Elastic demand at the monopoly price
Before investigating the relationship between marginal revenue and elasticity of demand, we will need to digress a moment and recall the elasticity coefficient, E_{d}. By definition, E_{d} is the (absolute value of the) percentage change in quantity demanded divided by the percentage change in price: $E_{d}=\left|\frac{\mathrm{d} Q / Q}{\mathrm{~d} P / P}\right|$. A simple rearrangement of this formula shows that $E_{d}=\left|\frac{\mathrm{d} Q}{\mathrm{~d} P} \cdot \frac{P}{Q}\right|$.

With this in mind, suppose a monopolist's demand curve is given by $P=f(Q)$, revenue is $R(Q)=$ $Q P=Q f(Q)$ and marginal revenue is $M R=R^{\prime}(Q)=f(Q)+Q f^{\prime}(Q)$. Suppose we now both divide and multiply the right-hand-side of $M R$ by $P: M R=P\left(\frac{f(Q)}{P}+\frac{Q}{P} f^{\prime}(Q)\right)=P\left(1+\frac{Q}{P} f^{\prime}(Q)\right)$ where we make use of the fact that $\mathrm{P}=f(Q)$ for the last equality.

Noting that $f(Q)$ is monotonically decreasing (so its inverse exists) and $f^{\prime}(Q)=\mathrm{d} P / \mathrm{d} Q$, we can now assert that $\frac{\mathrm{d} P}{\mathrm{~d} Q}=1 / \frac{\mathrm{d} Q}{\mathrm{~d} P}$. Making the substitution into our earlier expression for elasticity, $E_{d}=\left|\frac{\mathrm{d} Q}{\mathrm{~d} P} \cdot \frac{P}{Q}\right|=-1 /\left(\frac{Q}{P} f^{\prime}(Q)\right)$. (The negative sign is required since $f^{\prime}(Q)<0$ and E_{d} is expressed as a positive number.) Inverting both sides, we see that $\frac{Q}{P} f^{\prime}(Q)=-1 / E_{d}$. Substituting this into our equation for $M R$ we obtain the following: $M R=P\left(1-1 / E_{d}\right)$.

We now have an expression that relates $M R$ to the elasticity of demand: $M R=P\left(1-1 / E_{d}\right)$. If demand is inelastic, $E_{d}<1$ and $M R<0$. Alternatively, $M R>0$ if and only if $E_{d}>1$. As profit maximization requires that $M R=M C$ and $M C$ is always positive, we see that a monopolist must always price in the elastic portion of the demand curve.

