
Advanced Placement*

Chemistry: The Molecular Nature of Matter and Change

By Martin Silberberg Sixth Edition, © 2012 ISBN 9780076593545

Based on College Board Curriculum Guide: AP Chemistry Effective Fall 2010

*AP and Advanced Placement Program are registered trademarks of the College Entrance Examination Board, which was not involved in the production of and does not endorse this product.

AP Correlation

The Molecular Nature of Matter and Change (Silberberg), Sixth Edition

Горіся	Chapters/ Pages		
[. Str	uct	Chapters 2, 3, 7- 12, 15, 23, 24	
А.	At	omic theory and atomic structure	
	1.	Evidence for the atomic theory	pp 40-52
	2.	Atomic masses; determination by chemical and physical means	pp 41-52
	3.	Atomic number and mass number; isotopes	pp 48-52
	4.	Electron energy levels: atomic spectra, quantum numbers, atomic orbitals	pp 260-280, 296- 308
	5.	Periodic relationships, including, for example, atomic radii, ionization energies, electron affinities, oxidation states	pp 308-322
В.	Ch	emical bonding	Chapters 12, 15
	1.	Binding forces	
		a. Types: ionic, covalent, metallic, hydrogen bonding, van der Waals (including London dispersion forces)	pp 55-59, 329-342, 354-355, 430-437
		b. Relationships to states, structure, and properties of matter	
		c. Polarity of bonds, electronegativities	pp 349-353, 382- 385, 572-573
	2.	Molecular models	
		a. Lewis structures	pp 363-385
		b. Valence bond; hybridization of orbitals, resonance, sigma and pi bonds	pp 366-373, 395- 405, 961-962
		c. VSEPR	pp 373-382,
	3.	Geometry of molecules and ions, structural isomerism of simple organic molecules and coordination complexes; dipole moments of molecules; relation of properties to structure	pp 96-98, 373-385, 953-967
C.		clear chemistry: nuclear equations, half-lives, and dioactivity; chemical applications	рр 978-1012
II. St		s of Matter (20%)	Chapters 4, 5, 9, 12, 13
А.	Ga	ses	
	1.	Laws of ideal gases	
		a. Equation of state for an ideal gas	pp 181-183
		b. Partial pressures	pp 183-186, 199- 204
	2.	Kinetic molecular theory	
		a. Interpretation of ideal gas laws on the basis of this theory	pp 190-203
		b. Avogadro's hypothesis and the mole concept	pp 189-191
		c. Dependence of kinetic energy of molecules on temperature	pp 204-208
		d. Deviations from ideal gas laws	pp 214-216

	т.	• 1 1 1• 1	01 / 10
В.		quids and solids	Chapter 12
	1.	Liquids and solids from the kinetic-molecular viewpoint	pp 419-454
	2.	Phase diagrams of one-component systems	pp 422-428
	3.	Changes of state, including critical points and triple points	pp 428-430
	4.	Structure of solids; lattice energies	pp 332-337, 441- 454
С.	So	lutions	Chapter 13
	1.	Types of solutions and factors affecting solubility	pp 135-140, 478- 482, 488-494
	2.	Methods of expressing concentration (use of normalities is not tested)	pp 494-498
	3.	Raoult's law and colligative properties (nonvolatile solutes); osmosis	pp 499-508
	4.	Nonideal behavior (qualitative aspects)	pp 506
III. R	lea	ctions (35-40%)	Chapters 3, 4, 16 21
А.	Re	action types	
	1.	Acid-base reactions; concepts of Arrhenius, Brønsted- Lowry, and Lewis; coordination complexes, amphoterism	pp 145-153, 719- 733, 750-754, 794- 799
	2.	Precipitation reactions	pp 141-145, 782- 792
	3.	Oxidation-reduction reactions	pp 153-167, 851- 855
		a. Oxidation number	pp 155-159
		b. The role of the electron in oxidation-reduction	pp 153-159
		c. Electrochemistry: electrolytic and galvanic cells; Faraday's laws; standard half-cell potentials; Nernst equation; prediction of the direction of redox reactions	pp 855-877, 884- 891
B.	Ste	oichiometry	Chapter 4
	1.	Ionic and molecular species present in chemical systems: net ionic equations	pp 136-140
	2.	Balancing of equations, including those for redox reactions	pp 98-102, 140-141
	3.	Mass and volume relations with emphasis on the mole concept, including empirical formulas and limiting reactants	pp 83-96, 102-121
C.	Eq	uilibrium	Chapters 4, 6, 17 19
	1.	Concept of dynamic equilibrium, physical and chemical; Le Chatelier's principle; equilibrium constants	pp 167-169 ,677- 709, 733-746
	2.	Quantitative treatment	
		a. Equilibrium constants for gaseous reactions: K_p , K_c	pp 682-698
		b. Equilibrium constants for reactions in solution	pp 733-746
		1) Constants for acids and bases; pK; pH	pp 726-728, 774 782,
		2) Solubility product constants and their application	pp 782-792,794-
		to precipitation and the dissolution of slightly soluble compounds	799

			773
D.	Kinetics		Chapter 16
	1.	Concept of rate of reaction	pp 641
	2.	Use of experimental data and graphical analysis to determine reactant order, rate constants, and reaction rate laws	pp 626-641
	3.	Effect of temperature change on rates	pp 650
	4.	Energy of activation; the role of catalysts	pp 649-652, 659 663
	5.	The relationship between the rate-determining step and a mechanism	pp 652-659
Е.	Th	ermodynamics	Chapters 6, 9, 12, 20, 21
	1.	State functions	pp 229-235
	2.	First law: change in enthalpy; heat of formation; heat of reaction; Hess's law; heats of vaporization and fusion; calorimetry	pp 235-248, 345- 347, 420-425
	3.	Second law: entropy; free energy of formation, free energy of reaction; dependence of change in free energy on enthalpy and entropy changes.	pp 811-835
	4.	Relationship of change in free energy to equilibrium constants and electrode potentials	pp 835-841, 869- 877
IV. D	esc	criptive Chemistry (10-15	Chapters 2, 4, 8, 14, 15, 23
	1.	Chemical reactivity and products of chemical reactions	pp 140-145, 150- 151, 153-159, 161- 167
	2.	Relationships in the periodic table: horizontal, vertical, and diagonal with examples from alkali metals, alkaline earth metals, halogens, and the first series of transition elements	pp 315-322, 522- 563, 945-967
	3.	Introduction to organic chemistry: hydrocarbons and functional groups (structure, nomenclature, chemical properties)	pp 66-67, 573-585, 588-604
V. La	bo	ratory (5-10%)	
	• r		
	• r	recording data	
		alculating and interpreting results based on the quantitative ta obtained	
	• c	communicating effectively the results of experimental work	