The money multiplier
The money multiplier tells us the maximum amount of new demand-deposit money that can be created by a single initial dollar of excess reserves. This multiplier, m, is the inverse of the reserve requirement, $R: m=1 / R$. This note will demonstrate that result.

Suppose some initial amount, d_{1}, is deposited into the banking system. With a reserve requirement of R, this deposit creates initial excess reserves equal to $E_{1}=(1-R) \times d_{1}$. Assuming that all of this amount is lent out and redeposited within the system, these excess reserves become new money: $\Delta M_{1}=E_{1}=(1-R) \times d_{1}$. This second deposit creates its own excess reserves equal to $E_{2}=(1-R) \times \Delta M_{1}=$ $(1-R) \times E_{1}$. As before, E_{2} is new money, so that $\Delta M_{2}=(1-R) \times E_{1}$. Continuing on like this indefinitely, we see a pattern develop:

$$
\begin{aligned}
& \Delta M_{1}=E_{1} \\
& \Delta M_{2}=E_{2}=(1-R) \times E_{1} \\
& \Delta M_{3}=E_{3}=(1-R) \times E_{2}=(1-R)^{2} \times E_{1} \\
& \Delta M_{4}=E_{4}=(1-R) \times E_{3}=(1-R)^{3} \times E_{1}
\end{aligned}
$$

and so on ad infinitum.
The total increase in new money (call this " D ") can be found by adding up all the successive changes in new money, $D=\Delta M_{1}+\Delta M_{2}+\Delta M_{3}+\ldots$. Then substituting for ΔM_{i}, $D=E_{1} \times\left[1+(1-R)+(1-R)^{2}+(1-R)^{3}+\ldots\right]$.

Suppose we multiply both sides by the term $(1-R)$ and subtract the resulting product from D. $D-(1-R) \times D=E_{1} \times\left[1+(1-R)+(1-R)^{2}+(1-R)^{3}+\ldots\right]-E_{1} \times\left[(1-R)+(1-R)^{2}+(1-R)^{3}+\ldots\right]$. All terms on the right-hand side with the exception of the initial $E_{1 \times 1}$ would cancel out: $D \times[1-(1-R)]$ $=D \times R=E_{1}$. Finally, divide both sides by R to obtain the desired result: $D=E_{1} \times \frac{1}{R}$. That is, an initial amount of excess reserves equal to E_{1} creates new money equal to this amount multiplied by the inverse of the reserve requirement, or $m=\frac{1}{R}$.

