Elasticity and tax incidence

Consider the adjacent graph, which shows the impact of a unit tax of $\$ T$ in a competitive market. Initially, the equilibrium price is P, and the equilibrium quantity is Q. The imposition of the tax causes the equilibrium quantity to fall by ΔQ, and the price to consumers increases by ΔP_{d} while the price to sellers falls by ΔP_{s}. The incidence of the tax measures the shares of the tax that falls on consumers and sellers. Since $\Delta P_{d}+\Delta P_{s}=T$, it is clear that consumers' share is $\frac{\Delta P_{d}}{T}$ and sellers' share is $\frac{\Delta P_{s}}{T}$. Our goal in this note is to relate these two shares to the elasticities of demand and supply.

To begin, recall that the elasticity of demand, E_{d}, can be written as $E_{d}=\frac{\Delta Q / Q}{\Delta P_{d} / P}=\frac{\Delta Q}{\Delta P_{d}} \frac{P}{Q}$. (We ignore the minus sign, treating both ΔP_{d} and ΔQ as positive amounts.) Suppose we solve this for ΔP_{d} as follows: $\Delta P_{d}=\frac{P}{Q} \frac{\Delta Q}{E_{d}}$. Likewise, we could find that $\Delta P_{s}=\frac{P}{Q} \frac{\Delta Q}{E_{s}}$.

Next, we make use of the fact that $T=\Delta P_{d}+\Delta P_{s}$, so $T=\frac{P}{Q} \frac{\Delta Q}{E_{d}}+\frac{P}{Q} \frac{\Delta Q}{E_{s}}$. If we multiply and divide the first term in this sum by E_{s} and the second term by E_{d}, we get a common denominator and can add the two terms to get $T=\frac{P \Delta Q E_{s}+P \Delta Q E_{d}}{Q E_{d} E_{s}}=\frac{P \Delta Q}{Q}\left(\frac{E_{s}+E_{d}}{E_{d} E_{s}}\right)$.

Making these two substitutions for ΔP_{d} and T, we can find that consumers' share of the tax is:

$$
\frac{\Delta P_{d}}{T}=\frac{\frac{P \Delta Q}{Q E_{d}}}{\frac{P \Delta Q}{Q}\left(\frac{E_{s}+E_{d}}{E_{d} E_{s}}\right)}=\frac{\frac{1}{E_{d}}}{\left(\frac{E_{s}+E_{d}}{E_{d} E_{s}}\right)}=\left(\frac{E_{s}}{E_{d}+E_{s}}\right) .
$$

A similar calculation shows that sellers' share of the tax is $\frac{\Delta P_{s}}{T}=\left(\frac{E_{d}}{E_{d}+E_{s}}\right)$.
Several conclusions emerge from these two share formulas:

- If the elasticities of demand and supply are equal, consumers' and sellers' share of the tax burden will be equal.
- For a given elasticity of supply, the larger is the elasticity of demand, the larger is the sellers' share, approaching $1(100 \%)$ as supply becomes perfectly elastic.
- For a given elasticity of demand, the larger is the elasticity of supply, the larger is the consumers' share, approaching $1(100 \%)$ as demand becomes perfectly elastic.

