation to Make a Prediction
3) BUSINESS The owners of the Good Times eatery surveyed their customers to find out where they lived. They learned that for each 5 -mile radius from their restaurant, 30 fewer people visited them. They had 150 patrons in the area immediately surrounding the diner. Predict the number of customers who lived 20 miles away.
Make a table of ordered pairs.

| Distance $\boldsymbol{x}$ | Patrons $\boldsymbol{y}$ |
| :---: | :---: |
| 0 | 150 |
| 5 | 120 |
| 10 | 90 |

Step 1 Find the slope $m$.

$$
\begin{aligned}
m & =\frac{\text { change in } y}{\text { change in } x} \square \\
& =\square \\
& =\square
\end{aligned}
$$

Step 2 Find the $y$-intercept $b$.

$$
\begin{aligned}
(x, y) & =\text { (distance, patrons }) \\
& =(0, \square)
\end{aligned}
$$

When the distance is within
 there are $\square$.
Step 3 Write the equation.

$$
\begin{array}{ll}
y=m x+b & \text { Slope-intercept form } \\
y=\square x+150 & \text { Replace } m \text { with } \square \text { and } \\
& b \text { with } \square .
\end{array}
$$

Step 4 Substitute the distance of $\square$ miles.

$$
\begin{aligned}
y & =-6 x+150 & & \text { Write the equation. } \\
& =-6(\square)+150 & & \text { Replace } x \text { with } \square . \\
& =\square & & \text { Simplify. }
\end{aligned}
$$

So, the diner had 30 patrons that lived $\square$ miles away.

FOLDABLES

## ORGANIZE IT

In your notes, write two points, find the equation of the line that passes through them, and graph the line.


## Check Your Progress

WEATHER Attendance at an outdoor sporting event is affected by the temperature outside. When the outside temperature is $0^{\circ} \mathrm{F}$, the attendance is 12 people. For every increase in temperature of 20 degrees, the attendance increases by 100 people. Predict the attendance if the temperature is $60^{\circ} \mathrm{F}$.

## EXAMPL Write an Equation Given Two Points

4) Write an equation for the line that passes through $(7,0)$ and $(6,3)$.
Step 1 Find the slope $m$.
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad$ Definition of slope $m=\frac{\square}{\square}$ or $\square \quad \begin{aligned} & \left(x_{1}, y_{1}\right)=(7,0) \\ & \left(x_{2}, y_{2}\right)=(6,3)\end{aligned}$

Step 2 Find the $y$-intercept $b$. Use the slope and the coordinates of either point.

$$
y=m x+b
$$

Slope-intercept form


Replace $m$ with

$\square$
$\square$
$=b$

Step 3 Substitute the slope and $y$-intercept.

$$
\begin{aligned}
& y=m x+b \\
& y=\square
\end{aligned}
$$



Check Your Progress
Write an equation for the line that passes through $(4,-2)$ and $(-2,-14)$.

## EXAMPLE Write an Equation From a Table

(5) Use the table of values to write an equation in slope-intercept form.

Step 1 Find the slope $m$. Use the coordinates of any two points.
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
$m=\frac{\square}{\square}$ or $\square$

| $\boldsymbol{x}$ | $\boldsymbol{y}$ |
| ---: | ---: |
| -2 | 16 |
| -1 | 10 |
| 0 | 4 |
| 1 | -2 |

Definition of slope

$$
\begin{aligned}
& \left(x_{1}, y_{1}\right)=(-2,16) \\
& \left(x_{2}, y_{2}\right)=(-1,10)
\end{aligned}
$$

Step 2 Find the $y$-intercept $b$. Use the slope and the coordinates of either point.

$$
\begin{aligned}
& y=m x+b \\
& \square=\square \\
& \square=b
\end{aligned}
$$

Slope-intercept form

$$
\square=\square+b \quad \text { Replace } m \text { with } \square, y \text { with }
$$

$$
\square \text {, and } x \text { with } \square .
$$

Simplify.

## Homework AssignMent

Page(s):
Exercises:

| $x$ | $y$ |
| ---: | ---: |
| -6 | 4 |
| -3 | 2 |
| 3 | -2 |
| 6 | -4 |

## Check Your Progress

Use the table of values to write an equation in slope-intercept form.


$$
\begin{array}{ll}
y=m x+b & \text { Slope-intercept form } \\
y=\square+\square & \text { Replace } m \text { with } \square
\end{array}
$$

Step 3 Substitute the slope and $y$-intercept.

## EXAMPLE Negative Rate of Change

3 COOKIES Natalie sold 100 cookies in 5 hours. The graph below shows the relationship between the hours spent selling and the number of cookies that remained. Find the rate of change.

rate of change $=\frac{\square}{\square}$


So, the rate of change is $\square$
or a decrease of $\square$ for every $\square$

## Check Your Progress

SPENDING The table shows the amount of money in Garrett's savings during several weeks. Find the rate of change.

| Weeks, $\boldsymbol{x}$ | Amount (\$), $\boldsymbol{y}$ |
| :---: | :---: |
| 1 | 450 |
| 2 | 225 |
| 3 | 180 |
| 4 | 105 |

$\qquad$

Page(s):
Exercises:

## Homework <br> Assignment

$\qquad$
$\qquad$

EXAMPLE Use Graphs to Identify Proportional Linear Relationships
2) JOGGING The distance that a jogger runs is recorded in the table. Determine if there is a proportional linear relationship between the time and distance.

To determine if the quantities are proportional, find $\frac{\text { distance } y}{\text { time } x}$ for points on the graph.

| Time <br> $(\mathbf{m i n})$ | Distance <br> $(\mathbf{m i})$ |
| :---: | :---: |
| $\boldsymbol{x}$ | $\boldsymbol{y}$ |
| 15 | 12 |
| 30 | 22 |
| 45 | 30 |
| 60 | 34 |



Since the ratio $\frac{\text { distance }}{\text { time }}$ is not the same for every pair of values, the distance run is $\square$ to the time.

## Check Your Progress

WORK The table shows the amount Sam was paid for doing various jobs for his neighbors. Determine if there is a proportional linear relationship between the time and amount paid.

| Time (hr) | Amount (\$) |
| :---: | :---: |
| $\boldsymbol{x}$ | $\boldsymbol{y}$ |
| 1 | 8 |
| 2 | 14 |
| 3 | 18 |
| 4 | 20 |

## BUILD YOUR VOCABULARY (pages 166-167)

A special type of linear equation that describes constant rate of change is a $\square$
The constant of variation, represented by $k$, is the $\square$ or $\square$, in the equation $y=k x$.

## EXAMPLE Zero and Undef ned Slopes

3 Find the slope of each line.
a.

$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad$ Definition of slope


$$
m=\square \text { or } \square
$$

b.

$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad$ Definition of slope

$m=\square$ The slope is


Check Your Progress
a.


## Find the slope of each line.

b.


## Homework AssignMent

Page(s):
Exercises:

## 7-6 Slope-Intercept Form

## MAIN IDEAS

- Determine slopes and $y$-intercepts of lines.
- Graph linear equations using the slope and $y$-intercept.


## BUILD YOUR VOCABULARY (page 167)

An equation written in the form $y=m x+b$, where $m$ is the slope and $b$ is the $y$-intercept, is in slope-intercept form.

## EXAMPLE Find the Slope and $y$-Intercept

1 State the slope and the $y$-intercept of the graph
of $y=\frac{1}{2} x+3$.
$y=\frac{1}{2} x+3 \quad$ Write the equation in the form $y=m x+b$.
$\uparrow$
$y=m x+b$
The slope is
The $y$-intercept is


## EXAMPLE Write the Equation in Slope-Intercept Form

2 State the slope and the $y$-intercept of the graph of $-4 x+5 y=-10$.

$$
\begin{aligned}
-4 x+5 y & =-10 & & \text { Write the equation. } \\
-4 x+5 y+4 x & =-10+4 x & & \text { Add } 4 x \text { to each side. }
\end{aligned}
$$



The slope is $\square$ and the $y$-intercept is


Check Your Progress
State the slope and the $\boldsymbol{y}$-intercept of the graph of each line.
a. $y=2 x-7$
b. $-5 x+y=1$


## 7-8 Prediction Equations

## BUILD YOUR VOCABULARY (page 166)

## MAIN IDEAS

- Draw lines of fit for sets of data.
- Use lines of fit to make predictions about data.

A line of fit is a line that is very $\square$ to most of the data points.

## EXAMPLE Make Predictions from a Line of Fit

1 AGRICULTURE The table shows the amount of land in the U.S. farms from 1980 to 2000.

| Year | Land <br> (million acres) |
| :---: | :---: |
| 1980 | 1039 |
| 1985 | 1012 |
| 1990 | 986 |
| 1995 | 963 |
| 2000 | 943 |

a. Make a scatter plot and draw the line of fit for the data.

Draw a line that best fits the data.

b. Use the line of fit to predict the amount of land in the year 2010.

Extend the line so that you can find the $y$ value for an $x$ value of $\square$ The $y$ value for $\square$ is about $\square$
So, a prediction for the amount of farm land in 2010 is approximately $\square$ million acres.

## Check Your Progress

RETAIL The table shows the number of laptop computers sold at a local computer store from 1998 to 2001.
a. Make a scatter plot and draw a line of fit for the data.

| Year | Number of <br> Laptops Sold |
| :---: | :---: |
| 1998 | 215 |
| 1999 | 298 |
| 2000 | 395 |
| 2001 | 430 |


b. Use the line of fit to predict the number of laptops sold in the year 2003 .

## EXAMPLE Make Predictions from an Equation

INTERNET The scatter plot shows the number of U.S. households (millions) with Internet access.
a. Write an equation in slopeintercept form for the line of fit.

## Step 1



Select two points on the line and find the slope. The two points on the line of fit may not be original data points.
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$


Definition of slope

$$
\begin{aligned}
& \left(x_{1}, y_{1}\right)=(1995,10) \\
& \left(x_{2}, y_{2}\right)=(2000,37)
\end{aligned}
$$

$$
m=\square
$$

## Homework Assignment

Page(s):
Exercises:

190

Step 2 Next, find the $y$-intercept.

$$
y=m x+b \quad \text { Slope-intercept form }
$$

$$
\square=\square+b \quad(x, y)=(2000,37)
$$

$$
\text { and } m=\square
$$

$$
\square=b \quad \text { Simplify }
$$

Step 3 Write the equation.

$$
\begin{array}{ll}
y=m x+b & \text { Slope-intercept form } \\
y=\square & m=\square, b=\square
\end{array}
$$

b. Predict the number of U.S. households that will have Internet in the year 2010.
$y=\square$
Write the equation for the line of fit.

Replace $x$ with $\square$

$$
y=\square
$$

Simplify.

A prediction for the number of U.S. households that will have Internet in the year 2010 is about


## Check Your Progress

TEMPERATURE The scatter plot shows the heating bill for the month of January for different size houses.
a. Write an equation in slope-intercept form for the line of fit.



Square Footage
b. Predict the heating bill for a house that is 4100 square feet in size.

## BRINGING IT ALL TOGETHER

## STUDY GUIDE

## FOLDABlES

Use your Chapter 7 Foldable to help you study for your chapter test.

## Vocabulary <br> PUZZLEMAKER

To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 7, go to:
glencoe.com

## BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (pages 166-167) to help you solve the puzzle.

## 7-1 <br> Functions

## Determine whether each relation is a function.

1. $\{(2,5),(3,7),(-2,5),(1,8)\}$

2. $\{(-1,1),(3,4),(2,2),(-1,5)\}$

3. The table shows how age affects the value of one type of computer. Is the relation a function? Describe how age is related to value.
$\square$

| Age <br> (years) | Value |
| :---: | :---: |
| 0 | $\$ 1500$ |
| 1 | $\$ 1200$ |
| 2 | $\$ 800$ |
| 3 | $\$ 300$ |

## 7-2

Representing Linear Functions
Find four solutions of each equation. Show each solution as ordered pairs.
4. $y=x+1$

5. $y=5 x-4$


The equation $y=3.28 x$ describes the approximate number of feet $\boldsymbol{y}$ in $\boldsymbol{x}$ meters.
6. Describe what the solution $(5,16.4)$ means.
$\square$
7. About how many feet is a 200 meter dash? $\square$
8. Graph the equation $y=4 x-3$ by plotting ordered pairs.


## 7-3

## Rate of Change

9. SCHOOL The table shows the growth in student enrollment of the freshman classes at Washington High School. Find the rate of change from 2003 to 2005.
$\square$

| Year | Enrollment |
| :---: | :---: |
| 2003 | 202 |
| 2004 | 219 |
| 2005 | 243 |
| 2006 | 260 |

10. POOLS The graph shows the relationship between the amount of time it takes to drain a child's pool and the amount of water that is remaining. Find the rate of change.


## 7-4

## Constant Rate of Change and Direct Variation

11. WALNUTS The cost of walnuts varies directly with the number of pounds bought. Three pounds cost $\$ 9.75$. Write an equation that relates the weight and the cost of walnuts. Then predict the cost of 8.5 pounds of walnuts.
$\square$

## 7-5

Slope
Find the slope of the line that passes through each pair of points.
12. $A(2,3)$ and $B(1,1)$ $\square$ 13. $S(6,-5)$ and $T(4,1)$ $\square$

State the slope and $\boldsymbol{y}$-intercept, then graph each equation.
14. $y=2 x-1$
15. $4 x+2 y=5$



## 7-7 <br> Writing Linear Equations

Write an equation in slope-intercept form for each line.
16. slope $=-3, y$-intercept $=7$ $\square$
17. slope $=\frac{5}{8}, y$-intercept $=0$ $\square$
18. Write an equation in slope-intercept form for the line passing through $(-3,4)$ and $(1,2)$.

## 7-8

## Prediction Equations

The table shows the number of digital cameras sold in Japan.
19. Make a scatter plot and draw a line of fit. Then predict how many digital cameras will be sold in Japan in 2008.


| Year | Sales <br> (millions) |
| :---: | :---: |
| 1999 | 1.8 |
| 2000 | 3.6 |
| 2001 | 5.9 |
| 2002 | 6.7 |
| 2003 | $9.2^{*}$ |

*Projected in Nov. 2003
Digital Photography Review

## ARE YOU READY FOR THE CHAPTER TEST?

## Checklist

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 7.

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 7 Practice Test on page 413 of your textbook as a final check.

I used my Foldables or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 7 Study Guide and Review on pages 408-412 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may want to take the Chapter 7 Practice Test on page 413.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 7 Foldable.
- Then complete the Chapter 7 Study Guide and Review on pages 408-412 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 7 Practice Test on page 413.



## 8 <br> Equations and Inequalities

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.

Begin with a sheet of $8 \frac{1}{2} \times 11^{\prime \prime}$ of notebook paper.

STEP 1 Fold in half
lengthwise.


STEP 2 Fold in thirds and then fold each third in half.


STEP 3 Open. Cut one side along the folds to make tabs.


STEP 4 Label each tab with the lesson number as shown.

| $8-1$ |
| :---: |
| $8-2$ |
| $8-3$ |
| $8-4$ |
| $8-5$ |
| $8-6$ |

NOTE-TAKING TIP: Write down questions that you have about what you are reading in the lesson. Then record the answer to each question as you study the lesson.

8

## BUILD YOUR VOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 8.
As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

| Vocabulary Term | Found <br> on Page | Definition | Description or <br> Example |
| :--- | :--- | :--- | :--- |
| identity |  |  |  |

## 8-1 Solving Equations with Variables on Each Side

EXAMPLE Equations with Variables on Each Side

## Main Idea

Solve equations with variables on each side.

FOLDABLES

## ORGANIZE IT

As you read through Lesson 8-1, write down one or more questions you have behind the 8-1 tab of your Foldable. As you study the lesson, take notes, and record information that answers your questions.

| $8-1$ |
| ---: |
| $8-2$ |
| $8-3$ |
| $8-4$ |
| $8-5$ |
| $8-6$ |

(1) Solve $5 x+12=2 x$.

$$
5 x+12=2 x \quad \text { Write the equation. }
$$


$\square$ from each side.


Simplify.

Mentally divide each side by $\square$

## Check Your Progress

Solve $7 x=5 x+6$.

## EXAMPLE Equations with Variables on Each Side

Solve $7 x+3=\mathbf{2 x}+\mathbf{2 3}$.

| $7 x+3=2 x+23$ |  | Write the equation. |  |
| :---: | :---: | :---: | :---: |
| $7 x-\quad+3=2 x-$ | + 23 | Subtract side. | from each |
| $=23$ |  | Simplify. |  |
| $-\quad=23-$ |  | Subtract side. | from each |
| $=$ |  | Simplify. |  |
| $x=$ |  | Mentally |  |

Check Your Progress Solve each equation.
a. $4 x+15=2 x-7$
b. $2.4-3 m=6.4 m-8.88$


## EXAMPLE

(3) CAR RENTAL A car rental agency has two plans. Under Plan A, a car rents for $\$ 80$ plus $\$ 20$ each day. Under Plan B, a car rents for $\$ 120$ plus $\$ 15$ a day. What number of days results in the same cost?

Let $d$ represent the number of days.


If you rent the car for $\square$ days, the cost is the same for both plans.

Check Your Progress
CELL PHONES A cell phone

Homework Assignment

## Page(s):

Exercises:

198

## 8-2 Solving Equations with Grouping Symbols

## EXAMPLE Solve Equations with Parentheses

## Main Ideas

Solve equations that involve grouping symbols.

- Identify equations that have no solution or an infinite number of solutions.


## FOLDABLES

## ORGANIZE IT

As you read through Lesson 8-2, write down one or more questions you have behind the 8-2 tab of your Foldable. As you study the lesson, take notes, and record information that answers your questions.

| $8-1$ |
| ---: |
| $8-2$ |
| $8-3$ |
| $8-4$ |
| $8-5$ |
| $8-6$ |

1 Solve $3 h=5(h-2)$.


Ths solution is $\square$

## EXAMPLE No Solution

(2) Solve $4 x-0.3=4 x+0.9$.

$$
4 x-0.3=4 x+0.9 \quad \text { Write the equation. }
$$

$$
4 x-\square-0.3=4 x-\square+0.9 \begin{array}{ll}
\text { Subtract } \square \\
\text { side. }
\end{array} \quad \text { from each }
$$

$\square$ Simplify.

The sentence is $\square$ true. So, the solution set is $\square$

Check Your Progress
a. $4 t=7(t-3)$


Solve each equation.
b. $16+1.3 m=-12+1.3 m$


## Homework Assignment

Page(s):

Exercises:

## EXAMPLES All Numbers as Solutions

3 Solve $3(4 x-2)+15=12 x+9$.
$3(4 x-2)+15=12 x+9 \quad$ Write the equation.


The sentence is $\square$ true. The solution set
is $\square$

Check Your Progress
Solve $10 a-9=5(2 a-3)+6$.
BUILD YOUR VOGABULARY (page 196)
An equation that is $\square$ for every value of the is called an identity.
$\square$
$\square+15=12 x+9 \quad$ Distributive Property


## 8-3 Inequalities

## Main Ideas

- Write inequalities.
- Graph inequalities.


## BUILD YOUR VOCABULARY (page 196)

A mathematical sentence that contains $\square$ or $\square$ is called an inequality.

## EXAMPLE Write Inequalities

(1) Write an inequality for each sentence.
a. Your height is greater than 52 inches.

Variable: Let $h$ repres
Inequality:
b. Your speed is less than or equal to 62 miles per hour.

Variable: Let $s$ represent $\square$.
Inequality: $\square$

Check Your Progress
Write an inequality for each sentence.
a. Your height is less than 48 inches.

b. Your age is greater than 12 years.
$\square$
c. Your weight is less than or equal to 120 pounds.
$\square$
d. Your speed is greater than or equal to 35 .

## Write It

Describe one way to remember the difference between the > symbol and the $\geq$ symbol.
$\qquad$
$\qquad$
$\qquad$
$\qquad$

EXAMPLE Determine Truth of an Inequality
2 For the given value, state whether the inequality is true or false.
a. $s-9<4, s=6$


The sentence is $\square$
b. $14 \leq \frac{a}{3}+1, a=36$


Replace a with


Simplify.
Simplify.

The sentence is $\square$

## Check Your Progress

For the given value, state whether each inequality is true or false.
a. $12-m>7, m=5$

b. $\frac{20}{x}+3 \leq 6, x=10$

EXAMPLE Graph Inequalities
(3) a. Graph $x>10$.


The open circle means the number 10 is $\square$
b. Graph $\boldsymbol{x} \geq \mathbf{1 0}$.


The closed circle means the number 10 is $\square$
c. Graph $\boldsymbol{x}<\mathbf{1 0}$.


The open circle means the number 10 is $\square$

## Check Your Progress

Graph each inequality.
a. $x<3$

b. $x>3$

c. $x \geq 3$


## EXAMPLE Write an Inequality

4) Write the inequality for the graph.


## Homework

 AssignmentPage(s):
Exercises:

A closed circle is on -38 , so the point -38 is $\square$ in the graph. The arrow points to the $\square$, so the graph includes all numbers $\square$ than or
$\square$

## Check Your Progress

Write the inequality for the graph.


## 8-4 Solving Inequalities by Adding or Subtracting

## EXAMPLE Solve an Inequality Using Subtraction

## MAIN IDEA

- Solve inequalities by using the Addition and Subtraction Properties of Inequality.
(1) Solve $y+5>11$.



## EXAMPLE Solve an Inequality Using Addition

(2) Solve $-21 \geq d-8$.
$-21 \geq d-8 \quad$ Write the inequality.
$-21+\square \geq d-8+\square$ Add $\square$ to each side.

$$
\square \geq \square \quad \text { Simplify }
$$

## EXAMPLE Graph Solutions of Inequalities

3 Solve $h-1 \frac{1}{2}<5$. Graph the solution on a number line.


FOLDABLES

## Organize IT

As you read through Lesson 8-4, write down questions you have behind the 8-4 tab of your Foldable. As you study the lesson, take notes, and record information that answers your questions.

| $8-1$ |
| :---: |
| $8-2$ |
| $8-3$ |
| $8-4$ |
| $8-5$ |
| $8-6$ |

## Homework

 AssignmentPage(s):
Exercises:


## Check Your Progress

Solve each equation.
a. $x+9<13$
$\square$
b. $m+8<-2$
$\square$
c. Solve $x-\frac{3}{4} \geq \frac{1}{2}$. Graph the solution on a number line.


## 8-5 Solving Inequalities by Multiplying or Dividing

## EXAMPLE Multiply or Divide by a Positive Number

## Main Ideas

- Solve inequalities by multiplying or dividing by a positive number.
- Solve inequalities by multiplying or dividing by a negative number.


## Key Concept

Multiplication and Division Properties When you multiply or divide each side of an inequality by the same or positive number, the inequality remains true.

## FOLDABLES

## ORGANIZE IT

As you study the lesson, take notes, and record information about solving inequalities.

| $8-1$ |
| ---: |
| $8-2$ |
| $8-3$ |
| $8-4$ |
| $8-5$ |
| $8-6$ |

a. Solve $9 x \leq 54$.

b. Solve $\frac{d}{9}>4$.


Check Your Progress Solve each inequality.
a. $3 x>21$
b. $6 \leq \frac{p}{3}$

$\square$

## EXAMPLE

2 TEST EXAMPLE Martha earns $\$ 9$ per hour working for a fast-food restaurant. Which inequality can be used to find how many hours she must work in a week to earn at least $\$ 117$ ?
A $9 x<117$
C $9 x>117$
B $9 x \geq 117$
D $9 x \leq 117$

Let $x$ represent the number of hours worked.


The inequality is $\square$ So, the answer is $\square$

## Key Concept

Multiplication and Division Properties When you multiply or divide each side of an inequality by the same negative number, the inequality symbol must be reversed for the inequality to remain true.

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

## Homework

 AssignmentPage(s):
Exercises:

Check Your Progress
TEST EXAMPLE Ed earns $\$ 6$ per hour working at the library. Write an inequality that can be used to find how many hours he must work in a week to earn more than $\$ 100$ ?
A $6 x<100$
C $6 x \leq 100$
B $6 x \geq 100$
D $6 x>100$
$\square$

## EXAMPLE Multiply or Divide by a Negative Number

3 Solve each inequality and check your solution. Then graph the solution on a number line.
a. $\frac{x}{-5} \geq 7$
$\frac{x}{-5} \geq 7$
Write the inequality.
 and reverse the symbol.

$$
x \leq \square
$$


b. $-9 x<-27$
Write the inequality.

Divide each side by and reverse the symbol.


Check Your Progress
Solve each inequality and check your solution. Then graph the solution on a number line.
a. $\frac{x}{-3}>6$

b. $-5 x \leq-40$


## 8-6 Solving Multi-Step Inequalities

## EXAMPLE Solve a Two-Step Inequality

## MAIN IDEA

- Solve inequalities that involve more than one operation.
(1) Solve $5 x+13>83$. Graph the solution on a number line.

$$
5 x+13>83
$$



Write the inequality.


Simplify.

Divide each side by


Check Your Progress Solve $3 x-9<18$. Graph the solution on a number line.


EXAMPLE Reverse the Inequality Symbol
2) Solve $7-4 a \leq 23-2 a$. Graph the solution on a number line.



## EXAMPLE

3 RUNNING José wants to run a 10 K marathon. Refer to Get Ready for the Lesson in the text. If the length of his current daily runs is 2 kilometers, by how many kilometers should he increase his daily run to have enough endurance for the race?

## FOLDABLES

## OrgANIZE IT

Under the tab for Lesson 8-6, write an example of an inequality that requires two steps to solve. Label each step with the operation being undone.

| $8-1$ |
| ---: |
| $8-2$ |
| $8-3$ |
| $8-4$ |
| $8-5$ |
| $8-6$ |

## Homework

 AssignmentPage(s): Exercises:

Check Your Progress solution on a number line.


Let $d$ represent the increase in the number of miles José should run.

Words $\quad 3$ times 2 kilometers plus amount of increase is greater than or equal to desired distance.

Inequality


Jose should increase his daily run by at least kilometers each day.

## Check Your Progress

 A person weighing 168 pounds has a 7-pound backpack. If three times the weight of your backpack and its contents should be less than your body weight, what is the maximum weight for the contents of the pack?
## BRINGING IT ALL TOGETHER

## STUDY GUIDE

## FOLDABLES

Use your Chapter 8 Foldable to help you study for your chapter test.

## Vocabulary

 PUZZLEMAKERTo make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 8, go to:
glencoe.com

## BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (page 196) to help you solve the puzzle.

## 8-1 <br> Solving Equations with Variables on Each Side

Number the steps in the correct order for solving the equation $2 x+4=4 x-8$. Some steps may be used more than once.
1.


Simplify.
3.
 Write the equation.
 Divide each side by 2.

## 8-2

## Solving Equations with Grouping Symbols

6. The perimeter of a rectangle is 74 inches. Find the dimensions and the area if the length is 5 inches shorter than twice the width.
$\square$

## 8-3

Inequalities
For each of the following phrases, write the corresponding inequality symbol in the blank. Use $<,>, \leq$, or $\geq$.
7. is greater than $\square$
8. is less than or equal to $\square$
9. Write an inequality for the sentence: Seven less than a number is at
least 15. $\square$

8-4
Solving Inequalities by Adding or Subtracting
10. Is 6 a solution for the inequality $17+x>23$ ? Explain.


Solve each inequality. Then graph the solution on a number line.
11. $b+6<19$

12. $21>n+27$

13. $-8 \leq-15+x$


## 8-5

Solving Inequalities by Multiplying or Dividing
Match each inequality with its graph.
14. $2 x \geq 6$
15. $\frac{x}{-3}>-1$

16. $12 x<-36$
17. $-3 x<-9$



## 8-6

## Solving Multi-Step Inequalities

Underline the correct term or phrase to complete each statement.
18. Remember to (reverse, delete) the inequality symbol when multiplying or dividing both sides of the inequality by a negative number.
19. To check the solution $x>14$, you should try a number (smaller, greater) than 14 in the original inequality.

Solve each inequality. Graph the solution on a number line.
20. $\frac{x}{2}+7<6$
21. $3(p+2) \leq 2(2 p+7.5)$


## ARE YOU READY FOR THE CHAPTER TEST?

## Checklist

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 8.

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 8 Practice Test on page 455 of your textbook as a final check.

I used my Foldables or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 8 Study Guide and Review on pages 451-454 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may want to take the Chapter 8 Practice Test on page 455.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 8 Foldables.
- Then complete the Chapter 8 Study Guide and Review on pages 451-454 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 8 Practice Test on page 455.



## 9 <br> Real Numbers and Right Triangles

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.

Begin with three plain sheets of $8 \frac{1}{2}{ }^{\prime \prime} \times 11^{\prime \prime}$ paper.

STEP 1 Fold to make a triangle. Cut off extra paper.


STEP 2 Repeat Step 1 twice.
You now have three squares.


STEP 3 Stack the three squares and staple along the fold.


STEP 4 Label each section with a topic.


NOTE-TAKING TIP: A visual (graph, diagram, picture, chart) can present information in a concise, easy-to-study format. Clearly label your visuals and write captions when needed.

## BUILD YOUR VOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 9.
As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

| Vocabulary Term | Found <br> on Page | Definition | Description or <br> Example |
| :--- | :--- | :--- | :--- |
| acute angle |  |  |  |
| acute triangle |  |  |  |
| congruent <br> [kuhn-GRoo-uhnt] |  |  |  |
| Distance Formula |  |  |  |
| equilateral triangle <br> [EE-kwuh-LAT-uh-ruhl] |  |  |  |
| hypotenuse <br> [hy-PAHT-uhn-noos] |  |  |  |
| indirect measurement |  |  |  |
| irrational numbers |  |  |  |
| line segment |  |  |  |
| [eye-SAHS-uh-LEEZ] |  |  |  |



## 9-1 Squares and Square Roots

## Main Ideas

- Find squares and square roots.
- Estimate square roots.


## Key Concept

Square Root A square root of a number is one of its two equal factors.

## BUILD YOUR VOGABULARY (page 215)

A radical sign, $\sqrt{ }$, is used to $\square$ the square root.

## EXAMPLE Find Square Roots

## (1) Find each square root.

a. $\sqrt{64}$ indicates the $\square$ square root of 64 .

$$
\text { Since } \square=64, \sqrt{64}=\square .
$$

b. $-\sqrt{\mathbf{1 2 1}}$ indicates the $\square$ square root of 121 .

$$
\text { Since } \square=121,-\sqrt{121}=\square \text {. }
$$

c. $\pm \sqrt{256}$ indicates both square roots of 256 . Since $16^{2}=$ $\square$ $\sqrt{256}=\square$ and $-\sqrt{256}=\square$.
d. $\sqrt{\boldsymbol{z}^{2}}$ indicates the positive square root of $z^{2}$.

$$
\sqrt{z^{2}}=\square
$$

## EXAMPLE Find Square Roots with a Calculator

2) Use a calculator to find each square root to the nearest tenth.
a. $\sqrt{22}$
2nd $[\sqrt{ }] 22$ ENTER $\square$ Use a calculator.
$\sqrt{22} \approx \square \quad$ Round to the nearest tenth.
b. $-\sqrt{319}$

$$
\begin{aligned}
& (-)) \text { 2nd }[\sqrt{-}] 319 \text { ENTER } \\
& -\sqrt{319} \approx \square
\end{aligned}
$$

## Use a calculator to find each square root to the

 nearest tenth.d. $\sqrt{71}$
e. $-\sqrt{38}$

## FOLDABLES'

## Organize IT

Under the tab for Lesson 9-1, list and then estimate three square roots to the nearest whole number.

## Find each square root.

a. $\sqrt{25} \square$
c. $\pm \sqrt{16}$ $\square$
d. $\sqrt{t^{2}}$ $\square$
$\square$
b. $-\sqrt{144}$


## EXAMPLE Estimate Square Roots

3 Estimate $\sqrt{22}$ to the nearest integer.

- The first perfect square less than 22 is 16 .
- The first perfect square greater than 22 is 25 .
- Plot each square root on a number line.


The square root of $\sqrt{22}$ is between the integers $\square$ and
$\square$ Since 22 is closer to $\square$ than $\square$ , you can expect that $\sqrt{22}$ is closer to $\square$ than $\square$

## Check Your Progress

Estimate each square root to the nearest integer.
a. $\sqrt{54}$
b. $-\sqrt{152}$


## EXAMPLE

SKYSCRAPER The tallest building in Houston, Texas is the JP Morgan Chase Tower, standing at 1002 feet tall. Use the Real-World Link in the text to determine about how far a person can see from the top floor on a clear day.
$D=1.22 \times \square \quad$ Write the formula.


Replace A with


Evaluate the square root first. Then multiply.

On a clear day, the light will be visible from about
$\square$

Check Your Progress
SKYSCRAPER A skyscraper stands 378 feet high. On a clear day, about how far could an individual standing on the roof of the skyscraper see? Round to the nearest tenth.

## Homework Assignment

Page(s):
Exercises:

## 9-2 The Real Number System

## Main Ideas

- Identify and compare numbers in the real number system.
- Solve equations by finding square roots.


## Key Concept

Irrational Number An irrational number is a number that cannot be expressed as $\frac{a}{b}$, where $a$ and $b$ are integers and $b$ does not equal 0 .

## BUILD YOUR VOCABULARY (pages 214-215)

The set of $\square$ numbers and the set of $\square$ numbers together make up the set of real numbers.

## EXAMPLE Classify Real Numbers

(1) Name all of the sets of numbers to which each real number belongs.
a. $\mathbf{0 . 2} \overline{46}$ This repeating decimal is a $\square$ number
because it is equivalent to

b. $\sqrt{225}$ Since $\sqrt{225}=\square$, this number is a

c. $-\frac{72}{6}$

Since $-\frac{72}{6}=$ $\square$ this number is an

d. $\frac{14}{4} \quad$ Since $\frac{14}{4}=\square$, this number is a


Check Your Progress Name all of the sets of numbers to which each real number belongs.
a. $0 . \overline{380}$ $\square$
b. $-\sqrt{81}$ $\square$
c. $\frac{45}{9}$
d. $\frac{19}{4}$ $\square$

FOLDABLES

## ORGANIZE IT

Under the tab for Lesson 9-2, explain how to compare real numbers on a number line. Be sure to include an example.


## Homework

 AssignmentPage(s):
Exercises:

220

## EXAMPLE Solve Equations

3 Solve $\boldsymbol{w}^{2}=169$. Round to the nearest tenth, if necessary.

| $w^{2}=169$ | Write the equation. |
| :--- | :--- |
| $w=\square$ or $w=\square$Take the square <br> root of each side. |  |
| $w=\square$ or $w=\square$Find the positive <br> and negative <br> square root. |  |
| $w$ |  |

Check Your Progress Solve $m^{2}=81$. Round to the nearest tenth, if necessary.

## 9-3 Triangles

## EXAMPLE Use Ratios to Find Angle Measures

## Main Ideas

Find the missing angle measure of a triangle.

Classify triangles by properties and attributes.

## Key Concept

Angles of a Triangle The sum of the measures of the angles of a triangle is $180^{\circ}$.

1) ALGEBRA The measures of the angles of a certain triangle are the ratio 2:3:5. What are the measures of the angles?

Let $\square$ represent the measure of one angle, $\square$ the measure of a second angle, and $\square$ the measure of the third angle.


The measures of the angles are $\square$ and


## Check Your Progress

a. Find the value of $x$ in $\triangle M N O$.

b. The measures of the angles of a certain triangle are in the ratio $3: 5: 7$. What are the measures of the angles?

## Key Concept

Classify Triangles by their Angles and by their Sides

Acute Triangle A triangle with all acute angles.

Obtuse Triangle A triangle with one obtuse angle.

Right Triangle A triangle with one right angle.

Scalene Triangle A triangle with no congruent sides.

Isosceles Triangle A triangle with at least two sides congruent.

Equilateral Triangle A triangle with all sides congruent.

## Homework Assignment

$\qquad$

## EXAMPLE Classify Angles

(2) Classify each angle as acute, obtuse, right, or straight.
a.

b.


So, $\angle K L M$ is $\square$

Check Your Progress Classify each angle as acute, obtuse, right, or straight.
a.

b.


## EXAMPLE Classify Triangles

3 Classify the triangle by its angles and by its sides.


The triangle is an $\square$ triangle.

## Check Your Progress

Classify each triangle by its angles and by its sides.
a.

b.


## 9-4 The Pythagorean Theorem

## MAIN IdEAS

- Use the Pythagorean Theorem to find the length of a side of a right triangle.
- Use the converse of the Pythagorean Theorem to determine whether a triangle is a right triangle.


## BUILD YOUR VOCABULARY (pages 214-215)

In a right triangle, the side opposite the $\square$ angle is the hypotenuse.

If you know the lengths of two $\square$ of a right triangle, you can use the Pythagorean Theorem to find the length of the $\square$ side. This is called solving a right triangle.

## EXAMPL: Find the Length of the Hypotenuse

(1) Find the length of the hypotenuse of the right triangle.

## Key Concept

Pythagorean Theorem If a triangle is a right triangle, then the square of the length of the hypotenuse is equal to the sum of the squares of the lengths of the legs.
$c^{2}=a^{2}+b^{2}$
$c^{2}=\square^{2}+\square^{2}$


$$
c^{2}=\square
$$

$$
c^{2}=\square
$$

$$
c=\square
$$



Pythagorean Theorem


Take the
 of each side.

The length is $\square$

## Check Your Progress

Find the length of the hypotenuse of the right triangle.
$\square$


## EXAMPLE Solve a Right Triangle

2 Find the length of the leg of the right triangle to the nearest tenth.

$$
c^{2}=a^{2}+b^{2} \quad \text { Pythagorean Theorem }
$$

 and $a$ with


Subtract 64 from each side.


The length of the leg is about $\square$

FOLDABLES

## Organize IT

Under the tab for the Pythagorean Theorem, write the Pythagorean Theorem. Then draw a right triangle and label the sides $a, b$, and $c$ as used in the theorem.


## EXAMPLE Use the Pythagorean Theorem

3 TEST EXAMPLE A building is $\mathbf{1 0}$ feet tall. A ladder is positioned against the building so that the base of the ladder is $\mathbf{3}$ feet from the building. About how many feet long is the ladder?
A 10.0 ft
C 12.4 ft
B 10.4 ft
D 14.9 ft
$c^{2}=a^{2}+b^{2}$ $c^{2}=\square^{2}+\square^{2}$
Pythagorean Theorem
Replace a with


$$
c^{2}=\square+\square
$$


Simplify.
$\sqrt{c^{2}}=\sqrt{109}$
Take the $\square$ of each side.
$c \approx$

Round to the nearest tenth.
The ladder is about $\square$ tall. The answer is $\qquad$

## Check Your Progress

a. Find the length of the leg of the right triangle.


b. TEST EXAMPLE An 18 -foot ladder is placed against a building which is 14 feet tall. About how far is the base of the ladder from the building?
A 11.3 ft
B 11.0 ft
C 10.5 ft
D 10.2 ft

## EXAMPLE Identify a Right Triangle

4) The measures of three sides of a triangle are 48 feet, 60 feet, and 78 feet. Determine whether the triangle is a right triangle.


Evaluate.


Simplify.
The triangle $\square$ a right triangle.

## Check Your Progress

The measures of three sides of a triangle are 42 inches, 61 inches, 84 inches. Determine whether the triangle is a right triangle.

## 9-5 The Distance Formula

## EXAMPLE Use the Distance Formula

Main Idea

- Use the Distance Formula to determine lengths on a coordinate plane.


## KEY Concept

Distance Formula The distance $d$ between two points with coordinates $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$, is given by $d=$ $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$.

1 Find the distance between $M(8,4)$ and $N(-6,-2)$. Round to the nearest tenth, if necessary.

$$
\begin{aligned}
d & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
M N & =\square \\
& \begin{array}{l}
\left(x_{1}, y_{1}\right)=(8,4), \\
\left(x_{2}, y_{2}\right)=(-6,-2)
\end{array}
\end{aligned}
$$

$$
M N=\square
$$

Simplify.
$M N=\square$

$M N=\square$

$M N \approx \square$
The distance between points $M$ and $N$ is about $\square$

Check Your Progress Find the distance between $A(-4,5)$ and $B(3,-9)$. Round to the nearest tenth, if necessary.

## EXAMPLE Use the Distance Formula to Solve a Problem

2) GEOMETRY Find the perimeter of $\triangle X Y Z$ to the nearest tenth.

First, use the Distance Formula to find the length of each side of the triangle.
Distance Formula:


## WRITE IT

Which point should be used for $\left(y_{2}-y_{1}\right)$ in the distance formula? Explain.
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Side $\overline{X Y}: X(-5,1), Y(-2,4)$
$X Y=\square \quad \begin{aligned} & \left(x_{1}, y_{1}\right)=(-5,1), \\ & \left(x_{2}, y_{2}\right)=(-2,4)\end{aligned}$
$X Y=\square$ Simplify.
$X Y=\square$ Simplify.

Side $\overline{Y Z}: Y(-2,4), Z(-3,-3)$
$Y Z=\square \quad \begin{aligned} & \left(x_{1}, y_{1}\right)=(-2,4), \\ & \left(x_{2}, y_{2}\right)=(-3,-3)\end{aligned}$
$Y Z=\square$
Simplify.
$Y Z=\square$
Simplify.

Side $\overline{Z X}: Z(-3,-3), X(-5,1)$
$Z X=\square \begin{aligned} & \left(x_{1}, y_{1}\right)=(-3,-3), \\ & \left(x_{2}, y_{2}\right)=(-5,1)\end{aligned}$
$Z X=\square$
Simplify.
$Z X=\square$
Simplify.

The perimeter is $\square+\square+\square$ or about

## Check Your Progress Find the

 perimeter of $\triangle A B C$ to the nearest tenth.

## FOLDABLES

## ORGANIZE IT

Write the Distance Formula under the tab for this topic. Illustrate the formula.


## Homework

 Assignment
## 9-6 Similar Figures and Indirect Measurement

| MAIN IDEAS |
| :--- |
| - Identify corresponding |
| parts and find missing |
| measures of similar |
| figures. |
| - Solve problems |
| involving indirect |
| measurement using |
| similar triangles. |

## Key Concept

Corresponding Parts of Similar Figures If two figures are similar, then the corresponding angles have the same measure and the corresponding sides are proportional.

FOLDABLES Draw an example of similar figures in your notes. Label the corresponding sides and angles.

## BUILD YOUR VOGABULARY (page 215)

Figures that have the same $\square$ but not necessarily the same size are called similar figures.

## EXAMPLE Find Measures of Similar Figures

(1) The figures are similar. Find the missing measures.
The corresponding sides

are


Write a proportion.




Find the cross products.
Simplify.

Divide each side by


The value of $x$ is


## Check Your Progress

The figures are similar. Find the missing measure.


## Homework Assignment

Page(s):
Exercises:

EXAMPLE Use Indirect Measurement
2 MAPS A surveyor wants to find the distance $R S$ across the lake. He constructs $\triangle P Q T$ similar to $\triangle P R S$ and measures the distances as shown. What is the distance across the lake?


Write a


Substitution

Find the

Simplify.

Divide each side by $\square$

The distance across the lake is $\square$

Check Your Progress
In the figure, $\triangle M N O$ is similar to $\triangle Q P O$. Find the distance across the park.


## BRINGING IT ALL TOGETHER

## STUDY GUIDE

## FOLDABLES

Use your Chapter 9 Foldable to help you study for your chapter test.

## Vocabulary <br> PUZZLEMAKER

To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 9, go to:
glencoe.com

## BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (pages 214-215) to help you solve the puzzle.

## 9-1 <br> Squares and Square Roots

Find each square root, if possible.

1. $\sqrt{361}$
2. $\sqrt{-196}$ $\square$ 3. $-\sqrt{441}$ $\square$

Estimate each square root to the nearest integer. Do not use a calculator.
4. $\sqrt{120}$ $\square$ 5. $\sqrt{150}$
6. $-\sqrt{70}$ $\square$

## 9-2

## The Real Number System

Underline the correct term to complete each sentence.
7. Numbers with decimals that (are, are not) repeating or terminating are irrational numbers.
8. All square roots (are, are not) irrational numbers.
9. Irrational numbers (are, are not) real numbers.

Name all of the sets of numbers to which each real number belongs. Let $\mathrm{N}=$ natural numbers, $\mathrm{W}=$ whole numbers, $Z=$ integers, $\mathbf{Q}=$ rational numbers, and $I=$ irrational numbers.
10. -49 $\square$ 11. $\sqrt{48}$ $\square$ 12. 11 $\square$

Solve each equation. Round to the nearest tenth, if necessary.
13. $b^{2}=225$ $\square$ 14. $2 z^{2}=88$ $\square$

## 9-3

## Triangles

Find the value of $x$ in the triangle. Then classify the triangle as acute, right, or obtuse.
15.

16.

17. The measures of the angles of a triangle are in the ratio $3: 4: 5$. What is the measure of each angle?


## 9-4

The Pythagorean Theorem
If $\boldsymbol{c}$ is the measure of the hypotenuse, find each missing measure. Round to the nearest tenth, if necessary.
18. $a=12, b=$ ?, $c=37$

19. $a=$ ?, $b=6, c=16$

20. The length of the sides of a triangle are 10,24 , and 26 . Determine whether the triangle is a right triangle.


## 9-5

## The Distance Formula

Find the distance between each pair of points. Round to the nearest tenth, if necessary.
21. $J(8,-3), K(5,1)$

23. $S(2,4), T(0,-2)$

22. $P(-3,7), Q(4,2)$

24. $C(-5,-1), D(3,-4)$


## 9-6

Similar Figures and Indirect Measurement
For Questions 25 and 26, use the triangles at the right. $\triangle P Q R \sim \triangle U V W$.
25. Name an angle with the same measure as $\angle W$.

26. Find the value of $x$.

27. In the figure at the right, the triangles are similar. How far is the waterfall from the grove of redwood trees?


## ARE YOU READY FOR THE CHAPTER TEST?

## Checklist

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 9.

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 9 Practice Test on page 507 of your textbook as a final check.

I used my Foldables or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 9 Study Guide and Review on pages 503-506 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may want to take the Chapter 9 Practice Test on page 507.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 9 Foldable.
- Then complete the Chapter 9 Study Guide and Review on pages 503-506 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 9 Practice Test on page 507.


10

## Two-Dimensional Figures

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.

Begin with four plain sheets of $11^{\prime \prime} \times 17^{\prime \prime}$
paper, eight index cards, and glue.

STEP 1 Fold in half
widthwise.


STEP 2 Fold the bottom to form a pocket. Glue the edges.


STEP 3 Repeat three times. Then glue all four pieces together to form a booklet.

STEP 4 Label each pocket. Place an index card in each pocket.


NOTE-TAKING TIP: To help you organize data, create study cards when taking notes, recording and defining vocabulary words, and explaining concepts.

## BUILD YOUR VOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 10.
As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

| Vocabulary Term | Found <br> on Page | Definition <br> adjacent angles <br> [uh-JAY-suhnt] |  |
| :--- | :--- | :--- | :--- |


| Vocabulary Term | Found on Page | Definition | Description or Example |
| :---: | :---: | :---: | :---: |
| perpendicular lines |  |  |  |
| $\pi(\mathrm{pi})$ |  |  |  |
| polygon |  |  |  |
| quadrilateral <br> [KWAH-druh-LA-tuh-ruhl] |  |  |  |
| radius |  |  |  |
| reflection |  |  |  |
| supplementary angles <br> [SUH-pluh-MEHN-tuh-ree] |  |  |  |
| transformation |  |  |  |
| translation |  |  |  |
| transversal |  |  |  |
| vertical angles |  |  |  |

## 10-1 Line and Angle Relationships

## Main IdeAs

- Identify the relationships of angles formed by two parallel lines and a transversal.
- Identify the relationships of vertical, adjacent, complementary, and supplementary angles.


## Key Concept

Parallel Lines Cut by a Transversal If two parallel lines are cut by a transversal, then the following pairs of angles are congruent.

- Corresponding angles are congruent.
- Alternate interior angles are congruent.
- Alternate exterior angles are congruent.


## BUILD YOUR VOGABULARY (pages 236-237)

Two lines in a plane that never intersect are parallel lines.
A line that $\square$ two parallel lines is called a transversal.

When two lines intersect, they form two pairs of
$\square$ angles called vertical angles.

When two angles have the same $\square$ share a common side, and do not overlap, they are adjacent angles.

If the sum of the measures of two angles is $\square$, the angles are complementary.

If the sum of the measures of two angles is $\square$ the angles are supplementary.
$\square$ to form a $\square$ are perpendicular lines.

## EXAMPLE Find Measures of Angles

(1) In the figure, $m \| n$ and $s$ and $t$ are transversals. If $m \angle 7=123^{\circ}$, find $m \angle 2$ and $m \angle 8$.
Since $\angle 7$ and $\angle 2$ are alternate
 angles, they are $\square$
So, $m \angle 2=$ $\square$


Since $\angle 7$ and $\angle 8$ are $\square$ angles,
they are $\square$ So, $m \angle 8=$ $\square$

## Key Concept

Names of Special
Angles The eight angles formed by parallel lines and a transversal have special names.

- Interior angles
- Exterior angles
- Alternate interior angles
- Alternate exterior angles
- Corresponding angles

Check Your Progress
In the figure in Example 1, $m \| n$ and $s$ and $t$ are transversals. If $m \angle 4=57^{\circ}$, find $m \angle 5$ and $m \angle 1$.

## EXAMPLE

2 LEG LIFTS Kian does leg lifts each morning. For each repetition he lifts his legs 35 degrees off the ground. What is the measure of the angle formed by his body and legs in this position?

The angles are
 Write the equation.


The angle formed by his body and legs is $\square$
Check Your Progress SEWING Linda cuts a piece of material from the corner at a $35^{\circ}$ angle. What is the measure of the other angle formed by the cut?

## EXAMPLE Find Measures of Angles

3 Angles $P Q R$ and $S T U$ are supplementary. If $m \angle P Q R=$ $x-15$ and $m \angle S T U=x-65$, find the measure of each angle.
Step 1 Find the value of $x$.


## Write It

What is the difference between complementary angles and supplementary angles?
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Homework

 AssignmentPage(s):
Exercises:

Step 2 Replace $x$ with $\square$ to find the measure of each angle.

$$
\begin{aligned}
m \angle P Q R & =x-15 \\
& =\square-15 \text { or } \square \\
m \angle S T U & =x-65 \\
& =\square-65 \text { or } \square
\end{aligned}
$$

## Check Your Progress Angles $A B C$ and $D E F$ are

 complementary. If $m \angle A B C=x+12$ and $m \angle D E F=2 x-9$, find the measure of each angle.
## EXAMPLE

4 TRANSPORTATION A road crosses railroad tracks at an angle as shown. If $m \angle 1=131^{\circ}$, find $m \angle 6$ and $m \angle 5$.

Since $\square$ and $\angle 5$ are corresponding angles, they are congruent. So, $m \angle 5=$ $\square$
Since $\square$ and $\angle 6$ are supplementary angles, the sum of their measures is $180^{\circ}$;


Check Your Progress
TRANSPORTATION Main Street crosses Broadway Boulevard and Maple Avenue at an angle as shown. If $m \angle 1=148^{\circ}$, find $m \angle 3$ and $m \angle 4$.



## 10-2 Congruent Triangles

## Main Idea

- Identify congruent triangles and corresponding parts of congruent triangles.


## Key Concept

Corresponding Parts of Congruent Triangles If two triangles are congruent, their corresponding sides are congruent and their corresponding angles are congruent.

## BUILD YOUR VOGABULARY (page 236)

Figures that have the same $\square$ and $\square$ are congruent.

The parts of congruent triangles that $\square$ are corresponding parts.

## EXAMPLE Name Corresponding Parts

(1) Name the corresponding parts in the congruent triangles shown. Then complete the congruence statement.


Corresponding Angles
$\triangle D E F \cong ?$

$$
\angle D \cong \square, \angle E \cong \square, \square F
$$

Corresponding Sides
$\overline{D E} \cong \square, \overline{D F} \cong \square, \overline{E F} \cong \square$

One congruence statement is $\square$
$\square$

Check Your Progress
Name the corresponding parts in the congruent triangles shown. Then complete the congruence statement.


## ReView IT

What do we call a triangle with at least two congruent sides? Three congruent sides? (Lesson 9-3)
$\qquad$
$\qquad$
$\qquad$
$\qquad$
2 Determine whether the triangles shown are congruent. If so, name the corresponding parts and write a congruence statement.


EXPLORE The drawing shows which angles are congruent and the lengths of all sides.

PLAN Note which segments have the same length and which angles are congruent. Write corresponding vertices in the same order.

SOLVE Angles: The arcs indicate that $\angle M \cong$ $\square$ $\angle N \cong \square$, and $\angle O \cong \square$.

Sides: The slash marks indicate that $\overline{M N} \cong \square$, $\overline{N O} \cong \square$, and $\overline{M O} \cong \square$.

Since all pairs of corresponding angles and sides are


CHECK Draw $\triangle M N O$ and $\triangle Q P R$ so that they are
 the angles and sides.

## Check Your Progress

Determine whether the triangles shown are congruent. If so, name the corresponding parts and write a congruence statement.


## EXAMPLE Find Missing Measures

3 CONSTRUCTION A brace is used to support a tabletop. In the figure, $\triangle A B C \cong \triangle D E F$.

a. What is the measure of $\angle F$ ?
$\angle F$ and $\angle C$ are $\square$ angles. So, they are
$\square$. Since $m \angle C=\square, m \angle F=\square$.
b. What is the length of $\overline{D F}$ ?


## Check Your Progress In the figure, $\triangle A B C \cong \triangle D E F$.


a. What is the measure of $\angle B$ ?

b. What the length of $E F$ ?


## 10-3 Transformations on the Coordinate Plane

## Main Idea

- Draw translations, reflections, and dilations on a coordinate plane.


## Key Concept

Translation
Step 1 Describe the translation using an ordered pair.
Step 2 Add the coordinates of the ordered pair to the coordinates of the original point.

## BUILD YOUR VOGABULARY (pages 236-237)

A movement of a geometric figure is a transformation. In a translation, you a figure from one position to another without turning it.

In a reflection, you $\square$ a figure over a line.

In a dilation, you enlarge or reduce a figure by a scale factor.

## EXAMPLE Translation in a Coordinate Plane

Triangle $A B C$ is shown on the coordinate plane. Find the coordinates of the vertices of the image of $\triangle A B C$ translated 4 units right and 5 units down.
A $A^{\prime}(-7,2), B^{\prime}(-5,-5), C^{\prime}(1,0)$
B $A^{\prime}(1,12), B^{\prime}(3,5), C^{\prime}(9,10)$
C $A^{\prime}(-7,12), B^{\prime}(-5,5), C^{\prime}(1,10)$
D $A^{\prime}(1,2), B^{\prime}(3,-5), C^{\prime}(9,0)$
This translation can be written as
the ordered pair


To find the coordinates of the translated

image, add $\square$ to each $x$-coordinate
and add $\square$ to each $y$-coordinate.


The coordinates of the vertices of $\triangle A^{\prime} B^{\prime} C^{\prime}$ are $A^{\prime}$ $\square$
$\square$
$\square$ So, the answer is $\square$

## Check Your Progress

TEST EXAMPLE Triangle $D E F$ is shown on the coordinate plane. Find the coordinates of the vertices of the image of $\triangle D E F$ translated 3 units left and 2 units up.

A $D^{\prime}(-4,3), E^{\prime}(-6,-1), F^{\prime}(1,-6)$
B $D^{\prime}(2,3), E^{\prime}(0,-1), F^{\prime}(7,-6)$
C $D^{\prime}(-4,7), E^{\prime}(-6,3), F^{\prime}(1,-2)$
D $D^{\prime}(2,7), E^{\prime}(0,3), F^{\prime}(7,-2)$


## EXAMPLE Ref ection in a Coordinate Plane

## Key Concept

## Reflection

- To reflect a point over the $x$-axis, use the same $x$-coordinate and multiply the $y$-coordinate by -1 .
- To reflect a point over the $y$-axis, use the same $y$-coordinate and multiply the $x$-coordinate by -1 .

2 The vertices of a figure are $M(-8,6), \mathrm{N}(5,9), O(2,1)$, and $P(-10,3)$. Graph the figure and the image of the figure after a reflection over the $y$-axis.
To find the coordinates of the vertices of the image after a reflection over the $y$-axis, multiply the $x$-coordinate by $\qquad$ and use the same $y$-coordinate.
vertex
reflection


The coordinates of the vertices of the reflected figure are



Check Your Progress The
vertices of a figure are $Q(-2,4)$, $R(-3,1), S(3,-2)$, and $T(4,3)$. Graph the figure and the image of the figure after a reflection over the $y$-axis.

## EXAMPLE Dilations in a Coordinate Plane

## Key Concept

## Dilation

Suppose $k$ is the scale factor of a dilation.

- If $k>1$, the dilation is an enlargement.
- If $0<k<1$, the dilation is a reduction.
- If $k=1$, the dilation is congruent to the original figure.


## Homework Assignment



A polygon has vertices $A(-1,1), B(1,1)$, and $C(1,2)$. Graph the polygon and the image of the polygon after a dilation centered on the origin with a scale factor of 3.

To dilate the polygon, $\square$ the coordinates of each vertex by $\square$.


The coordinates of the dilated image are $\square$ , $\square$, and $\square$

Check Your Progress
A figure has vertices $A(2,-2)$, $B(4,6), C(-4,4)$, and $D(-6,-2)$. Graph the figure and the image of the figure after a dilation centered at the origin with a scale factor of $\frac{1}{2}$.


## 10-4 Quadrilaterals

## Main Ideas

- Find the missing angle measures of a quadrilateral.

Classify quadrilaterals.

## Key Concept

Angles of a
Quadrilateral The sum of the measures of the angles of a quadrilateral is $360^{\circ}$.


## EXAMPLE Find Angle Measures

(1) Find the value of $x$. Then find each missing angle measure.


Words

Variable

Equation

The sum of the measures of the angles is $360^{\circ}$.
Let $m \angle Q, m \angle R, m \angle S$, and $m \angle T$ represent the measures of the angles.

$$
m \angle Q+m \angle R+m \angle S+m \angle T=
$$

$\square$

The value of $x$ is $\square$
So, $m \angle T=\square$ and $m \angle R=\square$ or $\square$.

## FOLDABLES

## Organize IT

On your Quadrilaterals index card, draw three examples of quadrilaterals, and describe how to find the sum of the measures of the angles in a quadrilateral.


## Homework

 AssignmentPage(s):<br>Exercises:

## Check Your Progress <br> Find

 the value of $x$. Then find each missing angle measure.

## EXAMPLE Classify Quadrilaterals

2 Classify each quadrilateral using the name that best describes it.
a.


The quadrilateral has $\square$ of $\square$
$\square$ It is a trapezoid.
b.


The quadrilateral has
 of
$\square$

## Check Your Progress

Classify each quadrilateral using the name that best describes it.
a.


b.


## 10-5 Polygons

## MAIN IDEAS

- Classify polygons.
- Determine the sum of the measures of the interior and exterior angles of a polygon.


## BUILD YOUR VOGABULARY (pages 236-237)

A polygon is a simple, closed figure formed by consecutive
$\square$
A diagonal is a line segment in a polygon that $\square$ two nonconsecutive $\square$

## EXAMPLE Classify Polygons

## 1) Classify each polygon.

a.


This polygon has $\square$ sides. It is a $\square$
b.


This polygon has $\square$ sides. It is a $\square$

## Check Your Progress

## Classify each polygon.

a.

$\square$
b.

$\square$

## EXAMPLE Measures of Interior Angles

## KEY CONCEPT

## Interior Angles of a

 Polygon If a polygon has $n$ sides, then $n-2$ triangles are formed. The sum of the degree measures of the interior angles of the polygon is $(n-2) 180$.
## Homework Assignment

2 Find the sum of the measures of the interior angles of a quadrilateral.

A quadrilateral has $\square$ sides. Therefore, $n=\square$.

$$
\begin{aligned}
(n-2) 180 & =\square & \text { Replace } r \\
& =\square \text { or } \square & \text { Simplify. }
\end{aligned}
$$

The sum of the measures of the interior angles of a quadrilateral is $\square$

Check Your Progress Find the sum of the measures of the interior angles of a pentagon.

## EXAMPLE Find Angle Measures of a Regular Polygon

3 TRAFFIC SIGNS A stop sign is a regular octagon. What is the measure of one interior angle in a stop sign?
Step 1 Find the sum of the measures of the angles.
An octagon has 8 sides. Therefore, $n=\square$.

$$
(n-2) 180=\square \quad \text { Replace } n \text { with } \square .
$$

Simplify.
The sum of the measures of the interior angles is $\square$
Step 2 Divide the sum by 8 to find the measure of one angle.
$\square$
So, the measure of one interior angle in a stop sign is


## Check Your Progress

A picnic table in the park is a regular hexagon. What is the measure of one interior angle in the

## 10-6 Area: Parallelograms, Triangles, and Trapezoids

## EXAMPLE Find Areas of Parallelograms

## Main Ideas

Find area of parallelograms.

- Find the areas of triangles and trapezoids.


## Key Concept

Area of a Parallelogram If a parallelogram has a base of $b$ units and a height of $h$ units, then the area $A$ is $b h$ square units.

## (1) Find the area of each parallelogram.


$A=b h$
Area of a parallelogram

$b=\square, h=$ $\square$
Multiply.

The area is

b.


The base is


The height is $\square$
$A=b h$

$\square$
Area of a parallelogram


Multiply.

The area is $\square$

## Check Your Progress

Find the area of each parallelogram.
a.

$\square$
b.
b.


## KEy CoNCEPT

Area of a Triangle If a triangle has a base of $b$ units and a height of $h$ units, then the area $A$ is $\frac{1}{2} b h$ square units.

## FOLDABLES

## Organize it

Add diagrams, labels, and area formulas to the index cards for parallelograms, triangles, and trapezoids in your Foldable.


## EXAMPLE Find Areas of Triangles

## Find the area of each triangle.

a.


The base is


The height is

$A=\frac{1}{2} b h$
Area of a triangle
$=\square$

$$
=\square
$$

$b=\square, h=\square$

The area of the triangle is $\square$
b.


The base is $\square$
The height is

$A=\frac{1}{2} b h$
Area of a triangle
$=\square$
$\square$

$$
b=\square, h=\square
$$

Multiply.
The area of the triangle is $\square$

Check Your Progress
Find the area of each triangle.
a.

b.



EXAMPLE Find Area of a Trapezoid

## KEY CONCEPT

Area of a Trapezoid If a trapezoid has bases of $a$ units and $b$ units and a height of $h$ units, then the area $A$ of the trapezoid is $\frac{1}{2} h(a+b)$ square units.

## Homework

 AssignmentPage(s):
Exercises:


## 3 Find the area of the trapezoid.

The height is

$b=\square$
$A=\square$
Add.


Divide out the common factors.


Simplify.

The area of the trapezoid is $\square$

Check Your Progress Find the area of the trapezoid.


## 10-7 Circles: Circumference and Area

## MAIN IDEAS

- Find circumference of circles.
- Find area of circles.


## Key Concept

Circumference of a Circle
The circumference of a circle is equal to its diameter times $\pi$, or 2 times its radius times $\pi$.

## BUILD YOUR VOGABULARY (pages 236-237)

The distance across the circle through its $\square$ is its diameter.

The distance from the $\square$ to any point on the circle is its radius.

The $\square$ of the circumference of a circle to the $\square$ of the circle is always equal to $3.1415926 \ldots$, represented by the Greek letter $\boldsymbol{\pi}$ (pi).

## EXAMPLE Find the Circumference of a Circle

## (1) Find the circumference of each circle to the nearest

 tenth.a.

Circumference of a circle
Replace $d$ with

$C=$ $\square$
Simplify. This is the exact circumference.

Using a calculator, you find that the circumference is about
$\square$
b.


The circumference is about $\square$

Find the circumference of each circle to the nearest tenth.
a.

b.



## EXAMPLE

LANDSCAPING A landscaper has a tree whose roots form a ball-shaped bulb with a circumference of 110 inches. What is the minimum diameter of the hole that the landscaper will have to dig in order to plant the tree?

Use the formula for the circumference of a circle to find the diameter.

| $C=\pi d$ |  | Circumference of a circle |  |
| ---: | :--- | ---: | :--- |
| $\square$ | $=\pi \cdot d$ |  | Replace $C$ with $\square$. |
| $\square$ | $=d$ |  | Divide each side by $\square$. |
| $\square$ | $=\square$ |  | Simplify. Use a calculator. |

The diameter of the hole should be at least $\square$

Check Your Progress
SWIMIIING POOL A circular swimming pool has a circumference of 24 feet. Matt must swim across the diameter of the pool. How far will Matt swim?

## EXAMPLE Find Areas of Circles

## Key Concept

Area of a Circle The area of a circle is equal to $\pi$ times the square of its radius.

FOLDABLES Add a diagram of a circle to your Circles index card. Label the center, diameter, radius and circumference. Then write the formulas for the circumference and area of a circle.

Homework Assignment

Page(s):
Exercises:

## 3 Find the area of each circle. Round to the nearest tenth.

a.

$A=\pi r^{2}$
$A=\square$
Area of a circle
$A=\square$
Replace $r$ with

$A \approx$

Evaluate $\square$

The area is about $\square$
b.

$A=\pi r^{2}$

$A \approx$


Evaluate $\square$
Area of a circle Replace $r$ with $\square$. Use a calculator.

The area is about $\square$

Check Your Progress
Find the area of each circle.
Round to the nearest tenth.
a.

b.


## 10-8 Area: Composite Figures

## EXAMPLE Find Area of Composite Figures

## Main Idea

Find the area of composite figures.

## (1) Find the area of the figure to the

 nearest tenth.Separate the figure into a triangle, square, and a quarter-circle. Then find the sum of the areas of the figures.


Area of Square
$A=b h$
Area of a square
$A=\square$ or $\square$
$b=h=$ $\square$

Area of Triangle
$A=\frac{1}{2} b h \quad$ Area of a triangle
$b=\square, h=\square$

Area of Quarter-circle
$A=\frac{1}{4} \pi r^{2}$
Area of a quarter-circle

$r=\square$

The area of the figure is
$\square$ or about
$\square$ square inches.

## Check Your Progress

Find the area of the figure to the nearest tenth.


## FOLDABLES

## ORGANIZE IT

On your Composite Figures index card, describe how to find the area of a composite figure.


## Homework

 AssignmentPage(s):
Exercises:

## BRINGING IT ALL TOGETHER

## STUDY GUIDE

## Foldables

Use your Chapter 10 Foldable to help you study for your chapter test.

## Vocabulary <br> PUZZLEMAKER

To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 10, go to:
glencoe.com

## BUILD YOUR VOCABULARY

You can use your completed Vocabulary Builder (pages 236-237) to help you solve the puzzle.

## 10-1

Line and Angle Relationships

## Complete.

1. Two angles are $\square$ if the sum of their measures is $90^{\circ}$.
2. When two lines intersect, they form two pairs of opposite angles called $\square$
In the figure at the right, $\ell \| m$ and $p$ is a transversal. If $m \angle 5=96^{\circ}$, find the measure of each angle.
3. $\angle 2$ $\square$ 4. $\angle 3$ $\square$ 5. $\angle 8$ $\square$


10-2
Congruent Triangles
In the figure shown, the triangles are congruent.
Complete each congruence statement.
6. $\angle J \cong$ $\square$ 7. $\overline{J H} \cong$ $\square$
8. $\overline{H K} \cong$ $\square$
9.

10. $\angle H \cong$ $\square$
11. $\overline{K J} \cong$ $\square$


10-3
Transformations on the Coordinate Plane
12. Suppose the figure graphed is reflected over the $y$-axis. Find the coordinates of the vertices after the reflection.
13. A figure has the vertices $P(4,-2), Q(3,-4)$, $R(1,-4), S(2,-1)$. Find the coordinates
 of the vertices of the figure after a dilation centered on the origin with a scale factor of 3 .

10-4

## Quadrilaterals

Match each description with a quadrilateral.
14. a parallelogram with four congruent sides and four right angles $\square$
15. one pair of opposite sides is parallel $\square$
a. square
b. trapezoid
c. rectangle
d. rhombus
16. a parallelogram with four congruent sides $\square$
17. In quadrilateral $E F G H, m \angle E=90^{\circ}, m \angle F=120^{\circ}$, and $m \angle G=70^{\circ}$. Find $m \angle H$. $\square$

## 10-5

## Polygons

Find the sum of the measures of the interior angles of each polygon.
18. decagon $\square$ 19. heptagon $\square$ 20. 15-gon $\square$
Find the measure of an interior angle of each polygon.
21. regular octagon $\square$ 22. regular nonagon $\square$

10-6

## Area: Parallelograms, Triangles, and Trapezoids

Find the area of each figure described.
23. triangle: base, 6 ft ; height, 4 ft
$\square$
24. parallelogram: base, 13 m ; height, 7 m
$\square$
25. trapezoid: height, 4 cm ; bases, 3 cm and 9 cm
$\square$
10-7
Circles: Circumference and Area
Complete.
26. The distance around a circle is called the $\square$
27. The $\square$ is the distance across a circle through its center.

Find the circumference and area of each circle. Round to the nearest tenth.
28.

29.


10-8

## Area: Composite Figures

Find the area of each figure. Round to the nearest tenth, if necessary.
30.

31.

$\square$
$\square$

## ARE YOU READY FOR THE CHAPTER TEST?

## Checklist

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 10.

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 10 Practice Test on page 569 of your textbook as a final check.

I used my Foldable or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 10 Study Guide and Review on pages 564-568 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may want to take the Chapter 10 Practice Test on page 569.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 10 Foldable.
- Then complete the Chapter 10 Study Guide and Review on pages 564-568 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 10 Practice Test on page 569.
 11


## Three-Dimensional Figures

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.

Begin with a plain piece of $11^{\prime \prime} \times 17^{\prime \prime}$ paper.

STEP 1 Fold the paper in thirds lengthwise.


STEP 2 Fold a 2" tab along the short side. Then fold the rest in fourths.


STEP 3 Draw lines along folds and label as shown.


NOTE-TAKING TIP: When taking notes, use a table to make comparisons about the new material. Determine what will be compared, decide what standards will be used, and then use what is known to find similarities and differences.

## BUILD YOUR VOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 11.
As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

| Vocabulary Term | Found <br> on Page | Definition | Description or <br> Example |
| :--- | :--- | :--- | :--- |
| base |  |  |  |
| cone |  |  |  |
| cylinder <br> [SIH-luhn-duhr] |  |  |  |
| edge |  |  |  |
| face |  |  |  |
| lateral <br> [LA-tuh-ruhl] area |  |  |  |
| lateral face |  |  |  |
| net |  |  |  |
| plane |  |  |  |
| [pah-lee-HEE-druhn] |  |  |  |


| Vocabulary Term | Found <br> on Page | Definition | Description or <br> Example |
| :---: | :---: | :---: | :---: |
| prism |  |  |  |
| pyramid |  |  |  |
| similar solids |  |  |  |
| slant height |  |  |  |
| solume |  |  |  |
| sphere |  |  |  |
|  |  |  |  |

## BUILD YOUR VOCABULARY (pages 264-265)

## MAIN IDEAS

Identify threedimensional figures.

- Draw various views of three-dimensional figures.


## Key Concept

## Polyhedrons


triangular prism

rectangular prism

triangular pyramid

rectangular pyramid

A plane is a two-dimensional $\square$ surface that extends in all directions.

Intersecting planes can form $\square$
figures or solids. A polyhedron is a solid with flat surfaces that are $\square$
In a polyhedron, an edge is where two planes intersect in a $\square$. A face is a $\square$ surface. A vertex is where $\square$ or more planes $\square$ in a point.
A prism is a polyhedron with two $\square$, congruent faces called bases.

A pyramid is a polyhedron with one base that is any polygon. Its other faces are $\qquad$

## EXAMPLE Identify Solids

1 Identify each solid. Name the bases, faces, edges, and vertices.
a.


This figure has two parallel congruent bases that are

## Remember It

 In a rectangular prism, any two parallel rectangles are bases, and any face is a base in a triangular pyramid. Bases do not have to be on the bottom of a figure.faces: $\square$
edges:

vertices:

b.


This figure has one $\square$ base, $D E F$, so it is a

faces: $\square$
edges: $\square$
vertices: $\square$

## Check Your Progress

Identify the solid. Name the bases, faces, edges, and vertices.
a.


b.



## EXAMPL

2 ARCHITECTURE An architect's sketch shows the plans for a new skyscraper. Each unit on the drawing represents $\mathbf{8 0}$ feet.
a. Draw a top view and find the area of the ground floor.
The drawing is two rectangles, a $4 \times 6$ and a $2 \times 1$, so the actual dimensions are $4(80) \times 6(80)$ plus or $2(80) \times 1(80)$ or 320 feet $\times 480$ feet
 plus 160 feet $\times 80$ feet. To find the area add the areas

$$
\begin{aligned}
& \text { of the two rectangles. } A= \\
& \text { or } \square
\end{aligned}
$$



The area of the ground
$\square$ floor is

b. Draw a top-count view of the building.

Using the top view from part a, write the number of levels for each unit of the building.
c. How many floors are in the skyscraper if each floor is $\mathbf{1 6}$ feet high?

You can see from the side view and top-count view that the height of the building is 7 units.
total height: 7 units $\times 80$ feet per unit $=560$ feet number of floors:

side view

Homework Assignment

## Page(s):

Exercises:


## 11-2 Volume: Prisms and Cylinders

## MAIN IDEAS

Find volumes of prisms.
Find volumes of circular cylinders.

## BUILD YOUR VOGABULARY (page 265) <br> Volume is the <br> $\square$ occupied by a solid region.

## EXAMPLE Volume of a Rectangular Prism

## Key Concept

Volume of a Prism The volume $V$ of a prism is the area of the base $B$ times the height $h$.
(1) Find the volume of the prism.
$V=B h$





Formula for volume of a prism
The base is a


$$
\begin{aligned}
& \text { so } B=\square . \\
& \square=25, \square=16, \square=8
\end{aligned}
$$

Simplify.
The volume is $\square$ cubic centimeters.

## EXAMPLE Volume of a Triangular Prism

2 Find the volume of the triangular prism.

$V=B h$

$=\square$

Formula for volume of a prism


The $\square$ of the prism is


Simplify.
The volume is $\square$ cubic inches.

Find the volume of each prism.
a.


b.



## EXAMPLE Height of a Prism

3 BAKING Baking Cake batter is poured into a pan that is a rectangular prism whose base is an 8 -inch square base. If the cake batter occupies 192 cubic inches, what will be the height of the batter?

$$
V=B h \quad \text { Formula for volume of a prism }
$$

$$
V=\ell \cdot w \cdot h \quad \text { Formula for volume of a }
$$ rectangular prism



Simplify.


Divide each side by


The height of the batter is $\square$

## Check Your Progress

SWIMMING POOLS A swimming pool is filled with 960 cubic feet of water. The pool is a rectangular prism 20 feet long and 12 feet wide and is the same depth throughout. Find the depth of the water.

## BUILD YOUR YOGABULARY (page 264)

A cylinder is a $\square$ whose bases are congruent, parallel $\square$, connected with a $\square$ side.

## EXAMPLE Volume of a Cylinder

## Key Concept

Volume of a Cylinder The volume $V$ of a cylinder with radius $r$ is the area of the base $B$ times the height $h$.

FOLDABLES Write the formulas for the volume of a prism and the volume of a cylinder in your table.

## Homework

 AssignmentPage(s):
Exercises:

4 Find the volume of each cylinder. Round to the nearest tenth.
a.


Formula for volume


Replace $r$ with
and $h$ with


Simplify.
The volume is about $\square$ cubic feet.
b. diameter of base 10 m , height 2 m

Since the diameter is $\square$ , the radius is $\square$
$V=\pi r^{2} h$
$\square$ Replace $r$ with $\square$
and $h$ with $\square$
$\square$ Simplify.

## Check Your Progress

Find the volume of each cylinder. Round to the nearest tenth.
a.

b. diameter of base 8 cm , height 6 cm
$\square$

## 11-3 Volume: Pyramids, Cones, and Spheres

## EXAMPLE Volumes of Pyramids

## Main Ideas

- Find volumes of pyramids.
- Find volumes of cones and spheres.


## Key Concepts

Volume of a Pyramid The volume $V$ of a pyramid is one-third the area of the base $B$ times the height $h$.

## Volume of a Cone

The volume $V$ of a cone with radius $r$ is one-third the area of the base $B$ times the height $h$.
[FOLDABLES Write these formulas in your table.

1 Find the volume of the pyramid. If necessary, round to the nearest tenth.


$$
V=\frac{1}{3} B h
$$




Formula for volume of a pyramid


The height is $\square$ inches.

Simplify.

The volume is $\square$ cubic inches.

## BUILD YOUR VOGABULARY (page 264)

A cone is a three-dimensional figure with one $\square$ base. A curved surface connects the base and the vertex.

## EXAMPLE Volume of a Cone

2 Find the volume of the cone. Round to the nearest tenth.


$$
V=\frac{1}{3} \pi r^{2} h
$$




Formula for volume of a cone


Simplify.

The volume is $\square$ cubic meters

## Key Concept

Volume of a Sphere The volume $V$ of a sphere is four-thirds times pi times the radius cubed.

## Check Your Progress

Find the volume of each solid. Round to the nearest tenth.
a.

b.



## EXAMPLE Volume of a Sphere

3 Find the volume of the sphere. Round to the nearest tenth.

$=\square$
$\square$

Simplify.

The volume of the sphere is about $\square$

## Check Your Progress

Find the volume of the sphere.
Round to the nearest tenth.


## EXAMPLE

4) LANDSCAPING When mulch was dumped from a truck, it formed a cone-shaped mound with a diameter of 15 feet and a height of 8 feet.
a. What is the volume of the mulch?

$$
\begin{array}{rlrl}
V & =\frac{1}{3} \pi r^{2} h & \text { Formula for volume of a cone } \\
& =\square \quad r=\square, h=\square . \\
& \approx \square \text { cubic feet }
\end{array}
$$

b. How many square feet can be covered with this mulch if 1 cubic foot covers 4 square feet of ground?


## Check Your Progress PLAYGROUND A load of wood

 chips for a playground was dumped and formed a coneshaped mound with a diameter of 10 feet and a height of 6 feet.a. What is the volume of the wood chips?

b. A person shoveling the wood chips removes them at a rate of $2 \mathrm{ft}^{3}$ every minute. How long does it take for the load of wood chips to be completely removed?


## 11-4 Surface Area: Prisms and Cylinders

## MAIN IdeAs

- Find the lateral area and surface areas of prisms.
- Find the lateral area and surface areas of cylinders.


## Key Concept

Surface Area of Rectangular Prisms The surface area $S$ of a rectangular prism with length $I$, width $w$, and height $h$ is the sum of the areas of the faces.

## BUILD YOUR VOCABULARY (page 265)

The surface area of a three-dimensional figure is the

of the figure.

## EXAMPLE Surface Area of Prisms

(1) Find the lateral and surface area of the rectangular prism.
a.


Find the lateral area.
Find the surface area.
$L=P h$
$=(2 \ell+2 \boldsymbol{w})(h)$


$S=L+2 B$
$=L+2 \ell w$

$$
=\square+2 \square
$$


b.


The lateral area is made up of the areas of the lateral faces.
$\begin{aligned} L & =P h \\ & =\square \\ & =\square\end{aligned}$
Find the surface area.

$$
\begin{aligned}
S & =L+2 B \\
& =L+2\left(\frac{1}{2} b h\right) \\
& =\square+2\left(\frac{1}{2} \square\right) \\
& =\square
\end{aligned}
$$

## Key Concept

Surface Area of Cylinders The surface area $S$ of a cylinder with height $h$ and radius $r$ is the area of the two bases plus the area of the curved surface.

FOLDABLES Write the formulas for the surface area of a prism and the surface area of a cylinder in your table.

Check Your Progress area of each prism.
a.

b.



Find the lateral area and surface

## EXAMPLE Surface Area of a Cylinder

2 Find the lateral area and surface area of the cylinder. Round to the nearest tenth.


## Lateral Area

$L=2 \pi r h$


## Surface Area

$$
S=L+2 \pi r^{2}
$$



## Check Your Progress

Find the lateral area and surface area of the cylinder. Round to the nearest tenth.


3 CEREALS A company packages its cereal in a rectangular prism that is 2.5 inches by 7 inches by 12 inches. It is considering packaging it in a cylindershaped container having a 6 -inch diameter and a height of 7.5 inches. Which uses the least amount of packaging?

Surface Area of Rectangular Prism

Lateral Area


Surface Area of Cylinder
Lateral Area


Area of Bases


Area of Bases


## Homework ASSIGNMENT

Page(s):
Exercises:

## Check Your Progress

CANDY A candy company is deciding between two types of packaging for its gumballs. The first option is a rectangular prism that is 6 inches by 4 inches by 1.5 inches. The second option is a cylinder having a radius of 2 inches and a height of 5 inches. Which option requires less packaging?

## 11-5 Surface Area: Pyramids and Cones

## MAIN IDEAS

- Find the surface areas of pyramids.
- Find surface areas of cones.


## Write IT

If the base of a pyramid is a regular polygon, what do you know about its lateral faces?
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## BUILD YOUR VOCABULARY (pages 264-265)

The $\square$ or height of each $\square$
is called the slant height.

The $\square$ of the $\square$ of the lateral faces is the lateral area of a pyramid.

## EXAMPLE Surface Area of a Pyramid

(1) Find the surface area of the square pyramid.

Find the lateral area and the base area.


## Area of each lateral face

$L=4\left(\frac{1}{2}\right) b h$
Area of 4 triangles

and $h$ with


Simplify.

Then find the surface area. The base of the pyramid is a square.
$S=L+B$
Write the formula.
$=L+$

The area of a square is

$=$

Substitution
Simplify.

## Key Concept

Surface Area of a Cone The surface area $S$ of a cone with slant height $\ell$ and radius $r$ is the lateral area plus the area of the base.

FOLDABLES Write the formulas for the surface area of a pyramid and the surface area of a cone in your table.

## Homework

 AssignmentPage(s):
Exercises:

Check Your Progress Find the surface area of the square pyramid.

## EXAMPLE Surface Area of a Cone

(2) Find the surface area of the cone. Round to the nearest tenth.

$S=\pi r \ell+\pi r^{2}$
Formula for surface area of a cone
 and $\ell$ with $\square$

The surface area is about $\square$ square feet.

## Check Your Progress

Find the surface area of the cone. Round to the nearest tenth.


## 11-6 Similar Solids

## MAIN IDEAS

- Identify similar solids.
- Solve problems involving similar solids.


## BUILD YOUR VOGABULARY (page 265)

Two solids are similar solids if they have the same

$\square$
are

## EXAMPLE Identify Similar Solids

## Determine whether the

 pair of solids is similar.

Write a proportion comparing radii and heights.

Find the cross products.


Simplify.

The radii and heights are $\square$ proportional, so the cylinders are $\square$ similar.

Check Your Progress
Determine whether the pair of solids is similar.


## EXAMPLE Find Missing Measures

2) The cylinders shown are similar. Find the radius of cylinder $A$.
The radius of cylinder A is $\square$ centimeters.

## Check Your Progress

The rectangular prisms below are similar. Find the height of prism B.


## EXAMPLE

## Key Concept

Ratios of Similar Solids If two solids are similar with a scale factor of $\frac{a}{b}$, then the surface areas have a ratio of $\frac{a^{2}}{b^{2}}$ and the volumes have a ratio of $\frac{a^{3}}{b^{3}}$.

## Homework Assignment

| Page(s): |
| :--- |
| Exercises: |

Exercises:


## 3 DOLLHOUSE A small model of a fish tank for Eva's

 dollhouse is built on a scale of 1 cm to 5 in . and has a volume of $24 \mathbf{c m}^{3}$. What is the volume of the actual fish tank?You know the scale factor $\frac{a}{b}$ is $\square$ and the volume of the model is $\square$ Since the volumes have a ratio of $\left(\frac{a}{b}\right)^{3}$ and $\frac{a}{b}=\square$, replace a with $\square$ and $b$ with $\square$ in $\left(\frac{a}{b}\right)^{3}$.
$\frac{\text { volume of model }}{\text { volume of fish tank }}=\left(\frac{a}{b}\right)^{3} \quad$ Write the ratio of volumes.


The volume of the fish tank is $\square$ times the volume of the model.


Check Your Progress TRAINS A scale model of a railroad boxcar is built on a scale of 1 inch to 50 inches and has a volume of 72 cubic inches. What is the volume of the actual boxcar?


## BRINGING IT ALL TOGETHER

## STUDY GUIDE

## FOLDABLES

Use your Chapter 11 Foldable to help you study for your chapter test.

## VOCABULARY <br> PUZZLEMAKER

To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 11, go to:
glencoe.com

## BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (pages 264-265) to help you solve the puzzle.

## 11-1

## Three-Dimensional Figures

1. Identify the solid. Name the faces, edges, and vertices.
$\square$


State whether each sentence is true or false. If false, replace the underlined word to make a true sentence.
2. A pyramid is a solid with two bases. $\square$
3. Intersecting lines form three-dimensional figures called solids. $\square$
11-2
Volume: Prisms and Cylinders
Find the volume of each prism or cylinder. Round to the nearest tenth if necessary.
4.

5.



11-3
Volume: Pyramids, Cones, and Spheres
Find the volume of each solid. Round to the nearest tenth if necessary.
6. cone: diameter 14 ft , height 11 ft
$\square$
7. square pyramid: length 4.5 m , height 6.8 m
$\square$

## 11-4

Surface Area: Prisms and Cylinders
Find the lateral area and surface area of each solid. Round to the nearest tenth if necessary.
8.

9.

$\square$
$\square$

## 11-5

Surface Area: Pyramids and Cones

Find the surface area of each solid. Round to the nearest tenth if necessary.
10.


11.


12. square pyramid: base side lengths 5 in., slant height 8 in.
$\square$

11-6
Similar Solids
Determine whether each pair of solids is similar.
13.

$\square$
14.


Find the missing measure for the pair of similar solids.
15.



11

## ARE YOU READY FOR THE CHAPTER TEST?

## Checklist

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 11.

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 11 Practice Test on page 619 of your textbook as a final check.

I used my Foldables or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 11 Study Guide and Review on pages 615-618 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may want to take the Chapter 11 Practice Test on page 619.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 11 Foldables.
- Then complete the Chapter 11 Study Guide and Review on pages 615-618 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 11 Practice Test on page 619.


12

## More Statistics and Probability

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.

| Begin with a piece of notebook paper. |  |  |
| :---: | :---: | :---: |
| STEP 1 | Fold lengthwise to the holes. |  |
| STEP 2 | Cut along the top line and then cut 10 tabs. |  |
| STEP 3 | Label the lesson numbers and titles as shown. |  |

NOTE-TAKING TIP: When taking notes on statistics, include your own statistical examples as you write down concepts and definitions. This will help you to better understand statistics.

## BUILD YOUR VOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 12.
As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

| Vocabulary Term | Found <br> on Page | Definition | Description or <br> Example |
| :--- | :--- | :--- | :--- |
| back-to-back <br> stem-and-leaf plot |  |  |  |
| box-and-whisker plot |  |  |  |
| combination |  |  |  |
| composite events |  |  |  |
| dependent events |  |  |  |
| experimental <br> probability |  |  |  |
| Fundamental <br> Counting Principle |  |  |  |
| histogram |  |  |  |
| independent events |  |  |  |
| measures of variation |  |  |  |
| [in-tuhr-kwawr-tyl] |  |  |  |


| Vocabulary Term | Found on Page | Definition | Description or Example |
| :---: | :---: | :---: | :---: |
| mutually exclusive events |  |  |  |
| outcomes |  |  |  |
| outliers |  |  |  |
| permutation <br> [puhr-myoo-tay-shuhn] |  |  |  |
| probability |  |  |  |
| quartiles |  |  |  |
| range |  |  |  |
| sample space |  |  |  |
| simple event |  |  |  |
| stem-and-leaf plot |  |  |  |
| theoretical probability |  |  |  |
| tree diagram |  |  |  |
| upper and lower quartiles |  |  |  |

## 12-1 Stem-and-Leaf Plots



## EXAMPLE Draw a Stem-and-Leaf Plot

1 FOOD Display the data in a stem-and-leaf plot with or without the use of technology.

Step 1 Find the least and the greatest number. Then identify the greatest place value digit in each number.

| Peanuts Harvest, 2001 |  |
| :--- | :---: |
| State | Amount (lb/acre) |
| Alabama | 2400 |
| Florida | 2800 |
| Georgia | 2800 |
| New Mexico | 2400 |
| North Carolina | 2900 |
| Oklahoma | 2200 |
| South Carolina | 2900 |
| Texas | 2600 |
| Virginia | 3000 |



## Review IT

What are the mean, the median, and the mode of a set data? (Lesson 5-9)
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Step 2 Draw a vertical line and write the stems $\square$ and
$\square$ to the left of the line.
Step 3 Write the leaves to the right of the line, with the corresponding stem.

Step 4 Rearrange the leaves so they are ordered from least to greatest. Then include a key.


## Check Your Progress

Display
the speeds $65,72,59,68,75$, $70,68,64,67,69,72$, and 55 given in miles per hour in a stem-and-leaf plot.

## EXAMPLE Interpret Data

2 VOTING The stem-and-leaf plot lists the percent of people in each state in 2004 that were born in Mexico, rounded to the nearest whole number.

| Stem | Leaf |
| :---: | :---: |
| 0 | 000112234 |
| 0 | 455566888 |
| 1 | 01447 |
| 2 | 1238 |
| 3 | 1235599 |
| 4 | 012333468 |
| 5 | 266 |
| 6 | 46 |
| 7 | $4 \quad 3 \mid 1=31 \%$ |

a. Which interval contains the most percentages?

Most of the data occurs in the $\quad$ interval.
b. What is the greatest percent of people living in one U.S. state that were born in Mexico?

The greatest percent is $\square$

## c. What is the median percent of people living in one

 U.S. state that were born in Mexico?The median in this case is the mean of the middle two numbers or $\square$

Check Your Progress ALLOWANCES The

| Stem | Leaf |  |  |  |  |  |  |  |  |  |  |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 5 |  |  |  |  |  |  |  |  |  |
| 1 | 0 | 2 | 2 | 5 | 8 | 8 | 8 |  |  |  |  |
| 2 | 0 | 0 | 0 | 4 | 4 | 5 | 5 | 5 | 5 |  |  |
| 3 | 0 | 0 | 2 | 2 | 2 | 4 | 4 | 5 | 5 | 6 | 6 |
| 4 | 0 | 2 | 4 | 4 | 5 | 5 | 5 | 5 | 8 | 8 | 9 |
| 5 | 0 | 0 |  |  |  |  |  |  | $2 \mid 5=\$ 25$ |  |  |

a. In which interval do most of the monthly allowances occur?
$\square$
b. What is the greatest monthly allowance given?

c. What is the median monthly allowance given?

## BUILD YOUR YOGABULARY (page 288)

Two sets of data can be $\square$ using a back-to-back stem-and-leaf plot. The leaves for one set of data are on one side of the $\square$ and the leaves for the other set of data are on the other side.

## EXAMPLE

AGRICULTURE The yearly production of honey in California and Florida is shown for the years 2000 to 2004 , in millions of pounds.
Source: USDA

| California |  | Florida |
| ---: | :--- | :--- |
| 7 | 1 | 4 |
| 84 | 2 | 0024 |
| 21 | 3 |  |

$2|3=23 \quad 2| 0=20$ million lb million lb
a. Which state produces more honey?
pounds per year.
b. Which state has the most varied production? Explain.
$\square$ ; the data are more spread out.

## Check Your Progress

EXAMS The exam score earned on the first test in a particular class is shown for male and female students.

| Male |  | Female |
| ---: | :--- | :--- |
| 82 | 6 |  |
| 964 | 7 | 4889 |
| 74220 | 8 | 13489 |
| 653 | 9 | 259 |
| $2 \mid 8=82$ |  | $7 \mid 4=74$ |

a. Which group of students had the higher test scores?

b. Which group of students had more varied test scores?

## 12-2 Measures of Variation

## MAIN IDEAS

- Find measures of variation.
- Use measures of variation to interpret and compare data.


## Write IT

What does the range describe about a set of data?
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## BUILD YOUR VOCABULARY (page 289)

Measures of variation are used to describe the of the data.

The range of a set of data is the $\square$ between the greatest and the least values of the set.

The quartiles are the values that divide a set of data into
$\square$ equal parts.

The $\square$ of the lower half of a set of data is the lower quartile.

The median of the $\square$ of a set of data is the upper quartile.

## EXAMPLE Range

1 Find the range of each set of data.
a. $\{\$ 79, \$ 42, \$ 38, \$ 51, \$ 63, \$ 91\}$

The greatest value is $\square$ , and the least value is $\square$
So, the range is $\square-\square$ or $\square$.
b.

| Stem | Leaf |
| :---: | :---: |
| 3 | 335778 |
| 4 | 03349 |
| 5 | 49 |
|  | $3 \mid 5=35$ |

The greatest value is $\square$ and the least value is $\square$
So, the range is $\square$
$\square$
$\square$
$\square$

## Key Concepts

Interquartile Range The interquartile range is the range of the middle half of a set of data. It is the difference between the upper quartile and the lower quartile.

Outliers Data that are more than 1.5 times the value of the interquartile range beyond the quartiles.

Check Your Progress
of data.
a. $\{14,37,82,45,24,10,75\}$


## Find the range of each set

b. Stem | Leaf |  |  |  |  |  |
| ---: | :--- | :--- | :--- | :--- | :--- |
| 5 | 2 | 3 | 5 | 5 | 9 |
| 6 | 4 | 8 | 9 |  |  |
| 7 | 0 | 1 | 8 | 9 |  |

$6 \mid 8=68$

| Stem | Leaf |  |  |  |  |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- |
| 5 | 2 | 3 | 5 | 5 | 9 |
| 6 | 4 | 8 | 9 |  |  |
| 7 | 0 | 1 | 8 | 9 |  |
|  | $6 \mid$ |  |  |  | 68 |



## EXAMPLE Interquartile Range and Outliers

2 Find the interquartile range and any outliers for $\{2,49,17,14,14,22,15,32,24,25\}$.
Step 1 List the data from least to greatest. Then find the median.

Step 2 Find the upper and lower quartiles.


The interquartile range is $\square-\square$ or $\square$.
Step 3 Find the limits for the outliers.
Multiply the interquartile

range, $\square$, by 1.5 .
 lower quartile.


Add 16.5 to the upper quartile.


There are no values less than $\square$ One value, $\square$, is greater than $\square$. So, $\square$ is an outlier.

## FOLDABLES

## Organize IT

Explain the difference between the range and the interquartile range of a set of data under the tab for Lesson 12-2.


Check Your Progress
Find the interquartile range for each set of data.
a. $\{52,74,98,80,63,84,77\}$

b. $\{12,18,25,31,23,19,16,22,28,32\}$


## EXAMPLE

LAND USE The urban land in certain western and eastern states is listed below as the percent of each state's total land, rounded to the nearest percent.

| Western States |  | Eastern States |
| :---: | :---: | :---: |
| 1111100 | 0 |  |
| 3222111 | 0 | 3345668 |
| 544 | 0 | 8999999 |
|  | 1 | 133445 |
|  | 2 | 367 |
| $2 \quad \mid 0=2 \%$ | 3 | $52 \mid 7=27 \%$ |

Source: U.S. Census Bureau
a. What is the median percent of urban land use for each region?

The median percent of urban land use for the western states
$\square$ The median percent of urban land use for the eastern states is

b. Compare the range for each set of data.

The range for the west is
 or
 and the range for the east is

$\square$ or $\square$
The percents of urban land used in the $\square$ vary more.
Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

## Homework Assignment

Page(s):
Exercises:

## 12-3 Box-and-Whisker Plots

## Main Ideas

- Display data in a box-and-whisker plot.
- Interpret data in a box-and-whisker plot.


## Remember It

The median does not necessarily divide the box in half. Data clustered toward one quartile will shift the median in its direction.

## BUILD YOUR VOCABULARY (page 288)

 drawn around the $\square$ and whiskers extend from each quartile to the $\square$ data points.

## EXAMPLE Draw a Box-and-Whisker Plot

1 JOBS The projected number of employees in 2008 in the fastest-growing occupations is shown. Display the data in a box-and-whisker plot.

| Fastest-Growing Jobs |  |  |  |
| :--- | :---: | :--- | :---: |
| Occupation | Jobs <br> $(1000 \mathrm{~s})$ | Occupation | Jobs <br> $(1000 \mathrm{~s})$ |
| Computer Engineer | 622 | Desktop Publishing | 44 |
| Computer Support | 869 | Paralegal/Legal Assistant | 220 |
| Systems Analyst | 1194 | Home Health Aide | 1179 |
| Database Administrator | 155 | Medical Assistant | 398 |

Source: U.S. Census Bureau

Step 1 Find the $\square$ and $\square$ number.

Then draw a number line that covers the $\square$ of the data.

Step 2 Find the $\square$ , the extremes, and the upper and lower $\square$ Mark these points above the number line.

Step 3 Draw a box and the whiskers.

## FOLDABLES

## ORGANIZE IT

Write a description of a box-and-whisker plot under the tab for this lesson.


Check Your Progress
TRAVEL The data listed below represents the time, in minutes, required for students to travel from home to school each day. Display the data in a box-andwhisker plot.

$$
\begin{array}{lllllllllll}
14 & 32 & 7 & 45 & 18 & 22 & 26 & 9 & 4 & 18 & 15
\end{array}
$$

## EXAMPLE

WEATHER The box-and-whisker plot below shows the average percent of sunny days per year for selected cities in each state.

a. Half of the selected cities have an average percent of sunny days under what percent?

Half of the selected cities have an average percent of sunny days under $\square$
b. What does the length of the box in the box-andwhisker plot tell about the data?

The length of the box is $\square$ This tells us that the middle $50 \%$ of the data values are $\square$

Check Your Progress CLOTHES The box-and-whisker plot below shows the average amount spent per month on clothing.

a. What is the smallest amount spent per month on clothing?

b. Half of the monthly expenditures on clothing are under what amount?

## EXAMPLE

3 TREES The average maximum height, in feet, for selected evergreen trees and deciduous trees is displayed. How do the heights of evergreen trees compare with the heights of deciduous trees?


Source: ohioline.osu.edu
Most deciduous trees range in height between $\square$ and $\square$ feet. However, some are as tall as $\square$ feet. Most evergreen trees range in height between $\square$ and $\square$ feet.

However, some are as tall as $\square$ feet. Most evergreen trees are $\square$ than most deciduous trees.

## Homework Assignment



## Main Ideas

- Display data in a histogram.
- Interpret data in a histogram


## Write It

What type of data does a histogram display?

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.


## EXAMPLE Draw a Histogram

1 TOURISM The frequency table shows the number of overseas visitors to the top 15 U.S. cities in 2004. Display the data in a histogram.

Step 1 Draw and label a horizontal and vertical axis. Include


| Overseas Travelers |  |  |
| :---: | :--- | :---: |
| Number of <br> Vistors <br> (1000s) | Tally | Frequency |
| $0-1000$ | XIIIIII | 9 |
| $1001-2000$ | ॥ | 2 |
| $2001-3000$ | I | 1 |
| $3001-4000$ |  |  |
| $4001-5000$ | ॥ | 2 |
| $5001-6000$ | \| | 1 |

Source: U.S. Department of Commerce

Step 2 Show the intervals from the frequency table on the
 axis
and an interval of 1 on the axis.


Step 3 For each interval, draw a bar whose height is given
by the $\square$

## FOLDABLES

ORGANIZE IT
Describe how to display data in a histogram under the tab for this lesson.


## Check Your Progress

SHOPPING The frequency table shows the number of daily customers a new grocery store has during its first 30 days in business. Display the data in a histogram.

| Daily Customers |  |  | |
|---|---|---|---|
| Number of Customers | Tally | Frequency |
| 0-49 | UHI | 6 |
| 50-99 | WH\|HIII | 12 |
| 100-149 | H\||III | 9 |
| 150-199 | III | 3 |

$\square$

## EXAMPLE Interpret Data

2 ELEVATIONS Use the histogram.
a. How many states have highest points with elevations at least 3751 meters?

Highest Elevations in U.S.


Since $\square$ states have elevations in the 3751-5000 range and 2 states have elevations in the $\square$ range,
$\square$
$\square$ or $\square$ states have highest points with elevations at least 3751 meters.
b. Is it possible to tell the height of the tallest point?

No, you can only tell that the highest point is between
$\square$

## Check Your Progress Use this histogram.

## Drivers' Speeds


a. How many drivers had a speed of at least 70 miles per hour?

b. Is it possible to tell the lowest speed driven?


## EXAMPLE

3 EMPLOYMENT Use the histograms.


Which business sector has more states with between $1,001,000$ and $3,000,000$ employees?
By comparing the graphs, you find that $\square$ has more states with between $1,001,000$ and $3,000,000$ employees.
Homework Assignment
Page(s):
Exercises:


Check Your Progress weekly dining expenses.

Dining Out Expenses

East Coast


West Coast


Which coast has more people spending at least $\$ 60$ weekly?

## 12-5 Selecting an Appropriate Display

## EXAMPLE Select an Appropriate Display

## Main Idea

- Select an appropriate display for a set of data.
a. DESSERT Danielle took a survey of her classmates' preferences for desserts. Danielle's survey revealed that $46 \%$ of her classmates like pie, $32 \%$ like ice cream, $9 \%$ like cake, $7 \%$ like candy, and $6 \%$ don't have a preference. How could Danielle best display the results of her survey? Then make the display with or without the use of technology.
A

would compare the parts of the data to
the

b. LACROSSE Juan compares the heights of the players on two lacrosse teams. Juan's team has players with the following heights, in inches: $61,60,58,59,57,67$, $58,60,60,65,61$, and 61 . The rival team has players with the following heights, in inches: $62,70,65,60,60$, $58,66,63,61,57,67$, and 64 . What is an appropriate display for the data? Make the display.
A
 would condense
and $\square$ the data.
$\square$


## Check Your Progress

a. SPORTS Out of 40 athletes surveyed, 12 play basketball and 18 play soccer. Of those athletes who play either sport, 5 play both sports. Select an appropriate type of display for this situation. Then make the display with or without the use of technology.


## Homework Assignment

```
Page(s):
```

Exercises:

b. TEST SCORES Ms. Slater compares the scores of the students in her two math classes. The morning math class earned the following scores on the last test: $98,82,76,94$, $65,82,78,98,86,93,74,96,73,87$, and 81 . The afternoon math class earned the following scores: $86,93,75,89$, $100,84,86,97,64,95,92,85,79,90$, and 85 . Select an appropriate type of display for this situation. Then make the display with or without the using technology.

## EXAMPL

2) TEST EXAMPLE Which graph would best represent the data if you want to show relationships among sets of data?
A line graph
C bar graph
B Venn diagram
D circle graph

compare parts of the data to the whole. Choice $\square$ displays frequencies of data in categories and choice $\square$ shows change over time. Even though $\square$ and
$\square$ show relationships among similar types of data, $\square$ show relationships among
different types of data. So, the answer is $\square$

Check Your Progress
TEST EXAMPLE Which graph would best represent the data if you want to show how many times each number occurs in the data?
A box-and-whisker plot
C line graph
B line plot
D bar graph

## 12-6 Misleading Graphs

## EXAMPLE Misleading Graphs

## MAIN IDEAS

Recognize when graphs are misleading.

- Evaluate predictions and conclusions based on data analysis.


## Remember It

Carefully read the labels and the scales when interpreting a graph. of lemons.

a. Why do the graphs look different?

The $\square$ scales differ.
b. Which graph appears to show a more rapid decrease in the price of lemons after 2002? Explain.

Graph B; the slope of the line from $\square$ to $\square$ is steeper in Graph B.

## Check Your Progress <br> The graphs show the increase in

 attendance at a public elementary school.School Attendance Graph A


School Attendance Graph B

a. Why do the graphs look different?

## FOLDABLES

## ORGANIZE IT

Under the Lesson 12-6 tab, draw an example of a misleading graph, and explain why it is misleading


## Homework

 Assignment
b. Which graph appears to show a more rapid increase in attendance between 2002 and 2003? Explain.

## EXAMPLE Misleading Bar Graphs

2 INTERNET The graph shows the percent of Internet use in different age groups. According to the graph, more 18- to 24-year-olds are using the Internet than the other age groups. Determine whether this statement is accurate.


Justify your reasoning.

intervals are not equal.

## Check Your Progress

TEMPERATURE The graph shows the daily high temperatures for the previous six months. According to the graph, there were less than twice as many days $50^{\circ}$ to $79^{\circ}$ than there were days $80^{\circ}$ to $99^{\circ}$. Determine whether this statement is accurate. Justify your reasoning.

Daily High Temperatures


## 12-7 Simple Probability

## EXAMPLE Find Probability

## Main Ideas

Find the probability of simple events.

- Use a sample to predict the actions of a larger group.


## Key Concept

Probability The probability of an event is a ratio that compares the number of favorable outcomes to the number of possible outcomes.

1 Suppose a number cube is rolled. What is the probability of rolling a 4 or a 5 ?

There are $\square$ numbers that are a 4 or a 5 .

There are 6 possible outcomes: $1,2,3,4,5$, and 6 .
$P(4$ or 5$)=\frac{\text { number of favorable outcomes }}{\text { number of possible outcomes }}$


## EXAMPLE Find Probability

2 Suppose that two number cubes are rolled. Find the probability of rolling two identical numbers.

Make a table showing the sample space when rolling two number cubes.

|  | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | $(1,1)$ | $(1,2)$ | $(1,3)$ | $(1,4)$ | $(1,5)$ | $(1,6)$ |
| $\mathbf{2}$ | $(2,1)$ | $(2,2)$ | $(2,3)$ | $(2,4)$ | $(2,5)$ | $(2,6)$ |
| $\mathbf{3}$ | $(3,1)$ | $(3,2)$ | $(3,3)$ | $(3,4)$ | $(3,5)$ | $(3,6)$ |
| $\mathbf{4}$ | $(4,1)$ | $(4,2)$ | $(4,3)$ | $(4,4)$ | $(4,5)$ | $(4,6)$ |
| $\mathbf{5}$ | $(5,1)$ | $(5,2)$ | $(5,3)$ | $(5,4)$ | $(5,5)$ | $(5,6)$ |
| $\mathbf{6}$ | $(6,1)$ | $(6,2)$ | $(6,3)$ | $(6,4)$ | $(6,5)$ | $(6,6)$ |

$P($ two identical numbers $)=$ $\square$ or $\square$

## Check Your Progress

a. Suppose a number cube is rolled. What is the probability of rolling a number that is divisible by 3 ?

b. Suppose that two number cubes are rolled. Find the probability of rolling two numbers whose sum is 8 .

## BUILD YOUR VOGABULARY (pages 288-289)

Experimental probability is what actually occurs when conducting a probability experiment. Theoretical probability is what should occur.

## EXAMPLE Find Experimental Probability

A coin was tossed 40 times and heads came up 18 times. Find the experimental probability of getting tails for this experiment.


## Check Your Progress Brian is shooting baskets with a

 basketball. He makes 13 shots and misses 9 shots. Determine the experimental probability of Brian making a shot.
## EXAMPLE Make a Prediction

## Homework Assignment



SPORTS Miss Newman surveyed her class to see which sport they preferred watching. $44 \%$ preferred football, $\mathbf{2 8 \%}$ basketball, $\mathbf{2 0 \%}$ soccer, and $\mathbf{8 \%}$ tennis. Out of 560 students in the entire school, how many would you expect to say they prefer watching basketball?

$$
\begin{aligned}
\begin{aligned}
\text { part } \longrightarrow \frac{a}{\text { whole } \longrightarrow} & =\frac{28}{100} \longleftarrow \text { percent } \\
100 \cdot a & =560 \cdot 28 \\
& =\square \\
a & =\square
\end{aligned} \\
\end{aligned}
$$

About
 students say they prefer watching basketball.

## Check Your Progress

The students in an art class were surveyed about their favorite color. $32 \%$ preferred blue, $29 \%$ preferred red, $23 \%$ preferred yellow, and $16 \%$ preferred green. Out of 450 students in the entire school, how many would you expect to say they prefer red?

## 12-8 Counting Outcomes

## Main Ideas

Use tree diagrams or the Fundamental Counting Principle to count outcomes.

- Use the Fundamental Counting Principle to find the probability of an event.


## BUILD YOUR VOCABULARY (page 289)

A tree diagram is a diagram used to show the total number of possible outcomes.

## EXAMPLE Use a Tree Diagram to Count Outcomes

1 GREETING CARDS A greeting-card maker offers three birthday greeting in four possible colors as shown in the table below. Draw a tree diagram to find the number of cards that can be made from three greeting choices and four color choices.

You can draw a diagram to find the number of possible cards.

| Greeting | Color |
| :--- | :--- |
| Humorous | Blue |
| Traditional | Green |
| Romantic | Orange |
|  | Red |



There are $\square$ possible cards.

## KEY CONCEPT

Fundamental Counting Principle If event $M$ can occur in $m$ ways and is followed by event $N$ that can occur in n ways, then the event $M$ followed by $N$ can occur in $m \cdot n$ ways.

Foldables Explain how to determine the number of possible outcomes using a tree diagram and the Fundamental Counting Principle.

## EXAMPLE Use the Fundamental Counting Principle

2 CELL PHONES A cell phone company offers 3 payment plans, 4 styles of phones, and 6 decorative phone wraps. How many phone options are available?

Use the Fundamental Counting Principle.


There are $\square$ possible phone options.

## Check Your Progress

a. An ice cream parlor offers a special on one-scoop sundaes with one topping. The ice cream parlor has 5 different flavors of ice cream and three different choices for toppings. How many different sundaes can be made?

b. A sandwich shop offers 4 choices for bread, 5 choices for meat, and 3 choices for cheese. If a customer can make one choice from each category, how many different sandwiches can be made?

## EXAMPLE Find Probabilities

a. Henry rolls a number cube and tosses a coin. What is the probability that he will roll a 3 and toss heads?
First find the number of outcomes.


There are $\square$ possible outcomes. There is one outcome that has a 3 and a head.
$P(3$ and head $)=\frac{\text { number of favorable outcomes }}{\text { number of possible outcomes }}=$ $\square$
The probability that Henry will roll a 3 and toss heads

b. What is the probability of winning a raffle where the winning number is made up of 6 numbers from 1 to 50 chosen at random? Assume all numbers are eligible each draw.
First, find the number of possible outcomes. Use the Fundamental Counting Principle.
The total number of outcomes is $\square \times \square \times \square \times \square$


There is 1 winning number. So, the probability of winning with 1 ticket is $\square$.

## Check Your Progress

a. Bob rolls a number cube and tosses a coin. What is the probability that he will roll an odd number and toss tails?
$\square$
b. What is the probability of winning a lottery where the winning number is made up of 5 numbers from 1 to 20 chosen at random? Assume all numbers are eligible each draw.


## 12-9 Permutations and Combinations

## Main Ideas

- Use permutations.
- Use combinations.


## BUILD YOUR VOCABULARY (page 289)

An $\square$ or listing in which $\square$ is important is called a permutation.

## EXAMPLE Use a Permutation

## Remember It

The first factor in a permutation is the number of things you are choosing from.

1) TRAVEL The Reyes family will visit a complex of theme parks during their summer vacation. They have a fourday pass good at one park per day. They can choose from seven parks.
a. How many different ways can they arrange their
vacation schedule?
The order in which they visit the parks is important. This arrangement is a permutation.


There are $\square$ possible arrangements.
b. How many five-digit numbers can be made from the digits $2,4,5,8$, and 9 if each digit is used only once?


There are $\square$ numbers that can be made.

## Check Your Progress

a. How may ways can five runners be arranged on a threeperson relay team?

b. How many six-digit numbers can be made from the digits 1 , $2,3,4,5$, and 6 if each digit is used only once?


## BUILD YOUR VOCABULARY (page 288)

An arrangement or $\square$ in which $\square$ is not important is called a combination.

## EXAMPLE Use a Combination

a. HATS How many ways can a window dresser choose two hats out of a fedora, a bowler, and a sombrero?
Since order is not important, this arrangement is a combination.

First, list all of the permutations of the types of hats taken
$\square$ at a time. Then cross off arrangements that are the same as another one.

There are $\square$ ways to choose two hats from three possible hats.
b. PENS How many ways can a customer choose two pens from a purple, orange, green, red, and black pen?

Since order is not important, this arrangement is a combination.

First, list all of the permutations of the types of pens taken
$\square$ at a time. Then cross off arrangements that are the same as another one.

There are $\square$ ways to choose two pens from five possible pens.

## EXAMPLE

3 TENNIS The players listed are playing singles in a tennis tournament. If each player plays every other player once, what is the probability that Kyle plays in the first match?

| Thomas | Carl |
| :--- | :--- |
| Ager | Jack |
| Brian | Seth |
| Kyle | Pedro |

Kyle playing Ager is the same as $\square$ playing $\square$, so this is a $\square$.

Find the combination of $\square$ people taken $\square$ at a time. Then find how many matches involve Kyle.


Kyle plays each person once during the tournament. If there are $\square$ other people, Kyle is involved in $\square$ games.
So the probability that Kyle plays in the first match is $\frac{7}{28}$ or $\frac{1}{4}$.

## Check Your Progress

VOLLEYBALL The teams listed are playing in a volleyball tournament. If each team plays every other team once, what is the probability that the Lions play in the first game?


## 12-10 Probability of Composite Events

## Main Ideas

Find the probability of independent and dependent events.

Find the probability of mutually exclusive events.

## BUILD YOUR VOGABULARY (page 288)

A composite event consists of $\square$ simple events.

In independent events, the outcome of one event does not
$\square$ the outcome of a second event.

## EXAMPLE Probability of Independent Events

## Key Concept

Probability of Two Independent Events The probability of two independent events is found by multiplying the probability of the first event by the probability of the second event.

## (1) GAMES In a popular number cube game, the highest

 possible score in a single turn is a roll of five of a kind. After rolling one five of a kind, every other five of a kind you roll earns 100 points. What is the probability of rolling two five of a kinds in a row?The events are $\square$ since each roll does not affect the outcome of the next roll.

There are $\square$ ways to roll five of a kind.

There are $6^{5}$ or $\square$ ways to roll five dice. So, the probability of rolling five of a kind on a toss of the number cubes is $\square$ or

$P$ (two five of a kind)
$=P($ five of a kind on first roll $) \cdot P($ five of a kind on second roll $)$


## KEY CONCEPT

Probability of Two Dependent Events If two events, $A$ and $B$ are dependent, then the probability of both events occurring is the product of the probability of $A$ and the probability of $B$ after $A$ occurs.

Check Your Progress Find the probability of rolling doubles four times in a row when rolling a pair of number cubes.

## BUILD YOUR YOGABULARY (pages 288-289)

 of a second event, the events are called dependent events. If two events $\square$ happen at the $\square$, they are said to be mutually exclusive.

## EXAMPL: Probability of Dependent Events

2 CLOTHES Charlie's clothes closet contains 3 blue shirts, 10 white shirts, and 7 striped shirts. What is the probability that Charlie will reach in and randomly select a white shirt followed by a striped shirt?


The probability Charlie will select a white shirt followed by a


Check Your Progress COOKIES A plate has 6 chocolate chip cookies, 4 peanut butter cookies, and 5 sugar cookies. What is the probability of randomly selecting a chocolate chip cookie followed by a sugar cookie?

## KEY CONCEPT

## Probability of Two

 Mutually Exclusive EventsThe probability of one or the other of two mutually exclusive events can be found by adding the probability of the first event to the probability of the second event.

Foldables Under the 12-10 tab, explain when you would use each of the three probability formulas defined in this lesson.

## EXAMPLE Probability of Mutually Exclusive Events

3 CARDS You draw a card from a standard deck of playing cards. What is the probability that the card will be a black nine or any heart?

The events are $\qquad$ because the card can not be both a black nine and a heart at the same time.


The probability that the card will be a black nine or any heart


## Check Your Progress

CARDS You draw a card from a standard deck of playing cards. What is the probability that the card will be a club or a red face card?

## BRINGING IT ALL TOGETHER

## STUDY GUIDE

## FOLDABLES

Use your Chapter 12 Foldable to help you study for your chapter test.

## VOCABULARY PUZZLEMAKER

To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 12, go to:
glencoe.com

## BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (pages 288-289) to help you solve the puzzle.

## 12-1

## Stem-and-Leaf Plots

## Use the table at the right.

1. Display the data set in a stem-and-leaf plot.
$\square$
2. In which interval do most of the players fall? $\square$

| Home runs hit by American <br> League Leaders in 2002 |  |
| :--- | :---: |
| Chavez | 34 |
| Delgado | 33 |
| Giambi | 41 |
| Ordóñez | 38 |
| Palmeiro | 43 |
| Rodríguez | 57 |
| Soriano | 39 |
| Tejeda | 34 |
| Thome | 52 |

Source: mlb.com

## 12-2

## Measures of Variation

Find the range, interquartile range, and any outliers for each set of data.
3. $\{42,22,59,82,15,37,71,24\}$
4.

| Stem | Leaf |  |  |  |  |
| ---: | :--- | :--- | :--- | :--- | :--- |
| 1 | 3 | 7 |  |  |  |
| 2 | 2 | 3 | 8 |  |  |
| 3 | 1 | 4 | 6 | 7 |  |
|  | $1 \mid 3=13$ |  |  |  |  |

5. Stem Leaf
7102478
8027
9 3 $6 \quad 7 \mid 0=70$
$\square$
$\square$

12-3
Box-and-Whisker Plots
Draw a box-and-whisker plot for each set of data.
6. $24,40,22,15,52,46,31,22,36$

7. $342,264,289,272,245,316,331,249,270,261$


For exercises 8 and 9, use the box-and-whisker plot shown.
8. What is the warmest Lowest Recorded Temperature $\left({ }^{\circ} \mathrm{C}\right)$ in the US lowest recorded temperature? $\square$

9. What percent of the temperatures range from $0^{\circ} \mathrm{C}$ to $-40^{\circ} \mathrm{C}$ ?


## 12-4

## Histograms

For Exercises 10-12, use the frequency table shown.
10. Display the data in a histogram.


| Movies Seen in the Last 12 Months |  |  |
| :---: | :---: | :---: |
| Movies | Tally | Frequency |
| 1-4 | H\| IIII | 9 |
| 5-8 | HIHIH | 15 |
| 9-12 | WH\|せH1世II | 22 |
| 13-16 | H | 5 |

11. How many people were surveyed? $\square$
12. How many people surveyed saw no more than 8 movies? $\square$

12-5

## Selecting an Appropriate Display

OLYMPICS The table shows the winning times for the Men's
Marathon during the Summer Olympic Games from 1928 to 2004

| Year | 1928 | 1932 | 1936 | 1948 | 1952 | 1956 | 1960 | 1964 | 1968 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time (min) | 153 | 152 | 149 | 155 | 143 | 145 | 135 | 132 | 140 |
| Year | 1972 | 1976 | 1980 | 1984 | 1988 | 1992 | 1996 | 2000 | 2004 |
| Time (min) | 132 | 130 | 131 | 129 | 131 | 133 | 133 | 130 | 131 |

Source: olympic.org
13. Which graph best represents the data if you want to show change over a period of time? $\square$

## 12-6

## Misleading Statistics

14. Which graph gives the impression that the top-selling 2003 album sold far more units than any other in the top five? $\square$
$\mathbf{2 0 0 3}$ Top Five Selling Albums $\mathbf{2 0 0 3}$ Top Five Selling Albums Graph A Graph B



## 12-7

## Simple Probability

15. A box contains 7 black, 10 blue, 5 green, and 8 red pens. One pen is selected at random. Find the probability that it is not green.
16. Refer to the graph. Out of a group of 3500 people, how many would you expect to say that family time is their favorite leisure-time activity?

| Leisure-time favorites |
| :--- |
| Reading <br> TV watching <br> Family time $12 \%$ <br>  <br> Source: USA Today |

12-8
Counting Outcomes
Find the number of possible outcomes for each situation.
19. One part of a test has 7 true-false questions.
$\square$
20. A bicycle is made with a choice of two seats, three frames, and five colors. $\square$
21. What is the probability of rolling exactly one 6 when two number cubes are rolled? $\square$
12-9

Permutations and Combinations
Tell whether each situation is a permutation or combination. Then solve.
22. How many ways can you choose 4 books from 15 on a shelf?
$\square$
23. How many 4-digit numbers can you write using the digits 1,2 , 3 , and 4 exactly once in each number?
$\square$
12-10
Probability of Compound Events
For Exercises 24 and 25, pens are drawn from a bag containing 6 red, 8 black, and 4 blue pens. Label each situation as independent, dependent, or mutually exclusive events. Then find each probability.
24. drawing a red pen, which is replaced, followed by a blue pen

25. drawing a black pen or a blue pen
26. What is $P(A$ and $B)$ if $P(A)=\frac{1}{6}, P(B)=\frac{2}{3}, P(B$ following $A)=\frac{4}{5}$, and $A$ and $B$ are dependent?

## ARE YOU READY FOR THE CHAPTER TEST?

## Checklist

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 12.

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 12 Practice Test on page 695 of your textbook as a final check.

I used my Foldables or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 12 Study Guide and Review on pages 690-694 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may want to take the Chapter 12 Practice Test on page 695.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 12 Foldables.
- Then complete the Chapter 12 Study Guide and Review on pages 690-694 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 12 Practice Test on page 695.



## Polynomials and Nonlinear Functions

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.

Begin with a sheet of $11^{\prime \prime} \times 17^{\prime \prime}$ paper.

Fold the short
sides toward the middle.


STEP 2 Fold the top to the bottom.


STEP 3 Open. Cut along the second fold to make four tabs.


STEP 4 Label each of the tabs as shown.


NOTE-TAKING TIP: When taking notes, write clean and concise explanations. Someone who is unfamiliar with the math concepts should be able to read your explanations and learn from them.

## BUILD YOUR VOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 13.
As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

| Vocabulary Term | Found <br> on Page | Definition | Description or <br> Example |
| :--- | :--- | :--- | :--- |
| binomial <br> [by-NOH-mee-uhl] |  |  |  |


| Vocabulary Term | Found <br> on Page | Definition | Description or <br> Example |
| :--- | :--- | :--- | :--- |
| nonlinear function |  |  |  |

## MAIN IDEAS

Identify and classify polynomials.

- Find the degree of a polynomial.


## Remember It

When classifying polynomials, first write all expressions in simplest form.

## BUILD YOUR VOGABULARY (pages 326-327)


$\square$ is called a polynomial.

A polynomial with $\square$ is called a binomial, and a polynomial with $\square$ is called a trinomial.

The degree of a monomial is the $\square$ of the of its variables.

## EXAMPLE Classify Polynomials

## 1 Determine whether each expression is a polynomial. If it

 is, classify it as a monomial, binomial, or trinomial.a. $\frac{-2}{x}$

The expression $\square$ a polynomial because $\frac{-2}{x}$ has a
$\square$
b. $x^{2}-12$

This $\square$ a polynomial because it is the difference of two $\square$. There are two terms, so it is a


## Check Your Progress <br> Determine whether each

 expression is a polynomial. If it is, classify it as a monomial, binomial, or trinomial.a. $x^{3}+3 x^{2}+8$ $\square$
b. $\sqrt{x}+5$

EXAMPLE Degree of a Monomial or Polynomial
2 Find the degree of each polynomial.
a. $\mathbf{- 1 0} \boldsymbol{w}^{\mathbf{4}} \quad$ The variable $w$ has degree $\square$, so the degree of

$$
-10 w^{4} \text { is } \square
$$

b. $\mathbf{8} \boldsymbol{x}^{\mathbf{3}} \boldsymbol{y}^{\mathbf{7}} \boldsymbol{z} \quad x^{3}$ has a degree of $\square, y^{7}$ has a degree of $\square$ and $z$ has a degree of $\square$. The degree of

$$
8 x^{3} y^{7} z \text { is } \square+\square+\square \text { or } \square .
$$

c. $a^{2} b^{5}-4$

| term | degree |
| :---: | :---: |
| $a^{2} b^{5}$ | $\square$ |
| 4 | $\square$ |

The greatest degree is $\qquad$ So, the degree of the polynomial is
$\qquad$

The greatest degree is $\qquad$ So, the degree of the polynomial is $\qquad$
d. $2 x^{2} y^{2}+7 x y^{6}$

| term | degree |
| :---: | :---: |
| $2 x^{2} y^{2}$ | $\square$ |
| $7 x y^{6}$ | $\square$ |

## Homework

 AssignmentPage(s):<br>Exercises:

## Check Your Progress

 polynomial.a. $5 m^{3}$

b. $-3 a b^{2} c^{5}$

c. $x^{3} y^{3}+4 x^{4} y$

d. $-3 m n^{4}-7$


## 13-2 Adding Polynomials

## EXAMPLE Ad d Polynomials

## Main IdeAs

- Add polynomials.


## FOLDABLES

## ORGANIZE IT

Write an example of adding two polynomials with two or three terms each under the "+" tab.


1) a. Find $(9 w-4)+(w+5)$.

METHOD 1 Add vertically.
$9 w-4$
(+) $w+5$


Align like terms.
Add.

METHOD 2 Add horizontally.


The sum is $\square$
b. Find $\left(6 x^{2}-3 x+1\right)+\left(-x^{2}+x-1\right)$.

METHOD 1 Add vertically.


The sum is $\square$

## ReVIEW IT

Identify the like terms in the expression $6 x+5+3 y-4-2 x$. (Lesson 3-2)


## Find each sum.

a. $(5 b+2)+(3 b-6)$
$\square$
b. $\left(3 m^{2}-5 m+9\right)+\left(-5 m^{2}+3 m-7\right)$

## EXAMPLE

2 GEOMETRY The length of a rectangle is $3 x^{2}+2 x-5$ units and the width is $8 x-1$ units.
a. Find the perimeter.


Formula for the perimeter of a rectangle.
Replace $\ell$ with

$w$ with

$\square$ Distributive Property
$\square$ Simplify.

The perimeter is

b. Find the perimeter of the rectangle if $x=3$.

Homework Assignment

Page(s):
Exercises:

Write the equation for the perimeter.
Replace $x$ with $\square$ Simplify.

The perimeter of the rectangle is $\square$ when $x=3$.

## Check Your Progress GEOMETRY The width of a

 rectangle is $2 w^{2}+3 w+4$ units and the width is $6 w-3$ units. Find the perimeter. Then find the length when $w=5$.
## 13-3 Subtracting Polynomials

## EXAMPLE Subtract Polynomials

## MAIN IDEAS

- Subtract polynomials.

1) a. Find $(7 a+4)-(9 a+2)$.

$$
7 a+4
$$

$\underline{(-) 9 a+2 \quad \text { Align like terms. }}$
Subtract.
b. Find $\left(8 b^{2}+6\right)-\left(3 b^{2}+6 b+1\right)$.

$$
\begin{array}{ll}
\begin{array}{r}
8 b^{2}+6 \\
(-) 3 b^{2}+6 b+1
\end{array} & \text { Align like terms. } \\
\square & \text { Subtract. }
\end{array}
$$

## Check Your Progress

Find each difference.
a. $(2 x+9)-(5 x-4)$
b. $\left(5 k^{2}+3 k-4\right)-\left(2 k^{2}+1\right)$


## EXAMPLE Subtract Using the Additive Inverse

## FOLDABLES

## Organize it

Write an example of subtracting two polynomials with two or three terms each under the " -" tab.

a. Find $(4 x-8)-(3 x+9)$.

The additive inverse of $3 x+9$ is $(-1)(3 x-9)$ or $\square$
$(4 x-8)-(3 x+9)$
$=(4 x-8)+\square \quad$ Add the additive inverse.
$=\square$ Group like terms.
$=\square$
Simplify.
b. Find $\left(7 a b+2 b^{2}\right)-\left(3 a^{2}+a b+b^{2}\right)$.

The additive inverse of $3 a^{2}+a b+b^{2}$ is

$$
(-1)\left(3 a^{2}+a b+b^{2}\right) \text { or }
$$

$\square$

## Write It

Explain when you might use a placeholder when subtracting two polynomials.
$\qquad$
$\qquad$
$\qquad$
Check Your Progress
Find each difference.
a. $(8 c-3)-(-2 c+4)$
b. $\left(-3 x y-4 y^{2}\right)-\left(2 x^{2}-8 x y+2 y^{2}\right)$

$\square$

## EXAMPL

3 ALLOWANCE Nguyen receives a monthly allowance from his parents of $2 x+5$. Susan receives an allowance of $x+6$. For both, $x$ represents the number of chores each completed. When $x \geq 2$, Nguyen earns more than Susan. How much more does he earn?
difference in allowance when $x \geq 2$


Check Your Progress
PROFIT The ABC Company's costs are given by $3 x+200$ where $x=$ the number of items produced. The revenue is given by $5 x$. Find the profit, which is the difference between the revenue and the cost.

## 13-4 Multiplying a Polynomial by a Monomial

## EXAMPLE Product of a Monomial and a Polynomial

## MAIN IDEAS

- Multiply a polynomial by a monomial.

1) a. Find $-8(3 x+2)$.

b. Find $(6 x-1)(-2 x)$.


Check Your Progress Find each product.
a. $3(-5 m-2)$
$\square$
b. $(4 p-8)(-3 p)$


EXAMPL Product of a Monomial and a Polynomial

## FOLDABLES

## ORGANIZE IT

Write an example of multiplying a monomial by a polynomial with two or three terms under the " $\times$ " tab


2 Find $4 b\left(-a^{2}+5 a b+2 b^{2}\right)$.


Check Your Progress
Find $-3 x\left(2 x^{2}-4 x y+3 y^{2}\right)$

## EXAMPL

## Write It

How do you determine the degree of a polynomial?

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

## Homework AssignMent

Page(s):
Exercises:


3 TEST EXAMPLE The length of a dog run is $\mathbf{4}$ feet more than three times its width. The perimeter of the dog run is 56 feet. What are the dimensions of the dog run?
A 8 ft by 20 ft
C 3 ft by 56 ft
B 10 ft by 12 ft
D 6 ft by 22 ft

Let $w$ represent the width of the dog run. Then represents the length. Write an equation.

$P=2(\ell+w) \quad$ Write the equation.

$$
56=\square \quad P=56, \ell=\square
$$

$$
56=\square
$$

Combine like terms.
$56=$


Distributive Property


Subtract $\square$ from each side.
Divide each side by



## Check Your Progress TEST EXAMPLE The length of a

 garden is four more than twice its width. The perimeter of the garden is 44 feet. What are the dimensions of the garden?A 6 ft by 12 ft
C 12 ft by 16 ft
B 6 ft by 16 ft
D 8 ft by 12 ft

## 13-5 Linear and Nonlinear Functions

## MAIN IDEAS

- Determine whether a function is linear or nonlinear.


## BUILD YOUR VOCABULARY (page 327)

A nonlinear function is a function whose graph is $\square$ a line.

## EXAMPLE Identify Functions Using Graphs

1 Determine whether each graph represents a linear or nonlinear function.
a.

b.


Check Your Progress represents a linear or nonlinear function.
a.

b.

$\square$

The graph is a $\square$ line, so it represents a
 function.

The graph is a $\square$, not a $\square$ line, so it represents

## ReVIew IT

Why is the equation $y=2 x^{2}+3$ a function? (Lesson 7-1)
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## FOLDABLES

## Organize IT

Write an example of a linear function and an example of a nonlinear function under the Functions tab.


EXAMPLE Identify Functions Using Equations
2) Determine whether each equation represents a linear or nonlinear function.
a. $y=-5 x-4$

This equation represents a $\square$ function because it is written in the form $\square$
b. $y=2 x^{2}+3$

This equation is $\square$ because $x$ is raised to the
$\square$ and the equation cannot be written in
the form $\square$

## Check Your Progress

Determine whether each equation represents a linear or nonlinear function.
a. $y=\frac{2}{x}+6$ $\square$
b. $2 x+y=4$ $\square$

## EXAMPLE Identify Functions Using Tables

3 Determine whether each table represents a linear or nonlinear function.
a.

As $x$ increases by $\square$ $y$ decreases by $\square$
So, this is a $\square$ function.
b.


As $x$ increases by $\square$ $y$ increases by a $\square$ amount each time. So, this is

Homework Assignment

Page(s):<br>Exercises:

338

Check Your Progress
Determine whether each table represents a linear or nonlinear function.
a.

| $x$ | $y$ |
| :---: | :---: |
| 3 | 10 |
| 5 | 11 |
| 7 | 13 |
| 9 | 16 |

b.

| $x$ | $y$ |
| ---: | ---: |
| 10 | 4 |
| 9 | 7 |
| 8 | 10 |
| 7 | 13 |

$\qquad$
$\square$

## EXAMPLE Describe a Linear Function

## 4 Which of the following is a linear function?

a. $y=\frac{1}{x}+3$

The independent variable has an exponent of $\square$
b. $y=-9 x$

The independent variable has an exponent of $\square$ c. $y=x(x-5)$

The independent variable has an exponent of $\square$
d. $32=2 x^{2}+3 y$

The independent variable has an exponent of $\square$ The linear function is $\square$

Check Your Progress Which of the following is a linear function?
a. $y=x^{2}+3$
b. $x y=-5$
c. $5 x-y=1$
d. $y=\frac{1}{4} x^{3}$

## 13-6 Graphing Quadratic and Cubic Functions

## EXAMPLE Graph Quadratic Functions

## Main Ideas

- Graph quadratic functions.
- Graph cubic functions.


## Remember It

When substituting values for $x$ in a function, consider using decimal values if necessary to find points that are closer together.
a. Graph $y=-2 x^{2}$.

Make a table of values, plot the $\square$, and connect the points with a $\square$

| $x$ | $-2 x^{2}$ | $(x, y)$ |
| :---: | :---: | :---: |
| -1.5 | $-2(-1.5)^{2}=4.5$ |  |
| -1 | $-2(-1)^{2}=\square$ | $(-1,-2)$ |
| 0.5 | $-2(0.5)^{2}=(-0.5)$ |  |
| -0.5 | $-2(-0.5)^{2}=\square$ | $(-0.5,-0.5)$ |
| 0 | $-2(0)^{2}=\square$ |  |
| 1 | $-2(1)^{2}=\square$ | $(1,-2)$ |
| 1.5 | $-2(1.5)^{2}=-4.5$ |  |


b. Graph $y=-x^{2}-3$.

Make a table of values, plot the ordered pairs, and connect the points with a curve.

| $\boldsymbol{x}$ | $-x^{2}-3$ | $(x, y)$ |
| :---: | :---: | :---: |
| -2 | $-(-2)^{2}-3=\square$ |  |
| -1 | $-(-1)^{2}-3=\square$ | $(-1,-4)$ |
| 0 | $-(0)^{2}-3=-3$ |  |
| 1 | $-(1)^{2}-3=-4$ |  |
| 2 | $-(2)^{2}-3=\square$ | $(2,-7)$ |



Graph each function.
a. $y=-x^{2}$

b. $y=3 x^{2}-8$


## EXAMPLE Graph Cubic Functions

## FOLDABLES

2 Graph $y=-\frac{x^{3}}{2}$.

| $\boldsymbol{x}$ | $-\frac{x^{3}}{2}$ | $(x, y)$ |
| :---: | :---: | :---: |
| -2 | $-\frac{(-2)^{3}}{2}=4$ | $(-2,4)$ |
| -1 | $-\frac{(-1)^{3}}{2}=0.5$ |  |
| 0 | $-\frac{(0)^{3}}{2}=\square$ |  |
| 1 | $-\frac{(1)^{3}}{2}=-0.5$ | $(1,-0.5)$ |
| 2 | $-\frac{(2)^{3}}{2}=\square$ |  |



Graph $y=x^{3}-3$.

|  |  |  |  | $\boldsymbol{y} \boldsymbol{y}$ |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  | $\boldsymbol{O}$ |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  | $\boldsymbol{v}$ |  |  |  |  |

## Homework

 AssignmentPage(s):
Exercises:

## BRINGING IT ALL TOGETHER

## STUDY GUIDE

## FOLDABLES

Use your Chapter 13 Foldable to help you study for your chapter test.

## VOCABULARY PUZZLEMAKER

To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 13, go to:
glencoe.com

## BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (pages 326-327) to help you solve the puzzle.

## 13-1

## Polynomials

Determine whether each expression is a polynomial. If it is, classify it as a monomial, binomial, or trinomial.

1. $5 m-3$

2. $\frac{5}{c}+c^{2}$

3. $7-3 y-4 y^{3}$


Find the degree of each polynomial.
4. $p q$ $\square$
5. 144 $\square$
6. $x^{4}+x-5$ $\square$

## 13-2

## Adding Polynomials

Find each sum.
7. $(4 y-17)+(2 y+3)$

8. $\left(9 b^{2}+4 b-15\right)+\left(-3 b^{2}+8\right)$

## 13-3

Subtracting Polynomials
Find each difference.
9. $(6 x+11 y)-(10 x-2 y)$
10. $x^{2}+9 x y-12 y$
(-) $\quad 2 x y-\quad y$


13-4
Multiplying a Polynomial by a Monomial
Find each product.
11. $4(3 q-2)$
12. $(3 y+8) x$
13. $7 a\left(2 a^{2}-3 b\right)$

$\square$

13-5
Linear and Nonlinear Functions
Determine whether each graph, equation, or table represents a linear or nonlinear function. Explain.
14.

15.

16. $y=\frac{5}{x}+3$

17.

| $x$ | $y$ |
| ---: | ---: |
| -3 | 9 |
| -1 | 1 |
| 0 | 0 |
| 1 | 1 |

18. 

| $x$ | $y$ |
| :---: | :---: |
| -12 | -3 |
| -10 | -2 |
| -8 | -1 |
| -6 | 0 |



## 13-6

Graphing Quadratic and Cubic Functions

## Graph each function.

19. $y=-2 x^{2}+4$

20. $y=0.5 x^{3}-2$


## ARE YOU READY FOR THE CHAPTER TEST?

## Checklist

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 13.

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 13 Practice Test on page 735 of your textbook as a final check.

I used my Foldable or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 13 Study Guide and Review on pages 732-734 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 13 Practice Test on page 735.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 13 Foldable.
- Then complete the Chapter 13 Study Guide and Review on pages 732-734 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 13 Practice Test on page 735.


