Glencoe McGraw-Hill

Study Notebook

Prealgebra

Mc

The McGraw-Hill companies

Copyright © by The McGraw-Hill Companies, Inc. All rights reserved. Except as permitted under the United States Copyright Act, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without prior written permission of the publisher.

Send all inquiries to:
Glencoe/McGraw-Hill
8787 Orion Place
Columbus, OH 43240

ISBN: 978-0-07-890748-7
MHID: 0-07-890748-9

Printed in the United States of America
Chapter 1
Before You Read 1
Key Concepts
1-1 Words and Expressions 3
1-2 Variables and Expressions 5
1-3 Properties 7
1-4 Ordered Pairs and Relations 9
1-5 Words, Equations, Tables, and Graphs 11
1-6 Scatter Plots 13
Tie It Together. 15
Before the Test 16
Chapter 2
Before You Read 17
Key Concepts 18
2-1 Integers and Absolute Value 19
2-2 Adding Integers 21
2-3 Subtracting Integers 23
2-4 Multiplying Integers 25
2-5 Dividing Integers. 27
2-6 Graphing in Four Quadrants 29
2-7 Translations and Reflections on the Coordinate Plane 31
Tie It Together. 33
Before the Test 34
Chapter 3
Before You Read 35
Key Concepts 36
3-1 Fractions and Decimals. 37
3-2 Rational Numbers. 39
3-3 Multiplying Rational Numbers. 41
3-4 Dividing Rational Numbers 43
3-5 Adding and Subtracting Like Fractions 45
3-6 Adding and Subtracting Unlike Fractions 47
Tie It Together. 49
Before the Test 50
Chapter 4
Before You Read 51
Key Concepts 52
4-1 The Distributive Property 53
4-2 Simplifying Algebraic Expressions 55
4-3 Solving Equations by Adding or Subtracting 57
4-4 Solving Equations by Multiplying or Dividing 59
4-5 Solving Two-Step Equations 61
4-6 Writing Equations 63
Tie It Together. 65
Before the Test 66
Chapter 5
Before You Read 67

Key Concepts

685-1 Perimeter and Area 69
5-2 Solving Equations with Variables on Each Side 71
5-3 Inequalities 73
5-4 Solving Inequalities 75
5-5 Solving Multi-Step Equations and Inequalities 77
Tie It Together 79
Before the Test 80
Chapter 6
Before You Read 81
Key Concepts 82
6-1 Ratios 83
6-2 Unit Rates 85
6-3 Converting Rates and Measurements 87
6-4 Proportional and Nonproportional Relationships 89
6-5 Solving Proportions 91
6-6 Scale Drawings and Models 93
6-7 Similar Figures 95
6-8 Dilations 97
6-9 Indirect Measurement. 99
Tie It Together 101
Before the Test 102
Chapter 7
Before You Read 103
Key Concepts 104
7-1 Fractions and Percents 105
7-2 Fractions, Decimals, and Percents 107
7-3 Using the Percent Proportion. 109
7-4 Find Percent of a Number Mentally 111
7-5 Using Percent Equations 113
7-6 Percent of Change 115
7-7 Simple and Compound Interest. 117
7-8 Circle Graphs 119
Tie It Together 121
Before the Test 122
Chapter 8
Before You Read 123
Key Concepts 124
8-1 Functions 125
8-2 Sequences and Equations 127
8-3 Representing Linear Functions 129
8-4 Rate of Change 131
8-5 Constant Rate of Change and Direct Variation 133
8-6 Slope 135
8-7 Slope-Intercept Form 137
8-8 Writing Linear Equations 139
8-9 Prediction Equations 141
8-10 Systems of Equations 143
Tie It Together 145
Before the Test 146
Chapter 9
Before You Read 147
Key Concepts 148
9-1 Powers and Exponents 149
9-2 Prime Factorization 151
9-3 Multiplying and Dividing Monomials 153
9-4 Negative Exponents 155
9-5 Scientific Notation 157
9-6 Powers of Monomials 159
9-7 Linear and Nonlinear Functions 161
9-8 Quadratic Functions 163
9-9 Cubic and Exponential Functions 165
Tie It Together. 167
Before the Test 168
Chapter 10
Before You Read 169
Key Concepts 170
10-1 Squares and Square Roots 171
10-2 The Real Number System 173
10-3 Triangles 175
10-4 The Pythagorean Theorem 177
10-5 The Distance Formula 179
10-6 Special Right Triangles 181
Tie It Together. 183
Before the Test 184
Chapter 11
Before You Read 185
Key Concepts 186
11-1 Angle and Line Relationships 187
11-2 Congruent Triangles 189
11-3 Rotations 191
11-4 Quadriaterals 193
11-5 Polygons 195
11-6 Area of Parallelograms, Triangles, and Trapezoids 197
11-7 Circles and Circumference 199
11-8 Area of Circles 201
11-9 Area of Composite Figures 203
Tie It Together 205
Before the Test 206
Chapter 12
Before You Read 207
Key Concepts 208
12-1 Three-Dimensional Figures 209
12-2 Volume of Prisms 211
12-3 Volume of Cylinders 213
12-4 Volume of Pyramids, Cones and Spheres 215
12-5 Surface Area of Prisms 217
12-6 Surface Area of Cylinders 219
12-7 Surface Area of Pyramids and Cones 221
12-8 Similar Solids 223
Tie It Together. 225
Before the Test 226
Chapter 13
Before You Read 227
Key Concepts 228
13-1 Measures of Central Tendency 229
13-2 Stem-and-Leaf Plots 231
13-3 Measures of Variation 233
13-4 Box-and-Whisker Plots 235
13-5 Histograms 237
13-6 Theoretical and Experimental Probability 239
13-7 Using Sampling to Predict 241
13-8 Counting Outcomes. 243
13-9 Permutations and Combinations 245
13-10 Probability of Compound Events 247
Tie It Together 249
Before the Test 250

Note-Taking Tips

Your notes are a reminder of what you learned in class. Taking good notes can help you succeed in mathematics. The following tips will help you take better classroom notes.

- Before class, ask what your teacher will be discussing in class. Review mentally what you already know about the concept.
- Be an active listener. Focus on what your teacher is saying. Listen for important concepts. Pay attention to words, examples, and/or diagrams your teacher emphasizes.
- Write your notes as clear and concise as possible. The following symbols and abbreviations may be helpful in your note-taking.

Word or Phrase	Symbol or Abbreviation	Word or Phrase	Symbol or Abbreviation
for example	e.g.	not equal	\neq
such as	i.e.	approximately	\approx
with	w/	therefore	\therefore
without	w/o	versus	vs
and	+	angle	\angle

- Use a symbol such as a star (\star) or an asterisk (*) to emphasis important concepts. Place a question mark (?) next to anything that you do not understand.
- Ask questions and participate in class discussion.
- Draw and label pictures or diagrams to help clarify a concept.
- When working out an example, write what you are doing to solve the problem next to each step. Be sure to use your own words.
- Review your notes as soon as possible after class. During this time, organize and summarize new concepts and clarify misunderstandings.

Note-Taking Don'ts

- Don't write every word. Concentrate on the main ideas and concepts.
- Don't use someone else's notes as they may not make sense.
- Don't doodle. It distracts you from listening actively.
- Don't lose focus or you will become lost in your note-taking.
\qquad
\qquad
\qquad

In
 1 The Tools of Algebra

Before You Read

Before you read the chapter, respond to these statements.

1. Write an \mathbf{A} if you agree with the statement.
2. Write a \mathbf{D} if you disagree with the statement.

Before You Read	Tools of Algebra
	• A variable represents an unknown number or quantity.
	- If the order of numbers multiplied is changed, the product will also change.
	- A coordinate plane has an x - and a y-axis.
	- A scatter plot sometimes shows a trend in the data, but not always.
	- You need an ordered pair with two numbers to plot a point on a coordinate plane.

Construct the Foldable as directed at the beginning of this chapter.

Note Taking Tips

- When you take notes, be sure to describe steps in detail. Include examples of questions you might ask yourself during problem solving.
- When searching for the main idea of a lesson, ask yourself, "What is this paragraph or lesson telling me?"
Then make certain you answer the question.
\qquad
\qquad
\qquad

CHAPTER
 1 The Tools of Algebra

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on variables and expressions, one fact might be that a variable is a letter or symbol used to represent an unknown value. After completing the chapter, you can use this table to review for your chapter test.

Lesson		
1 -1	Words and Expressions	
$1-2$	Variables and Expressions	
$1-3$	Properties	
$1-4$	Ordered Pairs and Relations	
1 1-5	Words, Equations, Tables, and Graphs	
1 Scatter Plots		

\qquad
\qquad
\qquad

1-1 Words and Expressions

What You'll Learn Skim the text under the Now heading. List two things you will learn about in the lesson.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

New Vocabulary Write the correct term next to each definition.
rules to follow when evaluating an expression with more than one operation
contains a combination of numbers and operations such as addition, subtraction, multiplication, and division
to find the numerical value of an expression

Vocabulary Link Operation is a word that is used in everyday English. Find the definition of operation using a dictionary. Explain how the English definition can help you remember how operation is used in mathematics.
\qquad
\qquad

Main Idea

Translate Verbal

Phrases into Expressions
p. 5

Details

Complete the operation of the numerical expressions for each verbal phrase.

1. the number of weeks in 42 days $\rightarrow 42 \square 7$
2. the difference of 18 and $13 \rightarrow 18 \square 13$
3. the quotient of 81 and $9 \rightarrow 81 \square 9$
4. the total number of students if there are 7 boys and 11 girls $\rightarrow 7$ \square
5. the total number of tires on 14 cars $\rightarrow 14 \square 4$
6. the sum of 51 and $39 \rightarrow 51 \square 39$
7. the product of 9 and $6 \rightarrow 9 \square 6$
8. the cost of 4 candies at $\$ 0.35$ each $\rightarrow 4 \square 0.35$

Order of Operations p. 6

Complete each step to evaluate $2[(7+9) \times 3]-15$.

Melping You remember One classmate evaluates the expression

 $4+6 \div 2$ and gets an answer of 5 . Another classmate evaluates the same expression and gets an answer of 7 . Use the order of operations to explain which answer is correct.\qquad
\qquad
\qquad

1-2 Variables and Expressions

What You'll Learn Skim the lesson. Write two things you already know about variables and expressions.

1. \qquad
\qquad
2. \qquad

Active Vocabulary

Review Vocabulary Write a numerical expression for each verbal phrase. (Lesson 1-1)

18 books shared equally among 6 students \qquad a package of 15 pencils minus 3 pencils \qquad
4 eggs plus 3 eggs \qquad

New Vocabulary Match the term with its definition by drawing a line to connect the two.
an expression with at least one variable and one operation
branch of mathematics that uses symbols a letter or symbol that represents an unknown value choosing a variable and the quantity it represents
\qquad
\qquad
Lesson 1-2 (continued)

Main Idea

Algebraic Expressions and Verbal Phrases
pp. 11-12

Details

Describe the steps involved in writing algebraic expressions.

Evaluate each expression if $a=3, b=7$, and $c=5$.

1. $6 c \div 15=\square$
2. $32+4 a=\square$
3. $27 a-(16-3 c)=\square$
4. $\frac{b c}{a+2}=\square$
5. $2 b-4 a=\square$

Helping You Remember

Variable is a word used in everyday English as well as in mathematics. Write the definition of variable. Explain how the English definition can help you remember how variable is used in mathematics.
\qquad

Evaluate Expressions

pp. 12-13
\qquad
\qquad
\qquad

1-3 Properties

What You'll Learn Scan Lesson 1-3. List two headings that you would use to make an outline of this lesson.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary New Vocabulary Write the definition next to each term.

properties \qquad
\qquad
counterexample \qquad

simplify

deductive reasoning

Vocabulary Link Simplify has a non-mathematical meaning as well. Use the word simplify in a non-mathematical sentence.
\qquad
\qquad
Lesson 1-3 (continued)

Main Idea

Details

Properties of Addition and Multiplication pp. 18-19

Simplify Algebraic Expressions
p. 20

Complete the table by writing the definition and an example of each property.

Property	Definition	Example
Commutative Property of Addition		
Associative Property of Multiplication		
Additive Identity		
Multiplication Identity		

Simplify each expression by filling in the blanks with a variable or number.

1. $(8+x)+2$

2. $k \times(4 \times 4)$

3. $3 \times(7 \times p)$

4. $9+(b+5)$

Helping You Remember

In your own words, define counterexample. Tell how it is used in mathematics and why it is important.
\qquad
\qquad

1-4 Ordered Pairs and Relations

What You'll Learn

Skim Lesson 1-4. Predict two things that you expect to learn based on the headings and the Key Concept box.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary
Review Vocabulary Fill in each blank with one correct term.
(Lesson 1-2)

algebraic expression
a(n) \qquad with at least one \qquad and one \qquad

New Vocabulary Label the diagram with the correct terms.

\qquad
\qquad
Lesson 1-4 (continued)

Details

Ordered Pairs

pp. 25-26

Relations

p. 27

Graph each ordered pair on the coordinate plane below.
$A(6,4) \quad B(0,4) \quad C(2,1) \quad D(5,0)$

Write the relation as a table. Then write the domain and range.

\boldsymbol{x}				
\boldsymbol{y}				

domain: \square

Helping You Remember

Write two examples of coordinate systems that
are used in everyday life.
\qquad
\qquad

1-5 Words, Equations, Tables, and Graphs

What You'll Learn
 Skim the Examples for Lesson 1-5. Predict two things you think you will learn about words, equations, tables, and graphs.

1. \qquad
\qquad
2. \qquad
\qquad
\qquad

Active Vocabulary

Review Vocabulary Explain how the Additive Identity Property and the Multiplicative Identity Property are the same. (Lesson 1-3)
\qquad
\qquad

New Vocabulary Fill in each blank with the correct term or phrase.
function \quad a \qquad where each member of the domain is paired with exactly one member in the \qquad
equation a mathematical__ stating that two quantities are \qquad
function rule the \qquad performed on the input in a function to get the \qquad
\qquad
\qquad
Lesson 1-5 (continued)

Main Idea

Details

Complete each function table. Then write the rule for each function.

1. Nancy bought half as many pants as shirts.

Number of shirts	Input (x)				
Number of pants	Output (y)				

Rule:
2. The recipe calls for 3 times more cups of flour than water.

Cups of water	Input (x)				
Cups of flour	Output (y)				

Rule:

Represent the function in three different ways.
For each 1,000 meters in altitude, the temperature, which is $35^{\circ} \mathrm{C}$, decreases $6.5^{\circ} \mathrm{C}$.

Multiple Representations

p. 34
\square

Helping You Remember

Name the four ways that functions can be represented.
\square -
\qquad
\qquad
\qquad
\qquad
\qquad

1-6 Scatter Plots

What You'll Learn

Active Vocabulary

Review Vocabulary Complete the table below naming the operation, (addition, subtraction, multiplication, or division) that each verbal phrase represents. (Lesson 1-1)

Verbal phrase	Operation
less	
more than	
quotient	
total	
shared equally	
difference	
times	
sum	
product	

New Vocabulary Define the following term from this lesson.

scatter plot

Scan the text in Lesson 1-6. Write two facts you learned about scatter plots as you scanned the text.

1. \qquad
\qquad
2. \qquad
\qquad
\qquad

Vocabulary Link A scatter plot can be used to determine trends between two sets of data. Find the definition of trend using a dictionary. Describe how trend relates to scatter plots using your own words.
\qquad
\qquad
\qquad
\qquad
\qquad
Lesson 1-6 (continued)

Main Idea

Details

Construct Scatter Plots

 p. 40pp. 41-42

Analyze Scatter Plots

-

Draw a scatter plot that shows each relationship.
$\underset{\sim}{\sim}$

Heplig You Remember Describe three real life situations between

 quantities where the relationship is a positive relationship, a negative relationship, and no relationship.\qquad
\qquad
\qquad
\qquad
Compare and contrast the characteristics of scatter plot and a graphical representation of a function.

Scatter plot	Graph of Function

\qquad DATE \qquad
\qquad

CHAPTER
 \square
 The Tools of Algebra

The It Together

Complete the table with an example from the chapter.

Property	Symbols	Example(s)
Commutative Property		
Associative Property		
Additive Identity		
Multiplicative Identity		
Multiplicative Property of Zero		

Complete the graphic organizer with a term from the chapter.

triple a number and add two

Input (x)	0	1	2	3
Output (y)	2	5	8	11

$$
y=3 x+2
$$

\qquad
\qquad
\qquad

N
 1 Tools of Algebra

Before the Test

Now that you have read and worked through the chapter, think about what you have learned and complete the table below. Compare your previous answers with these.

1. Write an \mathbf{A} if you agree with the statement.
2. Write a \mathbf{D} if you disagree with the statement.

Tools of Algebra	After You Read
- A variable represents an unknown number or quantity.	
- If the order of numbers multiplied is	
changed, the product will also change.	

Math Online Visit glencoe.com to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 1.

Are You Ready for the Chapter Test?

Use this checklist to help you study.I used my Foldable to complete the review of all or most lessons.I completed the Chapter 1 Study Guide and Review in the textbook.I took the Chapter 1 Practice Test in the textbook.I used the online resources for additional review options.I reviewed my homework assignments and made corrections to incorrect problems.I reviewed all vocabulary from the chapter and their definitions.

Study Tips

- Make a calendar that includes all of your daily classes. Besides writing down all assignments and due dates, include in your daily schedule time to study, work on projects, and review notes you took during class that day.
\qquad
\qquad
\qquad

тй
 2 Operations with Integers

Before You Read

Before you read the chapter, respond to these statements.

1. Write an \mathbf{A} if you agree with the statement.
2. Write a \mathbf{D} if you disagree with the statement.

Before You Read	Operations with Integers
	- A negative number is less than 0. Every number has one absolute value.
	-Negative numbers can not be used in division problems.- When a number is added to its opposite, the sum is zero.
	- The difference of two negative numbers is a negative number.

FOLDA ${ }^{\prime}$ BES Study Organizer Construct the Foldable as directed at the beginning of this

 chapter.- When you take notes, include definitions of new terms, explanations of new concepts, and examples of problems.
- At the end of each lesson, write a summary of the lesson, or write in your own words what the lesson was about.
\qquad
\qquad
\qquad

chater
 2 Operations with Integers

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on integers and absolute value, one fact might be that a positive number is a number greater than zero. After completing the chapter, you can use this table to review for your chapter test.

Lesson	Fact	
2 -1	Integers and Absolute Value	
$2-2$	Adding Integers	
$2-3$	Subtracting Integers	
$2-4$	Multiplying Integers	
$2-5$	Dividing Integers	
2 Graphing in Four Quadrants		

\qquad
\qquad
\qquad

2-1 Integers and Absolute Value

What You'll Learn
 Skim the Examples for Lesson 2-1. Predict two things you think you will learn about integers and absolute value.

1. \qquad
2. \qquad
\qquad

Active Vocabulary

New Vocabulary Match the term with the correct definition by drawing a line and connecting the two.
negative number a comparison of numbers or quantities
positive number
integers coordinate
inequality
absolute value
the distance a number is from zero on a number line a number less than zero
the counting numbers, their opposites, and zero a point on a number line or graph a number greater than zero

Vocabulary Link List three examples of how negative numbers are used in everyday life.
\qquad
\qquad

Lesson 2-1 (continued)

Main Idea

Compare and Order Integers
pp. 61-62

Details

Fill in the blank with $<,>$, or $=$ to make each numerical sentence true.

1. $-19 \square-17$
2. $0 \square-3$
3. $-1+-3 \square-4$
4. $-7 \square-10-17$
5. $1-6 \square 2-4$

Absolute Value p. 63

Graph $|-5|$ on a number line. Write its value on the line below your number line. Then explain how you used a number line to find the absolute value of $\mathbf{- 5}$.

Helping You Remember

Absolute is a word used in the English language.
Find a definition of absolute in a dictionary. Write the definition that most closely relates to mathematics. Explain how the definition you wrote down can help you remember the meaning of absolute value in mathematics.
\qquad
\qquad
\qquad

2-2 Adding Integers

What You'll Learn

Skim Lesson 2-2. Predict two things you expect to learn based on the headings and the Key Concept box.

1. \qquad
2. \qquad

Active Vocabulary

Review Vocabulary Label the diagram with the correct terms. (Lesson 2-1)
positive numbers negative numbers

\qquad
\qquad

New Vocabulary Fill in each blank with the correct term or phrase.
opposites

-

two \qquad with the same \qquad but different \qquad
additive inverse -
an \qquad and its \qquad

Vocabulary Link Opposites can have non-mathematical meanings as well. Name the opposite of the terms listed.
up
on \qquad
day \qquad
hot \qquad
boy \qquad
south \qquad
\qquad
\qquad
Lesson 2-2 (continued)

Main Idea

Details

Add Integers

pp. 69-71
Model the addition sentence $3+(-4)$ on a number
line. Write the sum on the line under your model. Then explain in words how you used the number line to find the sum.
\square
\qquad
\qquad

Add More Than Two Integers
pp. 71-72

$$
\begin{array}{rlr}
5 & +(-7)-2 & \\
& =5+2+(-7) \\
& =(5+2)+(-7) & \\
& =7+(-7) & \text { Simplify. } \\
& =0 &
\end{array}
$$

Write each property used to simplify the expression.

Helping You Remember

Suppose that one of your friends was absent from math class the day you learned to add integers. Write an explanation to your friend about how to add integers with the same signs. Then explain how to add integers with different signs.
\qquad
\qquad

2-3 Subtracting Integers

What You'll Learn Scan the text under the Now heading. List two things you will learn about in the lesson.

1. \qquad
\qquad
2. \qquad
\qquad
\qquad

Active Vocabulary

Review Vocabulary Define each term. Include two examples in your definitions. (Lessons 2-1 and 2-2)
additive inverse \qquad
integer \qquad
\qquad
\qquad
opposites \qquad
\qquad

Vocabulary Link Integers are used in everyday life. For each description, write the integer.
four degrees below zero
twelve inches long \qquad
twenty-five feet below sea level
fifty dollars overdrawn
\qquad
\qquad
Lesson 2-3 (continued)

Main Idea

Details

Subtract Integers

pp. 76-77

Describe how to subtract integers with the same and different signs and how to add integers with the same and different signs.

	Add Integers	Subtract Integers
same sign		
different signs		

Label the following diagram of a substraction sentence. Then write the subtraction sentence and solve.

Write an example for each difference described below. Then use addition to find each difference. subtract a positive integer from a positive integer \qquad subtract a positive integer from a negative integer \qquad subtract a negative integer from a positive integer \qquad subtract a negative integer from a negative integer \qquad
\qquad
\qquad

2-4 Multiplying Integers

What You'll Learn Scan the text in Lesson 2-4. Write two facts you learned about multiplying integers.

1. \qquad
\qquad
\qquad
2. \qquad
\qquad

Active Vocabulary Vocabulary Link Commute and associate are words that are used in everyday English. Find the definition of commutative and associative using a dictionary. Explain how the English definitions can help you remember how commutative and associative are used in mathematics.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Main Idea

Details

Multiply Integers

pp. 83-85
Fill in the boxes to simplify each expression.

1. $-3(-5)$ \square
2. -8×4 \square
3. 12×10 \square
4. $4(-2)$ \square
5. $-9(-7)$ \square 6. $-6 \cdot 6$ \square

Simplify the expression given the reason for each step.

$$
-3(12+m+18)
$$

\qquad
\qquad Commutative Property
\qquad Simplify inside.

$$
=
$$

\qquad

Helping You Remember

In your own words, explain why the product of three negative integers is negative. Give an example.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

2-5 Dividing Integers

What You'll Learn Scan the text in Lesson 2-5. Write two facts you learned about dividing integers.

1. \qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad

Active Vocabulary \quad Review Vocabulary Fill in the blank with the correct value. (Lessons 2-1 and 2-2)
additive inverse \quad The additive inverse of -8 is \qquad .
opposite \quad The opposite of 6 is \qquad _.
absolute value \quad The absolute value of $|-9|$ is \qquad .

Vocabulary Link Write two examples of how the mathematical term mean is used in everyday life.
\qquad
\qquad
\qquad
\qquad
\qquad

Lesson 2-5 (continued)

Main Idea

Divide Integers

pp. 90-91

Mean (Average)

p. 92

Details

Write positive or negative to identify each quotient.

Evan wanted to make sure his golf score average did not go above 42 . He previously scored $44,38,33,47$, and 41. Fill in the blanks to solve the equation for x that will tell Evan the maximum score he could get and still have an average of 42.
$\frac{44+38+33+47+41+x}{\square}=42$ There are 6 data items.

$6\left(\frac{\square+x}{\square}\right)=42 \times \square$
\square
$x=\square$

Find the sum of the numerator.

Eliminate the denominator by multiplying each side by 6 .

Simplify.
Subtract 203 from each side.

Helping You Remember
Write one example of each quotient described below. Then find the quotient.
dividing a positive integer by a negative integer \qquad
dividing a negative integer by a negative integer \qquad
dividing a negative integer by a positive integer
\qquad
\qquad

2-6 Graphing in Four Quadrants

What You'll Learn

Skim the lesson. Write two things you already know about graphing in four quadrants.

1. \qquad
\qquad
2. \qquad

Active Vocabulary

Review Vocabulary Label the diagram with the correct terms. (Lesson 1-4)
origin
y-axis
x-axis
x-coordinate
y-coordinate
quadrants

New Vocabulary Label the diagram above with the correct quadrant: I, II, III, or IV.
\qquad
\qquad

Details

Graph Points

pp. 96-97

Match the ordered pairs with the correct quadrant by drawing a line to connect the coordinates with the quadrant. Circle coordinates that are not in any quadrant.
Quadrant I

$$
(-3,-3)
$$

Quadrant II

$$
\begin{equation*}
(1,-5) \tag{-2,0}
\end{equation*}
$$

Quadrant III
$(6,2)$

Quadrant IV (0, 0)

Model the following function by creating a function table with input and output values. Then graph the function.
The sum of one negative and one positive number is 3 .

Helping You Remember

Draw a coordinate grid with points to represent your classroom and where your classmates sit. Explain how to name the location of your classmates.
\qquad
\qquad

2-7 Translations and Reflections on the Coordinate Plane

What You'll Learn
Skim Lesson 2-7. Predict two things that you expect to learn based on the headings and the Key Concept box.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

\qquad $-$
a transformation where each point of the original figure has a corresponding figure on the other side of a line of symmetry
\qquad a transformation where each point of an original figure moves the same distance in the same direction
\qquad a line of reflection
New Vocabulary Write the correct term next to each definition.
\qquad an operation that maps an original geometric figure onto a new figure
a transformed figure

Vocabulary Link Transform is a word that is used in everyday English. Find the definition of transform using a dictionary. Explain how the English definition can help you remember how transformation is used in mathematics.
\qquad
\qquad
Lesson 2-7 (continued)

Main Idea

Details

Transformations

p. 101

Translations and Reflections

pp. 102-103

Complete the organizer by defining the terms in your own words.

Compare and contrast translation and reflection.

	Translation	Reflection
How they are alike		
How they are different		

Helping You Remember

Identify each type of transformation. Then describe in your own words how you know that you are correct.

\qquad
\qquad

curne
 2 Operations with Integers

The It Together

Complete the graphic organizer with a phrase to help you remember the process.

\qquad
\qquad
\qquad

Nunc
 2. Operations with Integers

Before the Test

Now that you have read and worked through the chapter, think about what you have learned and complete the table below. Compare your previous answers with these.

1. Write an \mathbf{A} if you agree with the statement.
2. Write a \mathbf{D} if you disagree with the statement.

Operations with Integers	After You Read		
- A negative number is less than 0.			
- Every number has one absolute value.			
- Negative numbers can not be used in			
division problems.		\quad	- When a number is added to its opposite,
:---			
the sum is zero.			

Math Online Visit glencoe.com to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 2.

Are You Ready for the Chapter Test?

Use this checklist to help you study.
I used my Foldable to complete the review of all or most lessons.
\square I completed the Chapter 2 Study Guide and Review in the textbook.
\square I took the Chapter 2 Practice Test in the textbook.
\square I used the online resources for additional review options.
\square I reviewed my homework assignments and made corrections to incorrect problems.
\square I reviewed all vocabulary from the chapter and their definitions.

Study Tips

- Make up acronyms to remember lists or sequences. PEMDAS is one acronym for remembering the order of operations (parentheses, exponents, multiply and divide, add and subtract). (Please Excuse My Dear Aunt Sally)
\qquad
\qquad
\qquad

cumber
 3 Operations with Rational Numbers

Before You Read

Before you read the chapter, think about what you know about rational numbers. List three things you already know about operations with rational numbers in the first column. Then list three things you would like to learn about them in the second column.

K	W
What I know...	

Construct the Foldable as directed at the beginning of this chapter.

Note Taking Tips

- As you read each lesson, list ways the new knowledge has been or will be in your daily life.
- When you take notes, record real-life examples of how you can use fractions and decimals such as telling time and making change.
\qquad DATE \qquad
\qquad

cumb
 3
 Operations with Rational Numbers

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on dividing rational numbers, one fact might be that reciprocals are two numbers whose product is 1 . After completing the chapter, you can use this table to review for your chapter test.

Lesson		
$3-1$	Fractions and Decimals	
$3-2$	Rational Numbers	
$3-3$	Multiplying Rational Numbers	
$3-4$	Dividing Rational Numbers	
3-5	Adding and Subtracting Like Fractions	
3-6	Adding and Subtracting Unlike Fractions	

\qquad
\qquad

3-1 Fractions and Decimals

What You'll Learn Scan the text under the Now heading. List two things you will learn about in this lesson.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary
 Review Vocabulary Define inequality in your own words.

(Lesson 2-1)
inequality

New Vocabulary Match the term with its definition.
bar notation terminating decimal repeating decimal
decimals with a pattern in digits that have no end
line placed over repeating digits
decimals that divide evenly with no remainder

Vocabulary Link Terminate is a word that is used in everyday English. Find the definition of terminate using a dictionary. Explain how the English definition can help you remember how terminate is used in mathematics.
\qquad
\qquad
\qquad
\qquad
\qquad

Main Idea

Write Fractions as
Decimals
pp. 121-123

Compare Fractions and Decimals
pp. 123-124

Details

Complete the diagram by comparing and contrasting repeating decimals and terminating decimals.

Fill in the blank with $<,>$, or $=$ to make each numerical sentence true.

1. $\frac{5}{6} \square \frac{2}{3}$
2. $-0.36 \square-\frac{1}{3}$
3. $\frac{23}{100} \square \frac{1}{5}$
4. $\frac{7}{19} \square \frac{4}{15}$
5. $-\frac{7}{8} \square-\frac{8}{9}$
6. $-\frac{1}{5} \square-0.2$
7. $\frac{3}{8} \square \frac{6}{7}$
8. $\frac{4}{11} \square \frac{5}{21}$

Helping You Remember

In your own words, explain the difference between 0.6 and $0 . \overline{6}$. Which number is greater?
\qquad
\qquad
\qquad
\qquad
\qquad

3-2 Rational Numbers

What You'll Learn Scan the text in Lesson 3-2. Write two facts you learned about rational numbers as you scanned the text.

1. \qquad
\qquad
2. \qquad
\qquad
\qquad

Active Vocabulary

Review Vocabulary Write the definition next to each term.
(Lessons 1-3 and 2-1)
integers \qquad
properties

New Vocabulary Fill in the blanks with the correct term or phrase.
rational numbers $>$ any \qquad that can be written as \qquad

Vocabulary Link Rational is a word used in everyday English. Find the definition of rational in a dictionary. Then use the dictionary to find the antonym, or a word that means the opposite, of rational.
\qquad
\qquad
Lesson 3-2 (continued)

Details

Rational Numbers

pp. 128-129
Match each repeating decimal with its equivalent fraction.

$0 . \overline{3}$	$\frac{14}{33}$
$0 . \overline{125}$	$\frac{1}{3}$
$0 . \overline{42}$	$\frac{1}{33}$
$0 . \overline{03}$	$\frac{7}{9}$
$0 . \overline{7}$	$\frac{125}{999}$

Identify and Classify Rational Numbers
p. 130

Complete the diagram by labeling each oval with the correct set of numbers. Use the terms whole numbers and integers. Then include three examples of whole numbers, integers, and rational numbers.
Rational Numbers

Helping You Remember

Describe the relationship among whole numbers, integers, and rational numbers, in your own words. Give an example of a number that is not rational and explain why it is not.
\qquad
\qquad
\qquad DATE \qquad
\qquad

3-3 Multiplying Rational Numbers

What You'll Learn

Skim Lesson 3-3. Predict two things that you learn based on the headings and figures in the lesson.

1. \qquad
\qquad
2. \qquad
\qquad
\qquad

Active Vocabulary

Review Vocabulary Write the correct term next to each definition. (Lessons 2-2 and 3-2)
\qquad - a number less than zero
\qquad the counting numbers, their opposites, and zero
\qquad any number than can be written as a fraction
a number greater than zero

Vocabulary Link Multiplication is the same as repeated addition. In Lesson 2-2 you used a number line to add integers. Explain how you can use 'repeated addition' to demonstrate $4 \cdot \frac{1}{2}$ on a number line.
\qquad
\qquad

Lesson 3-3 (continued)

Main Idea

Multiply Fractions

pp. 134-135

Evaluate Expressions with Fractions

pp. 135-136

Details

Use the model to find $\frac{3}{5} \times \frac{4}{7}$. Explain your steps on the lines below.

\qquad
\qquad
\qquad

Fill in the blanks to find each product in simplest form.
Use $x=\frac{2}{3}, y=-\frac{7}{11}$, and $z=\frac{3}{5}$.

1. $x y$
\square
2. $\frac{5}{9} z$

3. $-2 y$

4. $x y z$
$\square \times \square \times \square=\square$

Helping You Remember

Explain in your own words how to find the product of two fractions with a model. What portion of the model is the product?
\qquad
\qquad
\qquad

3-4 Dividing Rational Numbers

What You'll Learn Scan Lesson 3-4. List two headings you would use to make an outline for this lesson.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary Review Vocabulary Fill in the blank with the correct term or phrase. (Lesson 2-2).

additive inverse an \qquad and its opposite

New Vocabulary Write the definition next to each term.
multiplicative inverses \qquad
reciprocals

Vocabulary Link Reciprocal is a word that is used in everyday English. Find the definition of reciprocal using a dictionary. Explain how the English definition can help you remember how reciprocal is used in mathematics.
\qquad
\qquad
Lesson 3-4 (continued)

Details

Divide Fractions
pp. 141-143

Place three division expressions in each section of the Venn diagram.

Simplify each expression.
Divide Algebraic Expressions p. 143

1. $\frac{x^{2}}{4} \quad \frac{x y}{2} \quad \square$
2. $\frac{b}{6 a b} \quad \frac{3 b}{a}$

3. $\frac{7}{g h} \quad \frac{5}{4 f h}$

4. $\frac{14 x}{x y} \quad \frac{1}{10 x y}$

5. $\frac{q}{12} \quad \frac{n^{2}}{2} \square$
6. $\frac{b}{2 d} \quad \frac{2}{9 c}$

Helping You Remember

In your own words, explain how you know whether the quotient of two fractions will be less than 1 , equal to 1 , or greater than 1 .
\qquad
\qquad
\qquad
\qquad

3-5 Adding and Subtracting Like Fractions

What You'll Learn
 Skim the examples for Lesson 3-5. Predict two things you think you will learn about adding and subtracting like fractions.

1. \qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad

Active Vocabulary Review Vocabulary Write the correct term next to each definition. (Lesson 2-1).
\qquad the distance a number is from zero on a number line
\qquad - a number less than zero
\qquad the counting numbers, their opposites, and zero
a number greater than zero

New Vocabulary Write the definition next to the term.
like fractions

Vocabulary Link Like is a word that is used in everyday English. Find the definition of like using a dictionary. Explain how the English definition can help you remember how like is used in mathematics.
\qquad
\qquad
Lesson 3-5 (continued)

Add Like Fractions
pp. 147-148

Subtract Like Fractions pp. 148-150

Complete the diagram.

What It Is	What It Is Not	
	Like Denominators	Non Examples

Fill in the blanks with each difference.

1. $3 \frac{3}{5}-2 \frac{2}{5}=\square$
2. $8 \frac{3}{7}-5 \frac{5}{7}=\square$
3. $\frac{1}{9}-1 \frac{8}{9}=\square$
4. $\frac{3}{10}-\frac{9}{10}=\square$

Helping You Remember
Sketch a model to show each sum or difference.
a. $\frac{3}{10}+\frac{6}{10}$
b. $\frac{6}{7}-\frac{3}{7}$
\qquad
\qquad

3-6 Adding and Subtracting Unlike Fractions

Skim the lesson. Write two things you already know about adding and subtracting unlike fractions.

1. \qquad
\qquad
2. \qquad

Active Vocabulary
 opposites

Review Vocabulary Write the definition next to the term.
(Lessons 2-2 and 3-5)
\qquad

New Vocabulary Label the diagram with the correct terms.
like fractions unlike fractions

Vocabulary Link Unlike can have non-mathematical meanings as well. Give an example of two things that are unlike each other. Then give an example of two things that are like each other.
unlike: \qquad
\qquad
like: \qquad
\qquad
\qquad

Lesson 3-6 (continued)

Main Idea

Add Unlike Fractions

pp. 153-154

Details

Shade each circle to show equivalent fractions for $\frac{1}{3}$ and $\frac{1}{2}$ using the LCD. Then write the addition sentence the model represents.

Subtract Unlike Fractions
pp. 154-155

Find a common denominator.	Write each fraction with the common denominator.	Subtract the numerators, write the difference over the common denominator.

Helping You Remember
Describe two methods that you can use to add $1 \frac{1}{3}$ and $3 \frac{3}{5}$. Then find the sum.

Write each step used to find $\frac{5}{6}-\frac{1}{4}$.
\qquad
\qquad
\qquad

CHAPTER
 3 Operations with Rational Numbers

The It Together

Complete each graphic organizer with a phrase to help you remember the process.

\qquad
\qquad
\qquad

Bum
 3 Operations with Rational Numbers

Before the Test

Review the ideas you listed in the table at the beginning of the chapter. Cross out any incorrect information in the first column. Then complete the table by filling in the third column.

K	W	L
What I know...	What I want to find out...	What I learned...

Math Online Visit glencoe.com to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 3.

Are You Ready for the Chapter Test?

Use this checklist to help you study.
\square I used my Foldable to complete the review of all or most lessons.I completed the Chapter 3 Study Guide and Review in the textbook.I took the Chapter 3 Practice Test in the textbook.I used the online resources for additional review options.I reviewed my homework assignments and made corrections to incorrect problems.I reviewed all vocabulary from the chapter and their definitions.

- Get a good nights rest before a test. Students that take the time to sleep usually do better than students who stay up late cramming.
\qquad
\qquad
\qquad

Expressions and Equations

Before You Read

Before you read the chapter, think about what you know about expressions and equations. List three things you already know about them in the first column. Then list three things you would like to learn about them in the second column.

K	W
What I know...	

Construct the Foldable as directed at the beginning of this chapter.

Note Taking Tips

- When you take notes, listen or read for main ideas. Then record those ideas for future reference.
- Write down questions that you have about what you are reading in the lesson. Then record the answer to each question as you study the lesson.
\qquad
\qquad
\qquad

antiv
 4 Expressions and Equations

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on simplifying algebraic expressions, one fact might be that a term without a variable is called a constant. After completing the chapter, you can use this table to review for your chapter test.

	Lesson	Fact
$4-1$	The Distributive Property	
$4-2$	Simplifying Algebraic Expressions	
$4-3$	Solving Equations by Adding or Subtracting	
$4-4$	Solving Equations by Multiplying or Dividing	
$4-5$	Solving Two-Step Equations	
$4-6$	Writing Equations	

\qquad
\qquad

4-1 The Distributive Property

What You'll Learn
 Skim Lesson 4-1. Predict two things that you expect to learn based on the headings and the Key Concept box.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

New Vocabulary Write the definition next to each term.
equivalent pressions

Distributive Property \qquad

Vocabulary Link Distribute is a word that is used in everyday English. Find the definition of distribute using a dictionary. Explain how the English definition can help you remember how distributive is used in mathematics.
\qquad
\qquad

Lesson 4-1 (continued)

Details

Numerical Expressions

 pp. 171-172Complete each expression using the Distributive Property.

1. $5(3+4)=5 \cdot 3+5 \cdot$ \square
2. $6(4-1)=6 \cdot \square-6 \cdot 1$
3. $2(8-7)=2 \cdot \square-2 \cdot \square$
4. $3(4+9)=\square \cdot 4+\square \cdot 9$
5. $(2+5) 8=2 \cdot 8+5 \cdot$ \square
6. $(6-3) 7=\square \cdot 7-\square \cdot 7$

Model the expression 3($x+2$). Then model 3 groups of x and 3 groups of 2 . Write two equivalent expressions below your model.

Algebraic Expressions pp. 172-173
\qquad
\qquad
\qquad

4-2 Simplifying Algebraic Expressions

What You'll Learn

Active Vocabulary

coefficient
constant
like terms
simplest form
simplifying the expression

Scan Lesson 4-2. List two headings you would use to make an outline of this lesson.

1. \qquad
\qquad
2. \qquad
\qquad

New Vocabulary Match the term with its definition by drawing a line to connect the two.
a term without a variable
each part of an algebraic expression
terms that contain the same variables
the numerical part of a term that contains a variable
an algebraic expression that has no like terms and no parentheses
\qquad
\qquad

Parts of Algebraic Expressions
pp. 178-179

Details

Identify the parts of the algebraic expression below.

$$
4 x+9 y+7 y-2 x+5
$$

How many terms are there in the expression? \qquad

How many sets of like terms are there? \qquad

Circle one pair of like terms. \qquad

List another pair of like terms. \qquad

What is the constant term? \qquad

Simplify Algebraic Expressions
pp. 179-180

Simplify each expression by combing like terms.

1. $4 x+3 x=\square x$
2. $10+4 y+6 y=10+\square y$
3. $15 a+6 b-3 b+2 a=\square a+\square b$
4. $3 t+1+8 t-6=\square t-\square$
5. $2 m-4 k+3-8 m+2=\square m-\square k+\square$

Helping You Remember

Constant is a word used in everyday English as well as in mathematics. Write the definition of constant. Explain how the English definition can help you remember how constant is used in mathematics.
\qquad

4-3 Solving Equations by Adding or Subtracting

What You'll Learn
 Skim the Examples for Lesson 4-3. Write two things you already know about solving equations by adding or subtracting.

1. \qquad
\qquad
2. \qquad

Active Vocabulary

New Vocabulary Write the correct term next to each definition.
\qquad
a mathematical sentence that contains an equals sign (=)
\qquad -
\qquad a value for the variable that makes an equation true

Vocabulary Link Inverse operations can have non-mathematical meanings as well. For each activity, name the inverse operation that would undo the activity.
turning on a light switch \qquad
driving 5 miles north \qquad
tying a shoelace \qquad
opening a window
\qquad
\qquad

Details

Solve Equations by Adding
pp. 184-185

Fill in the blanks to solve each equation.

1. $x-2=7$
2. $y-4=-3$

3. $b-1 \frac{2}{3}=\frac{1}{6}$

4. $c-6.2=-9.7$

Solve Equations by Subtracting
pp. 185-186

Model the following situation by drawing algebra tiles. Then solve.

Grace and Carrie have 14 necklaces combined. Carrie has 9 necklaces. How many does Grace have?

Helping You Remember

How is adding the same number of blocks to each side of a balance scale like the Addition Property of Equality?

\qquad

4-4 Solving Equations by Multiplying or Dividing

What You'll Learn

Skim the lesson. Write two things you already know about solving equations by multiplying and dividing.

1. \qquad
\qquad
2. \qquad
\qquad
\qquad

Review Vocabulary Label the diagram with the correct terms. (Lesson 4-2)
constant variable

\qquad
\qquad
Lesson 4-4 (continued)

Main Idea

Details

Solve Equations by Dividing
pp. 191-192

Solve Equations by Multiplying

p. 193

Fill in the blanks to solve each equation.

1. $3 m=18$

$m=\square$
2. $0.6 s=-42$

$s=\square$
3. $-5 n=35$

4. $-8 t=-48$

Write an equation to represent the model below. Then solve.

Helping You Remember

Write two examples of equations that can be solved using each of the four properties of equations below.

Addition Property of Equality: \qquad
Subtraction Property of Equality: \qquad

Multiplication Property of Equality: \qquad
Division Property of Equality: \qquad
\qquad
\qquad

4-5 Solving Two-Step Equations

What You'll Learn Scan the text in Lesson 4-5. Write two facts you learned about solving two-step equations.

1. \qquad
\qquad
2. \qquad

Active Vocabulary

Review Vocabulary Identify the following inverse operations. Draw a line from each operation to its inverse. (Lessons 4-3 and 4-4).

addition	addition
subtraction	subtraction
multiplication	multiplication
division	division

New Vocabulary Define the following terms from this lesson.
two-step equation

Vocabulary Link Two-step equations can be illustrated by real-world examples. Consider the two-step process of putting on socks and putting on shoes. Explain how to "undo" the process. Write an example of another real-world process that takes two steps to "undo".
\qquad
\qquad
Lesson 4-5 (continued)

Main Idea

Details

Solve Two-Step Equations
pp. 199-201

Justify each step used in solving the equation.

$$
\begin{aligned}
6 x-14 & =16 \\
6 x-14+14 & =16+14 \\
6 x & =30 \\
\frac{6 x}{6} & =\frac{30}{6} \\
x & =5
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad

Solve the equation given the justification for each step.

$\frac{y}{9}+4$	$=-2$
\square	$=\square$
$=\square$	Subtraction Property of Equality
	$=\square$
\square	Simplify.
y	$=\square$
Multiplication Property of Equality	
\square	Simplify.

Helping You Remember

List the steps you would use in the order you would use them to "undo" each equation.
$2 x+17=35$ \qquad
\qquad
$\frac{x}{6}-1=18$ \qquad
$\frac{x+3}{4}=5$
\qquad
\qquad
\qquad

4-6 Writing Equations

What You'll Learn
 Scan the text under the Now heading. List two things you will learn about in the lesson.

1. \qquad
\qquad
2. \qquad

Review Vocabulary Complete the table below listing words that indicate each operation. Use the words below the table. (Lesson 1-1)

Addition	Subtraction	Multiplication	Division

decreased by	difference
increased by	less
less than	more than
product	quotient
sum	times
total	twice

\qquad
\qquad

Lesson 4-6 (continued)

Main Idea

Details

Write Two-Step Equations
pp. 205-206

Answer each question using the information below.
Miguel and Carla spent $\$ 64$ at the bookstore combined. Carla spent $\$ 15$ less than Miguel.

1. Who spent less money at the bookstore? \qquad
2. How much less? \qquad
3. Write an expression to represent the amount of money Miguel spent, in terms of m. \qquad
4. Write an expression to represent the amount of money Carla spent, in terms of m. \qquad
5. Write an equation to represent the amount Miguel and Carla spent combined, in terms of m. \qquad
6. How much did each person spend at the bookstore?
\qquad

Two-Step Verbal Problems

p. 206

Write a verbal sentence to represent the equation below. Then solve.

$$
\frac{x}{12}+4=16
$$

\qquad
\qquad

Helping You Remember

Write a word problem that can be solved using a two-step equation. Solve the equation.
\qquad
\qquad
\qquad DATE \qquad
\qquad

Expressions and Equations

Tie It Together

Complete the graphic organizer to review writing and solving equations.
Georgia and her brother collected cans for a recycling program. Georgia collected three more than twice as many cans as her brother. They collected a total of 213 cans. How many cans did each person collect?

| Steps |
| :--- | :--- | :--- |
| Write the equation by translating
 from words to symbols, to the
 equation. |
| Combine ___ terms. |

\qquad
\qquad

CMAPTER
 Expressions and Equations

Before the Test

Review the ideas you listed in the table at the beginning of the chapter. Cross out any incorrect information in the first column. Then complete the table by filling in the third column.

K	W	L
What I know...	What I want to find out...	What I learned...

Math Online Visit glencoe.com to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 4.

Are You Ready for the Chapter Test?

Use this checklist to help you study.I used my Foldable to complete the review of all or most lessons.I completed the Chapter 4 Study Guide and Review in the textbook.I took the Chapter 4 Practice Test in the textbook.I used the online resources for additional review options.I reviewed my homework assignments and made corrections to incorrect problems.I reviewed all vocabulary from the chapter and their definitions.

Study Tips

- When you are preparing to read new material, scan the text first, briefly looking over headings, highlighted text, pictures, and call out boxes. Think of questions you might answer as you read.
\qquad
\qquad

CHAPTER
 5
 Multi-Step Equations and Inequalities

Before You Read

Before you read the chapter, think about what you know about solving multi-step equations and inequalities. List three things you already know about them in the first column. Then list three things you would like to learn about them in the second column.

K	W
What I know...	

Construct the Foldable as directed at the beginning of this chapter.

\int Note Taking Tips

- A visual (graph, diagram, picture, chart) can present information in a concise, easy-to-study format.
Clearly label your visuals and write captions when needed.
- When you take notes, you may wish to use a highlighting marker to emphasize important concepts.
\qquad
\qquad

CHAPTER
 5 Multi-Step Equations and Inequalities

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on inequalities, one fact might be that an inequality is a mathematical sentence that compares quantities that are not equal. After completing the chapter, you can use this table to review for your chapter test.

Lesson	Fact	
$5-1$	Perimeter and Area	
$5-2$	Solving Equations with Variables on Each Side	
$5-3$	Inequalities	
$5-4$	Solving Inequalities	
$5-5$	Solving Multi-Step Equations and Inequalities	

\qquad
\qquad
\qquad

5-1 Perimeter and Area

What You'll Learn Scan the text in Lesson 5-1. Write two facts you learned about perimeter and area as you scanned the text.

1. \qquad
\qquad
2. \qquad

Active Vocabulary
 Review Vocabulary Fill in each blank with the correct term or

 phrase. (Lesson 1-2)variable a \qquad or \qquad that represents an
\qquad value
algebraic expression
perimeter
formula

New Vocabulary Match the term with its definition by drawing a line to connect the two.
area distance around a geometric figure
equation that shows a relationship among certain quantities measure of the surface enclosed by a figure
\qquad
\qquad
Lesson 5-1 (continued)

Details

Perimeter

pp. 221-222

Area
pp. 222-223

Complete the diagram by labeling each figure so that its perimeter is equal to 24 millimeters.

Model a triangle with height of 12 inches and base length of 10 inches. Then find its area.

Helping You Remember

Compare and contrast the units used for perimeter and area. Explain why area uses square units and perimeter does not.
\qquad
\qquad
\qquad

5-2 Solving Equations with Variables on Each Side

What You'll Learn Scan the text under the Now heading. List two things you will learn about in the lesson.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary \int Review Vocabulary Fill in each blank with the correct term or phrase. (Lessons 4-2 and 4-3)
like terms \quad terms that contain the same \qquad
simplest form \quad an algebraic expression that has no \qquad terms and no
\qquad
simplifying the expression $-\quad$ You can use the \qquad to combine like terms.
allows you to \qquad or \qquad the same quantity

Additive or Subtraction Properties of Equality
from each side of an \qquad to keep the two sides equal

Vocabulary Link Equality is a word that is used in everyday English. Find the definition of equality by using a dictionary. List an example of something in your life that has equality.
\qquad
\qquad

Lesson 5-2 (continued)

Details

Equations with Variables on Each Side pp. 229-230

Model the equation $3 x-2=5 x-4$ using algebra tiles. Then solve.

Fill in the blanks to solve each equation.

1. $2 x+5=3 x$
$\square=x$
2. $7 b+5=-3 b-10$

$$
\begin{aligned}
10 b & =\square \\
b & =\square
\end{aligned}
$$

3. $21-16 t=4 t-14$
4. $0.8 y+1.6=0.6 y-1$

$$
\begin{aligned}
0.2 y & =\square \\
y & =\square
\end{aligned}
$$

5. $9 a-3=15$

$a=\square$
6. $18 x+6=9-3 x$
$\square x=3$
$x=$

Helping You Remember

Write an equation with a variable on both sides, along with all the steps needed to solve the equation. Trade with a partner. Then each of you should explain verbally why each step in solving the equation was carried out.
\qquad
\qquad
\qquad

5-3 Inequalities

What You'll Learn
 Skim the lesson. Write two things you already know about inequalities.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary
 Review Vocabulary Write the term next to each definition.

(Lesson 2-1)
\qquad
\longrightarrow the counting numbers, their opposites, and zero
\qquad a number greater than zero

New Vocabulary Write the definition next to the term.
inequality \qquad
\qquad

Vocabulary Link Inequality is a word that is used in everyday English. Find the definition of inequality using a dictionary. Explain how the English definition can help you remember how inequality is used in mathematics.
\qquad
\qquad
Lesson 5-3 (continued)

Main Idea

Write Inequalities

pp. 234-235

Graph Inequalities

p. 236

Details

Fill in the organizer with words that describe the symbols.

Write an inequality for each model.

1. \qquad

2. \qquad

Helping You Remember

Write a paragraph explaining how to graph an inequality to a classmate that was absent from class the day it was taught. Include an explanation of the symbols used, as well as the use of open and closed dots or points.
\qquad
\qquad
\qquad
\qquad
\qquad

5-4 Solving Inequalities

What You'll Learn

Scan Lesson 5-4. List two headings you would use to make an outline of this lesson.

1. \qquad
\qquad
2. \qquad
\qquad

Review Vocabulary Use the diagram to fill in each blank with the correct term. (Lesson 5-1)

formula

The \qquad for the triangle is $126 \mathrm{~cm}^{2}$ and the \qquad perimeter for the triangle is 54 cm .
area $\quad A=\frac{1}{2} b h$ is the __ for the area of a triangle.

Vocabulary Link Addition and Subtraction Properties allow you to add or subtract the same quantities to each side of an equation or inequality with the sentence remaining true.
List an example of something in everyday life that you have to do "the same on both sides" to keep it equal or the same.
\qquad
\qquad
Lesson 5-4 (continued)

Details

Solve Inequalities by Adding or Subtracting pp. 241-242

Solve Inequalities by Multiplying or Dividing by a Positive Number pp. 242-243

Multiply or Divide an Inequality by a Negative Number
pp. 243-244

Draw an arrow and match the correct property needed to solve the inequality. Then solve each inequality.

Model the solution of the inequality on the number line.

\qquad
\qquad

5-5 Solving Multi-Step Equations and Inequalities

What You'll Learn
 Skim the Examples for Lesson 5-5. Predict two things you think you will learn about solving multi-step equations and inequalities.

1. \qquad
\qquad
2. \qquad

Active Vocabulary

Review Vocabulary Fill in each blank with the correct term or phrase. (Lesson 4-1)

Distributive Property
To \qquad a sum or difference by a number, each term inside the \qquad by the number outside of the \qquad .

New Vocabulary Write the definition next to each term.
\qquad
\square
identity
\qquad
\qquad
\qquad
Lesson 5-5 (continued)

Details

Solve Equations and Inequalities with Grouping Symbols
pp. 248-249

No Solution or All Numbers as Solutions p. 250

Complete the organizer by following the steps given to solve the inequality.

Steps in Solving Multi- $\quad 2(x-3) \quad 4(x+3)-6 x$ Step Equations and Inequalities

Step 1: Use the
Distributive
Property to remove parentheses

Step 2: Combine like terms on same side

Step 3: Use the Addition or Subtraction Properties

Step 3:

Step 4: Use the Multiplication or Division Properties

Write an equation that has a solution that is an identity. Then write an equation with a null or empty set.
identity:
null or empty set:

Helping You Remember

An identity is an equation that is true for every value of the variable. A null or empty set occurs when an equation has no solution. Write and solve an example of each type of equation.
\qquad

antic
 The It Together

5 Multi-Step Equations and Inequalities

Complete the graphic organizer to compare and contrast equations and inequalities.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

CHAPTER
 5 Multi-Step Equations and Inequalities

Before the Test

Review the ideas you listed in the table at the beginning of the chapter. Cross out any incorrect information in the first column. Then complete the table by filling in the third column.

K	W	L
What I know...	What I want to find out...	What I learned...

Math Online Visit glencoe.com to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 5.

Are You Ready for the Chapter Test?

Use this checklist to help you study.
\square I used my Foldable to complete the review of all or most lessons.I completed the Chapter 5 Study Guide and Review in the textbook.I took the Chapter 5 Practice Test in the textbook.I used the online resources for additional review options.I reviewed my homework assignments and made corrections to incorrect problems.I reviewed all vocabulary from the chapter and their definitions.

Study Tips

- On test day, look over the entire test to get an idea of its length and scope so that you can pace yourself. Answer what you know first, then go back and complete the problems you skipped. When finished, check for errors. Don't change an answer unless you are certain you are correct.
\qquad
\qquad
\qquad

CHAPTER

 Ratio, Proportion, and Similar Figures

Before You Read

Before you read the chapter, respond to these statements.

1. Write an \mathbf{A} if you agree with the statement.
2. Write a \mathbf{D} if you disagree with the statement.

Before You Read	Ratio, Proportion, and Similar Figures
	- A ratio is a comparison of quantities by addition.
	- Unit rates are useful when comparing prices.
	- Ratios are used to change a measurement from one unit to another.
	- When two figures are proportional, they will have the same side and angle measures.
	- A scale drawing is sometimes proportional to the actual object.

Construct the Foldable as directed at the beginning of this chapter.

Note Taking Tips

- To help you organize data, create study cards when taking notes, recording and defining vocabulary words, and explaining concepts.
- When taking notes, use a table to make comparisons about the new material. Determine what will be compared, decide what standards will be used, and then use what is known to find similarities and differences.
\qquad
\qquad

chante
 6
 Ratio, Proportion, and Similar Figures

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on solving proportions, one fact might be that the cross products of any proportion are equal. After completing the chapter, you can use this table to review for your chapter test.

Lesson	Fact
6-1 Ratios	
6-2 Unit Rates	
6-3 Converting Rates and Measurements	
6-4 Proportional and Nonproportional Relationships	
6-5 Solving Proportions	
6-6 Scale Drawings and Models	
6-7 Similar Figures	
6-8 Dilations	
6-9 Indirect Measurement	

\qquad
\qquad
\qquad

6-1 Ratios

What You'll Learn \quad Scan Lesson 6-1. List two headings you would use to make an outline of this lesson.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary
 Review Vocabulary Define simplify in your own words.

(Lesson 1-3)
simplify

New Vocabulary Fill in each blank with the correct term or phrase.
a \qquad of two \qquad by division that is usually written in \qquad form

Vocabulary Link Ratio is a word that is used in everyday English. Find the definition of ratio using a dictionary. List two examples of real-life ratios.
\qquad
\qquad
\qquad

Lesson 6-1 (continued)

Main Idea

Write Ratios as Fractions in Simplest Form

pp. 265-266

Simplify Ratios

Involving Measurements
p. 266

Details

Cross out the ratio that is not equivalent to the following ratio.

16 girls out of 24 students

$\frac{2}{3}$	$\frac{4}{3}$
$\frac{8}{12}$	$\frac{16}{24}$

Write each ratio in simplest form.

1. 15 cans out of 9 cases $=\square$ 2. 4 rings to 7 bracelets $=\square$
2. 2 c to $32 \mathrm{oz}=\square \quad$ 4. 16 in. to $4 \mathrm{ft}=\square$
3. 11 dramas out of $17 \mathrm{DVDs}=\square$
4. 6 hours 14 days $=\square$

Helping You Remember

Ratios can represent part to part, part to whole, or whole to part relationships. Write a problem that can be expressed with these three ratios. Include the ratios in your description.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

6-2 Unit Rates

What You'll Learn \quad Skim the Examples for Lesson 6-2. Predict two things you think you will learn about unit rates.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary Review Vocabulary Fill in each blank with the correct term or phrase. (Lesson 5-1)
area \quad The \qquad of the \qquad enclosed by a figure.

New Vocabulary Write the definition next to each term.
rate \qquad

unit rate

Vocabulary Link Rate is a word that is used in everyday English. Find the definition of rate using a dictionary. Write two examples of rates used in everyday life.
\qquad
\qquad

Main Idea

Find Unit Rates

p. 270

Compare Unit Rates

 p. 271
Details

Complete the Venn diagram by writing the phrases in the correct position. Use the phrases below the diagram.

usually a fraction
4 miles to 1,000 feet
has 1 in numerator
5 inches per second
same units
different units
uses "out of"
uses "per"

Fill in each blank with $<,>$, or $=$ to compare the unit rates.

1. 10 notebooks for $\$ 12$ \square 15 notebooks for $\$ 18.75$
2. 12 cans for $\$ 4.20$ \square 20 cans for $\$ 6$
3. 171 miles with 9 gallons $\square 300$ miles with 15 gallons
4. $4,000 \mathrm{ft}$ in 16 seconds \square $7,500 \mathrm{ft}$ in 30 seconds
5. 77 pages in 1 hour $\square 108$ pages in 120 minutes

Helping You Remember

The word rate is part of the term unit rate.
Explain how a rate can be written as a unit rate.
\qquad
\qquad
\qquad
\qquad

6-3 Converting Rates and Measurements

What You'll Learn

Skim Lesson 6-3. Predict two things that you expect to learn based on the headings.

1. \qquad
\qquad
2. \qquad

Active Vocabulary

Review Vocabulary Write the correct term next to each definition. (Lesson 4-3)
\longrightarrow a mathematical sentence that contains an equals sign, (=), showing that two expressions are equal
\qquad operations that "undo" each other

New Vocabulary Fill in each blank with the correct term or phrase.
dimensional analysis
the process of including \qquad of \qquad as factors when you compute

Vocabulary Link Analysis is a word that is used in everyday English. Find the definition of analysis using a dictionary. Explain how the English definition can help you remember how analysis is used in mathematics.
\qquad
\qquad
\qquad

Lesson 6-3 (continued)

Main Idea

Dimensional Analysis

pp. 275-276

Convert Between

 Systemspp. 276-277

Details

Fill in each conversion factor and solve each problem.

1. Convert 8 cups of juice per 1 gallon of water to cups of juice per quart of water.
$\frac{8 \text { cups }}{1 \text { gallon }} \cdot \frac{1 \text { gallon }}{\square \text { quarts }}=\square$
2. Convert 110 millimeters per meter to millimeters per centimeter.
$\frac{110 \mathrm{~mm}}{1 \mathrm{~m}} \cdot \frac{1 \mathrm{~m}}{\square}=\square$
3. Convert 80 ounces per minute to ounces per second.
\square
Fill in the diagram to complete the steps to convert between measurement systems. Use the terms simplify, ratio, divide, and conversion factor.

Step $1 \quad$ Step $2 \quad$ Step 3

Helping You Remember

Describe how to convert 18 pounds to kilograms. In the conversation factor, which quantity is in the numerator and which quantity is in the denominator?
\qquad

6-4 Proportional and Nonproportional Relationships

What You'll Learn
Scan the text under the Now heading. List two things you will learn about in the lesson.

1. \qquad
\qquad
\qquad
2. \qquad

Active Vocabulary

Review Vocabulary Match the term with the correct definition by drawing a line to connect the two. (Lessons 6-1 and 6-2)
ratio a simplified rate with a denominator of 1
unit rate a ratio with two quantities that have different kinds of units

rate comparison of two quantities by division

New Vocabulary Write the correct term next to each definition.
the relationship between two quantities where the ratio or rate is not constant
a constant ratio or unit rate of a proportion
\qquad
\qquad

Main Idea

Identify Proportions

pp. 281-282

Describe Proportional Relationships p. 282

Details

Fill in the organizer about proportions.

What are proportions?	How can proportions be written with numbers?
Examples	Proportions

Fill in the blanks so that each table represents a proportional relationship.
1.

cups of juice	2	4	6	8
cups of water	6			

2.

oranges	1		3	
apples	4	8		16

3.

cats	3	9		
dogs	5		25	35

\qquad
\qquad

6-5 Solving Proportions

What You'll Learn Scan the text in Lesson 6-5. Write two facts you learnedabout solving proportions.

1. \qquad
\qquad
2. \qquad
\qquad
\qquad
Active Vocabulary Review Vocabulary Write the definition next to each term. (Lesson 4-3)
equation

\qquad
\qquad
solution

New Vocabulary Fill in each blank with the correct word or phrase.
proportion an \qquad that states that two \qquad or
rates are \qquad
cross products If $\frac{a}{b}=\frac{c}{d}$, then \qquad $=$ \qquad .
\qquad
\qquad
Lesson 6-5 (continued)

Main Idea

Details

Proportions

pp. 287-288

Use Proportions to Solve Problems

pp. 288-289

Complete the organizer for cross products.

Fill in each blank with a ratio that forms a proportion.

1. $\frac{4}{12}=\square$
2. $\frac{10}{20}=\square$
3. $\frac{3.0}{1.8}=\square$
4. $\frac{7}{28}=\square$

Helping You Remember Proportion is a common word in the English

 language. Use a dictionary to look up its definition. Explain how the definition from the dictionary can help you remember the mathematical definition of proportion.\qquad
\qquad
\qquad
\qquad

6-6 Scale Drawings and Models

What You'll Learn \quad Skim the lesson. Write two things you already know about scale drawings and models.

1. \qquad
\qquad
\qquad
2. \qquad
\qquad

New Vocabulary Match the term with the correct definition by drawing a line to connect the two.
a ratio of a given length on a scale model or drawing to its corresponding length on the actual object
scale model a diagram used to represent an object that is too large or small to be drawn at actual size
scale the relationship between the measurements on a drawing or model and the measurements of the real object
scale drawing
a model used to represent an object that is too large or small to be built at actual size

Vocabulary Link Scale is a word that is used in everyday English. Find the definition of scale using a dictionary. Explain how the English definition can help you remember how scale is used in mathematics.
\qquad
\qquad

Main Idea

Use Scale Drawings and Models

pp. 294-295

Fill in the table using the information provided.
The actual measurements of a 5-room apartment are in the table below. Use the scale of $\frac{1}{2} \mathrm{in} .=4 \mathrm{ft}$ to find the missing lengths of the drawing.

Room	Living room	Kitchen	Bathroom	Bedroom \#1	Bedroom \#2
Actual length (ft)	14	10	6	8	12
Drawing length (in.)					

Construct Scale Drawings
p. 296

Construct a scale drawing of the floor plan of the 5 -room apartment above using the values you calculated for the lengths of each room.

Helping You Remember

Explain how a scale is different than a scale factor.
\square
\qquad
\qquad
\qquad

6-7 Similar Figures

What You'll Learn

2.

Scan Lesson 6-7. List two headings you would use to make an outline of this lesson.

1. \qquad
\qquad
\qquad
\qquad

Active Vocabulary

Review Vocabulary Write the definition of proportion in your own words. (Lesson 6-4)
proportion \qquad

New Vocabulary Quadrilateral DEFG ~ quadrilateral HIJK. Label the diagram with the correct terms. Use each term once.

$D E F G$ and HIJK are \qquad .

Vocabulary Link Similar and congruent are two words used in everyday English. Find the definitions of similar and congruent using a dictionary.
\qquad
\qquad
\qquad
\qquad
\qquad

Main Idea

Details

Corresponding Parts of Similar Figures

pp. 301-302

List the congruent angles.

List the corresponding sides.

Fill in each blank to answer the questions about the figures below.
$A B C D \sim E F G H$

1. List all the corresponding sides.
2. List all the congruent angles.
3. What is the scale factor? \qquad
4. What is the value of x ? \qquad

Helping You Remember
 Make a list of what you learned about similar

figures.
\qquad
\qquad
\qquad

6-8
 Dilations

What You'll Learn
 Skim the Examples for Lesson 6-8. Predict two things you think you will learn about dilations.

1. \qquad
\qquad
2. \qquad

Active Vocabulary

x-coordinate

Review Vocabulary Match the term with its definition by drawing a line to connect the two. (Lessons 1-4 and 2-7)
a pair of numbers used to locate any point on a coordinate plane
ordered pair second number in an ordered pair coordinate plane movement of a geometric figure
first number in an ordered pair
formed by the intersection of two number lines that meet at right angles at their zero points

New Vocabulary Fill in each blank with the correct term or phrase.
dilation $\quad \mathrm{a}$ \qquad that enlarges or reduces a figure by a
\qquad factor
\qquad
\qquad
\qquad
Lesson 6-8 (continued)

Details

Dilations

pp. 307-309
Compare and contrast the three types of transformations by completing the diagram below, using the terms under the diagram.

Helping You Remember

Dilation is a word used in everyday English as well as in mathematics. Write the definition of dilation. Explain how the English definition can help you remember how dilation is used in mathematics.
\qquad
\qquad
\qquad

6-9 Indirect Measurement

What You'll Learn

Skim the Examples for Lesson 6-9. Predict two things that you will learn about indirect measurement.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

Review Vocabulary Write the correct term next to each definition. (Lessons 6-5 and 6-7)
\qquad - a statement of equality of two or more ratios
\qquad - If $\frac{a}{b}=\frac{c}{d}$, then $a d=c b$.
\qquad figures that have the same shape but not necessarily the same size

New Vocabulary Fill in each blank with the correct term or phrase.
indirect measurement \quad allows you to use the properties of \qquad to find measurements that are difficult to measure \qquad

Vocabulary Link Indirect is a word that is used in everyday English. Find the definition of indirect using a dictionary. Explain how the English definition can help you remember how indirect is used in mathematics.
\qquad
\qquad

Main Idea

Indirect Measurement

p. 313

Details

Model the following situation with a labeled drawing. Then solve.

A flagpole casts a shadow that is 32 feet long. At the same time, a statue that is 7 feet tall casts a shadow that is $17 \frac{1}{2}$ feet long. How tall is the flagpole?

Fill in the blank of the missing measure.

The triangles below are similar. What is the distance from Springdale to Porter?

Helping You Remember

Write a paragraph explaining how to find a missing measurement using similar triangles to a classmate that was absent from class the day it was taught. Include an example.
\qquad
\qquad
\qquad

CHAPTER
 6
 Ratio, Proportion, and Similar Figures

The It Together

Describe how ratios are used in each application.

\qquad
\qquad

curvite
 6 Ratio, Proportion, and Similar Figures

Before the Test

Now that you have read and worked through the chapter, think about what you have learned and complete the table below. Compare your previous answers with these.

1. Write an \mathbf{A} if you agree with the statement.
2. Write a \mathbf{D} if you disagree with the statement.

Ratio, Proportion, and Similar Figures	After You Read		
- A ratio is a comparison of quantities by			
addition.		\quad	- Unit rates are useful when comparing
:---			
prices.	\quad (Ratios are used to change a	measurement from one unit to another.	
:---			
- When two figures are proportional,			
they will have the same side and angle measures.			
- A scale drawing is sometimes			
proportional to the actual object.			

Math Online Visit glencoe.com to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 6.

Are You Ready for the Chapter Test?

Use this checklist to help you study.
\square I used my Foldable to complete the review of all or most lessons.
\square I completed the Chapter 6 Study Guide and Review in the textbook.
\square I took the Chapter 6 Practice Test in the textbook.
\square I used the online resources for additional review options.
\square I reviewed my homework assignments and made corrections to incorrect problems.
\square I reviewed all vocabulary from the chapter and their definitions.

- You will do better on a test if you are relaxed. If you feel anxious, try some deep breathing exercises. Don't worry about how quickly others are finishing. Do your best and use all the time that is available to you.
\qquad
\qquad
\qquad

Percent

Before You Read

Before you read the chapter, respond to these statements.

1. Write an \mathbf{A} if you agree with the statement.
2. Write a \mathbf{D} if you disagree with the statement.

Before You Read	Percent
	• A percent is a comparison of a number and 100.
	-To write a decimal as a percent, divide by 100.$\|$- Percents can be written in fraction, decimal, or percent form.
	- A percent proportion is solved with cross products.
	- The percent equation can only be used with percents in their fraction form.

Construct the Foldable as directed at the beginning of this chapter.

Note Taking Tips

- When taking notes, write clean and concise explanations.

Someone who is unfamiliar with the math concepts should be able to read your explanations and learn from them.

- If your instructor points out definitions or procedures from your text, write a reference page in your notes.
You can then write these referenced items in their proper place in your notes after class.
\qquad
\qquad
\qquad

CHAPTER
 7 Percent
 Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on simple and compound interest, one fact might be that the formula used to solve simple interest problems is $I=p r t$. After completing the chapter, you can use this table to review for your chapter test.

Lesson		
$7-1$	Fractions and Percents	
$7-2$	Fractions, Decimals, and Percents	
$7-3$	Using the Percent Proportion	
$7-4$	Find Percent of a Number Mentally	
$7-5$	Using Percent Equations	
$7-6$	Percent of Change	
$7-7$	Simple and Compound Interest	
7		

\qquad
\qquad

7-1 Fractions and Percents

What You'll Learn \quad Scan Lesson 7-1. List two headings you would use to make an outline of this lesson.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary
 Review Vocabulary Write the correct term next to each

 definition. (Lessons 6-1 and 6-4)\qquad a comparison of two quantities by division that is often written in fraction form
\qquad describes the relationship between two quantities where the ratio or rate is not constant
\qquad the k in the equation $y=k z$
a relationship where two quantities have a constant ratio or rate

New Vocabulary Write the definition next to the term.
percent

Vocabulary Link Percent is a word that is used in everyday English. Find the definition of percent using a dictionary. List two examples of everyday uses of percents.
\qquad
\qquad

Lesson 7-1 (continued)

Main Idea

Details

Percents as Fractions pp. 331-332

Fill in the fraction that completes the circle. Then define the relationship between the four parts.

The relationship:
Fill in each blank of the proportion to find the percent following the given steps.

What percent is 16 out of 24 ?

$$
\square=\square \quad \text { Multiply. }
$$

$$
\square=n \quad \text { Simplify }
$$

$$
\text { So, } \frac{16}{24}=\square \text { or } \square
$$

Helping You Remember

Write and solve two questions where you would use proportions and percents to solve.
\qquad
\qquad
\qquad

7-2 Fractions, Decimals, and Percents

What You'll Learn Skim the lesson. Write two things you already know about fractions, decimals, and percents.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

Review Vocabulary Fill in each blank with the correct term or phrase. (Lessons 6-1, 6-5, and 7-1)

ratio

a \qquad of two quantities by \qquad that is usually written in \qquad form
percent
a \qquad that compares a number to \qquad proportion an \qquad that states that two \qquad or rates are \qquad
cross products If $\frac{a}{b}=\frac{c}{d}$, then \qquad $=$ \qquad

Vocabulary Link The historical form of percent was per cent. Use a dictionary to look up the words per and cent. Relate these two meanings to the current definition of percent.
\qquad
\qquad
Lesson 7-2 (continued)

Percents and Decimals
pp. 337-339

Compare Fractions, Decimals, and Percents p. 339

Complete the diagram by filling out each box with a description and example of each process described.

At a local school, $\mathbf{2 2 \%}$ of students walk to school, $\mathbf{0 . 3 5}$ take the bus, and three eighths are driven in a car. The rest of the students ride their bikes. Which of these groups are the largest? describing your experiences as a percent.
\qquad
\qquad
\qquad

7-3 Using the Percent Proportion

What You'll Learn

Skim the Examples in Lesson 7-3. Predict two things that you think you will learn about using percent proportions.

1. \qquad
\qquad
2. \qquad

Active Vocabulary

Review Vocabulary Match the term with its definition by drawing a line connecting the two. (Lessons 4-3, 6-1, and 6-5)
equation a ratio that compares a number to 100 cross products
proportion
percent If $\frac{a}{b}=\frac{c}{d}$, then $a d=c b$.

New Vocabulary Write the definition next to the term.
percent proportion
a mathematical sentence that contains an equals sign, (=), showing that two expressions are equal an equation that states that two ratios or rates are equal
\qquad

Vocabulary Link Percent and proportion are words that are used in everyday English. Find the definition of percent and proportion using a dictionary. How can their individual definitions help you remember what a percent proportion is?
\qquad
\qquad
\qquad
\qquad
\qquad
Lesson 7-3 (continued)

Details

The Percent Proportion pp. 345-347

Complete the model for the percent proportion.

Complete the organizer. Write the types of percent problems. Then write a word problem to show an example for each.

Helping You Remember

Fill in each blank to identify the whole, the part, and the percent in the following percent proportion.

\qquad
\qquad

7-4 Find Percent of a Number Mentally

What You'll Learn
 Skim Lesson 7-4. Predict two things you expect to learn based on the headings and the Key Concept box.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

Review Vocabulary Write the correct term next to each definition. (Lessons 6-2, 6-5, 7-1, and 7-2)
a ratio that compares a number to 100
a ratio that compares part of a quantity to the whole quantity
a ratio of two quantities that have different kinds of units
an equation that states two ratios or rates are equal

Vocabulary Link Mental and math are both words used in everyday English. Look up mental and math in the dictionary. Explain how the two words fit together to be the mental math that is used in everyday mathematics.
\qquad
\qquad
\qquad

Find Percent of a Number Mentally pp. 351-352

Estimates with Percents

 pp. 352-353Complete the organizer with two ways that you can mentally find $\mathbf{4 0 \%}$ of $\$ 700$.

Fill in the table with the mental strategy of how you found the estimate. Use a different strategy each time.

Estimate the Answer	Describe your Strategy
150% of 98	
76% of 160	
$\frac{1}{2} \%$ of 280	

Helping You Remember

There are situations when an exact answer is needed. There are other times when an estimate is good enough. Give examples of when an exact answer and an estimate are appropriate. Explain your reasoning.
\qquad
\qquad
\qquad
\qquad
\qquad

7-5 Using Percent Equations

\qquad
What You'll Learn Scan the text in Lesson 7-5. Write two facts you learned about solving using percent equations as you scanned the text.
1.
2.

Active Vocabulary New Vocabulary Write the definition next to each term. (Lessons 4-3, 6-5, and 7-3)
 proportion

percent proportion

equation

\qquad
\qquad
cross products \qquad

New Vocabulary Fill in each blank with the correct term or phrase.
an form of the in which the percent is written as a \qquad
\qquad
\qquad
Lesson 7-5 (continued)

Main Idea

Percent Equations

pp. 357-359

Details

Complete the organizer. Write the type of percent problem using the terms part, whole, and percent. Then solve using the percent equation.

Fill in each blank using the information below.
Terri and Kraig each bought an MP3 player. Terri paid $\$ 45$ minus an 18% discount. Kraig has a coupon for 15% off, which is a $\$ 6$ discount.

1. What is the original price of Kraig's player?
2. How much did Terri pay after her discount? \square
3. Suppose Kraig pays 6.5% and Terri pays 6% sales tax. How much did Kraig and Terri spend total for both players, including tax? Round to the nearest cent if needed.

Helping You Remember

The label over each oval represents what is missing from a percent equation. In each oval, write and solve a percent equation to find that missing information.

\qquad
\qquad

7-6 Percent of Change

What You'll Learn
 Skim Lesson 7-6. Predict two things that you expect to learn based on the headings and Key Concept box.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

percent of decrease
selling price
discount
percent increase
markup
percent of change

New Vocabulary Match the term with the correct definition by drawing a line to connect the two.
ratio that compares the change in quantity to the original amount
the amount the price of an item is increased above the price the store paid for an item
a positive percent of change
total amount consumer pays for item
a negative percent of change
the amount by which the regular price of an item is reduced

Vocabulary Link Percent change is a term that is used in everyday English. List two ways in which percent change is used in everyday life.
\qquad
\qquad

Lesson 7-6 (continued)

Main Idea

Details

Find Percent of Change

pp. 364-365

Using Markup and Discount pp. 365-366

Complete the Venn diagram for the terms markup and discount. Use the terms percent increase, percent decrease, percent of change, positive, and negative.

Helping You Remember

For a percent of increase, is the percent of change always positive or negative? Why? For a percent of decrease, is the percent of change always positive or negative? Why?
\qquad
\qquad
\qquad
\qquad

7-7 Simple and Compound Interest

What You'll Learn

2.

Scan the text under the Now heading. List two things you will learn about in this lesson.

1. \qquad
\qquad
\qquad
\qquad

Active Vocabulary

New Vocabulary Label the diagram with the correct terms.

Vocabulary Link Principal is a word used in everyday English as well as in mathematics. Write the definition of principal. Explain how the English definition can help you remember how principal is used in mathematics.
\qquad
\qquad
Lesson 7-7 (continued)

Main Idea

Simple Interest

pp. 370-371 p. 371

Compound Interest

Details

Complete the organizer. Sample answers are given.

Compare the two types of interest.

Types of Interest	Description
Simple	
Compound	

compound interest. Find the answer then trade with a partner and solve
\qquad
\qquad
-
\qquad
\qquad

7-8 Circle Graphs

What You'll Learn Skim the Examples for Lesson 7-8. Predict two things you think you will learn about circle graphs.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary
 Review Vocabulary Write the term next to each definition.

 (Lessons 3-1 and 7-1)a decimal whose digits end
a decimal whose digits repeat in groups of one or more without end
a ratio that compares a number to 100

New Vocabulary Write the definition next to the term.
\qquad
circle graph \qquad
\qquad

Vocabulary Link A circle graph displays data. Look up data in a dictionary. Find a sentence in the lesson that uses that word.

Definition: \qquad

Sentence: \qquad
\qquad
\qquad
\qquad

Lesson 7-8 (continued)

Main Idea

Details

Circle Graphs

pp. 376-377

Model a circle graph by following the steps below.
Count the number of students in your classroom. Then count the number of students that are wearing various colored shirts. For example, there may be 7 students wearing blue shirts, 3 wearing pink shirts, and 6 wearing white shirts. Construct and label a circle graph with your data.

Answer each question using the circle graph.

250 students were surveyed about their favorite activities. The results are in the circle graph.

How many students favor computer? \qquad
How many more students favor sports than favor swimming? -

Favorite Activity

Which activity is most favored?
\qquad

Helping You Remember

Describe how to construct a circle graph in detail to a classmate who was absent.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

nern
 7
 Percent

The It Together

Use the fraction $\frac{3}{4}$ to show how to convert to different forms of numbers.

Complete the proportion with the words "part", "whole", and the symbols \% and 100 .
\qquad
\qquad

CHAPTER
 7 Percent

Before the Test

Now that you have read and worked through the chapter, think about what you have learned and complete the table below. Compare your previous answers with these.

1. Write an \mathbf{A} if you agree with the statement.
2. Write a \mathbf{D} if you disagree with the statement.

Percent	After You Read		
- A percent is a comparison of a number			
and 100.		\quad	- To write a decimal as a percent, divide
:---			
by 100.			

Math Online Visit glencoe.com to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 7.

Are You Ready for the Chapter Test?

Use this checklist to help you study.I used my Foldable to complete the review of all or most lessons.I completed the Chapter 7 Study Guide and Review in the textbook.I took the Chapter 7 Practice Test in the textbook.I used the online resources for additional review options.I reviewed my homework assignments and made corrections to incorrect problems.
\square I reviewed all vocabulary from the chapter and their definitions.

S Study Tips

- Designate a place to study at home that is free of clutter and distraction. Try to study at about the same time each afternoon or evening so that it is part of your routine.
\qquad DATE \qquad
\qquad

chatio

 Linear Functions and Graphing

Before You Read

Before you read the chapter, respond to these statements.

1. Write an \mathbf{A} if you agree with the statement.
2. Write a \mathbf{D} if you disagree with the statement.

Before You Read	Linear Function and Graphing
	- In a function, a member of the domain can be paired with more than one member of the range.
	- An arithmetic sequence has a common ratio between each term.
	- A linear function has both straight and curved lines.
	- If a rate of change is proportional, its graph will be a straight line.
	- In the equation $y=5 x+3$, the slope is 3 .

FOLDA B^{\prime} LES Study Organizer Construct the Foldable as directed at the beginning of this chapter.

Note Taking Tips

- When you take notes, write concise definitions in your own words.

Add examples that illustrate the concepts.

- When taking notes, write down a question mark by anything you do not understand.
Before your next quiz, ask your instructor to explain these sections.
\qquad
\qquad
\qquad

Num
 8
 Linear Functions and Graphing

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on slope, one fact might be that positive slopes represent a rate of increase. After completing the chapter, you can use this table to review for your chapter test.

Lesson	Fact
8-1 Functions	
8-2 Sequences and Equations	
8-3 Representing Linear Functions	
8-4 Rate of Change	
8-5 Constant Rate of Change and Direct Variation	
8-6 Slope	
8-7 Slope-Intercept Form	
8-8 Writing Linear Equations	
8-9 Prediction Equations	
8-10 Systems of Equations	

\qquad
\qquad

8-1 Functions

independent variable vertical line test
dependent variable

What You'll Learn

Active Vocabulary

function notation

New Vocabulary Match each term with its definition by drawing a line to connect the two.
a value that is chosen and does not depend on the other variable
Skim the Examples for Lesson 8-1. Predict two things you think you will learn about functions.

1. \qquad
\qquad
2. \qquad
\qquad
a value that depends on the input value a way to write an equation using $f(x)$
use to determine if a graph is a function

Vocabulary Link Independent and dependent are two words used in everyday English. Find the definitions of independent and dependent using a dictionary. Write an example of a variable in everyday life that is independent. Write an example of a variable that is dependent.
\qquad
\qquad
Lesson 8-1 (continued)

Main Idea

Relations and Functions

 pp. 395-396
Function Notation

p. 396

Details

Complete the organizer for functions.

| What is a relation? | When is a relation a
 function? |
| :--- | :--- | :--- |

Write the equation in function notation. Label both forms with the terms independent variable and dependent variable.

Equation Function Notation

Describe Relationships p. 397
\qquad
\qquad

8-2 Sequences and Equations

What You'll Learn

Scan Lesson 8-2. List two headings you would use to make an outline of this lesson.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

New Vocabulary Label the diagram with the correct terms.

Main Idea

Describe Sequences
p. 401

Details

Fill in each blank to complete the arithmetic sequence.

Term Number (n)	1		3	
Term (t)	12		24	

The difference of the term numbers is \qquad .

The common difference of the terms is \qquad -.

The equation that describes the sequence is \qquad .
\qquad
\qquad
Lesson 8-2 (continued)

Main Idea

Details

Finding Terms
p. 402

Complete the organizer to find a term in an arithmetic sequence.

Helping You Remember

Suppose you are an arithmetic sequence. Write a paragraph describing your experiences.
\qquad
\qquad
\qquad
\qquad
\qquad DATE \qquad
\qquad

8-3 Representing Linear Functions

What You'll Learn
 Scan the text in Lesson 8-3. Write two facts you learned about representing linear functions as you scanned the text.

1. \qquad
\qquad
2. \qquad
\qquad
\qquad

Active Vocabulary \quad Review Vocabulary Write the term next to each definition. (Lesson 1-5)
a mathematical sentence stating that two quantities are equal
\ldots a relation where each member of the domain is paired with exactly one member in the range

New Vocabulary Fill in each blank with the correct term or phrase.
linear equation an equation whose graph is a \qquad x-intercept the \qquad of the point at which the graph crosses the \qquad y-intercept the \qquad of the point at which the graph crosses the \qquad
\qquad
\qquad

Lesson 8-3 (continued)

Details

Solve Linear Equations

 pp. 406-407Fill in the blanks to complete each table. Write the ordered pairs under the table.

1. $y=3 x+1$

\boldsymbol{x}	\boldsymbol{y}
-2	
	1
	4
2	

2. $y=-x+2$

x	y
-1	
	2
2	0
3	-1

Graph Linear Equations pp. 407-408

Compare the two methods of graphing a linear function.

One Way:

\qquad
\qquad
\qquad

8-4 Rate of Change

What You'll Learn

Skim Lesson 8-4. Predict two things that you expect to learn based on the headings and the Key Concept Box.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

New Vocabulary Write the definition next to the term.
rate of change

Main Idea

Rate of Change

Details

Model a graph with a positive and then a negative rate of change. Describe your graph with words.

Positive Rate of Change Negative Rate of Change
Time and Distance Traveled Time and Distance Traveled

Minutes

\qquad
\qquad

Details

Summarize the following situation.
Emily is filling a bathtub with water. She turns the faucet on, and 7 minutes later when the bathtub is full, she turns the faucet off.

Describe the rate of change. How would the graph of the water flow appear?
\qquad
\qquad

Describe another situation where the rate of change of the graph would appear the same.
\qquad
\qquad
\qquad

Hepling You Remember The graph below shows the earnings of Roger and Susan. Compare the two rates of change by comparing the steepness of the lines.

Roger's and Susan's Earnings

\qquad
\qquad

8-5 Constant Rate of Change and Direct Variation

What You'll Learn
 Scan the text under the Now heading. List two things you will learn about in the lesson.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

Review Vocabulary Write the definition next to each term.
(Lessons 6-4 and 8-4)
rate of change \qquad
\qquad
proportion

New Vocabulary Write the correct term next to each definition.
\qquad - the constant of proportionality, the k in the equation $y=k x$
the relationship between two quantities that results in a straight-line graph
when the ratio between two variable quantities is constant
a linear relationship where the rate of change between any two data points is the same
\qquad
\qquad
\qquad
Lesson 8-5 (continued)

Main Idea

Constant Rate of Change

 pp. 418-420
Details

Cross out the set of coordinates in the circle that do not belong. Then describe the relationship.

The relationship is \qquad .

Direct Variation

pp. 420-421
Fill in the organizer about direct variation.

What is it?	How can it be written using symbols?	
	Direct Variation	Nonexamples

Helping You Remember

All directly proportional relationships are linear, but not all linear relationships are proportional. Give an example of a linear relationship that has a constant rate of change but is not proportional.
\qquad
\qquad
\qquad

8-6 Slope

What You'll Learn Skim the lesson. Write two things you already know about slope.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

Review Vocabulary Fill in each blank with the correct term or phrase. (Lessons 6-1 and 8-5)
\qquad of two \qquad by division that is often written in \qquad form
constant rate of change $\quad \mathrm{a}$ \qquad where the rate of change between any two data points is \qquad

New Vocabulary Write the definition next to the term.
slope

Main Idea

Slope

pp. 427-428

Details

Match the different types of slopes to the correct coordinates by drawing a line to connect the two.
positive slope
$A(2,4), B(2,5)$
negative slope
$C(-5,3), D(-3,2)$
undefined slope
$E(7,4), F(-7,4)$
zero slope
$G(-1,-3), H(-3,-5)$
\qquad
\qquad
Lesson 8-6 (continued)

Slope and Constant Rate of Change
pp. 428-429

Complete the organizer to find the slope of a line. Fill in each blank to find the slope in the example.

Helping You Remember Use words to describe how a line appears with the given slopes.
positive: \qquad
negative: \qquad
zero: \qquad
undefined: \qquad
\qquad
\qquad
\qquad

8-7 Slope-Intercept Form

What You'll Learn Skim the Example for Lesson 8-7. Predict two things you think you will learn about slope-intercept form.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

Review Vocabulary Write the correct term next to each definition. (Lessons 6-5 and 8-3)
\qquad a statement of equality of two or more ratios
\qquad - an equation whose graph is a straight line
\qquad the first number of an ordered pair
the second number of an ordered pair

New Vocabulary Write the definition next to the term.
\qquad
\qquad

Details

Find Slope and

 \boldsymbol{y}-interceptpp. 433-434

Identify the slope and \boldsymbol{y}-intercept in each equation.

1. $y=4 x+5$
2. $x+y=6$
slope: \qquad y-intercept: \qquad
3. $y+3=-7 x$
slope: \qquad y-intercept: \qquad
4. $-x-y=-2$
slope: \qquad y-intercept: \qquad

Complete the organizer by following the steps given
Graph Equations
pp. 434-435
to graph an equation.

Step 1: Find the slope and y-intercept.

Graph: $y=-3 x-4$

Step 1: slope: __ y-intercept: ___

Step 2: Graph the y-intercept at ($0,-4$).

Step 3: Write the slope as $\frac{-3}{1}$. Use it to locate another point on the line.

Step 4: Draw a line through the 2 points and extend the line.

\qquad
\qquad

8-8 Writing Linear Equations

What You'll Learn \quad Skim Lesson 8-8. Predict two things that you expect to learn based on the headings and the Key Concept Box.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary Review Vocabulary Fill in each blank with the correct term or phrase. (Lessons 8-6 and 8-7)

slope \quad the ratio of the \qquad , or \qquad change, to the \qquad , or
\qquad change of a line
\qquad slope-intercept form $>$ a linear ___ in the form where is the slope and b is the \qquad
New Vocabulary Write the definition next to the term.
point-slope form
\qquad
\qquad
Lesson 8-8 (continued)

Main Idea

Details

Write Equations in Slope-Intercept Form pp. 441-442

Solve Problems

pp. 443-444

Fill in each blank to write a linear equation given two points.
Given: $(4,-5)$, and ($-1,-3$)

Find the slope: $m=\frac{\text { change of } y}{\text { change of } x}=$

Use $y-y_{1}=m\left(x-x_{1}\right)$ form: $y-($ \qquad) $=$ \qquad $(x-1$ \qquad)).

Simplify to $y-m x+b$ form: $y=$ \qquad - \qquad .

Complete the chart by summarizing the procedure.

Writing Linear Equations	
Forms	Procedure
from slope and y-intercept	
from a graph	
from two points	

\qquad
\qquad

8-9 Prediction Equations

What You'll Learn Scan the text in Lesson 8-9. Write two facts you learned about prediction equations as you scanned the text.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

Review Vocabulary Write the definition next to the term.
(Lesson 1-6)

scatter plot

New Vocabulary Fill in each blank with the correct term or phrase.
line of fit $>$ a \qquad that is drawn on a \qquad that closely approximates the \qquad

Vocabulary Link In this lesson you will make predictions using a line or equation. Prediction is a word that is used in everyday English. Find the definition of prediction using a dictionary. Give an example of how predictions are used in everyday life.
\qquad
\qquad

Main Idea

Details

Lines of Fit

p. 448

Complete the organizer about the line of fit.

Fill in each blank to complete the graphic organizer for finding the equation of a line of best fit.

Make a__ with the		Draw a data.
Use 2 points on the line to find the		
Use the \quad and an linear equation in point- slope form.	Solve the point-slope equation for	

\qquad
\qquad

8-10 Systems of Equation

What You'll Learn Scan Lesson 8-10. List two headings you would use to make an outline of this lesson.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary New Vocabulary Fill in each blank with the correct term or phrase.

\qquad with the same \qquad
\qquad method of finding an exact \qquad of a system of equations

Vocabulary Link Substitution is a word used in everyday English. Find the definition of substitution using a dictionary. Explain how the English definitions can help you remember how substitution is used in mathematics.
\qquad
\qquad

Main Idea

Solve Systems by

 Graphing pp. 453-454
Solve Systems by Substitution

p. 455

Compare solutions by completing the chart.

Solutions for Systems of Equations

Fill in the diagram to complete the steps to solve a system of equations by substitution. Use the terms variable, value, equation, and substitute as often as needed.

Step 1
$\left.\begin{array}{|l|l|}\hline \text { Choose one } \\ \text { solve for one }\end{array}\right) \xrightarrow[\left.\begin{array}{l}\frac{1}{\text { expression from }} \begin{array}{l}\text { and } \\ \text { Step } 1 \text { into the other } \\ \text { the variable. }\end{array} \\ \hline\end{array} \right\rvert\,]{ }$

Step 3

Substitute the \qquad for the variable found in Step 2 back into the first \qquad
Solve for the other variable.
\qquad
\qquad

CHAPTER
 (i)
 Linear Functions and Graphing

Tie It Together

Complete the graphic organizer with definitions and concepts about each topic.

\qquad
\qquad
\qquad

CHAPTER

8
 Linear Functions and Graphing

Before the Test

Now that you have read and worked through the chapter, think about what you have learned and complete the table below. Compare your previous answers with these.

1. Write an \mathbf{A} if you agree with the statement.
2. Write a \mathbf{D} if you disagree with the statement.

Linear Function and Graphing	After You Read		
- In a function, a member of the domain can be paired with more than one member of the range.			
- An arithmetic sequence has a common			
ratio between each term.		\quad	- A linear function has both straight and
:---			
curved lines.	\quad	- If a rate of change is proportional, its	
:---	:---		
graph will be a straight line.			

Math Online Visit glencoe.com to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 8.

Are You Ready for the Chapter Test?

Use this checklist to help you study.
\square I used my Foldable to complete the review of all or most lessons.
\square I completed the Chapter 8 Study Guide and Review in the textbook.
\square I took the Chapter 8 Practice Test in the textbook.
\square I used the online resources for additional review options.
\square I reviewed my homework assignments and made corrections to incorrect problems.
\square I reviewed all vocabulary from the chapter and their definitions.

- Be an active listener in class. Take notes, circle or highlight information that your teacher stresses, and ask questions when ideas are unclear to you.
\qquad
\qquad

Powers and Nonlinear Functions

Before You Read

Before you read the chapter, think about what you know about powers and nonlinear functions. List three things you already know about them in the first column. Then list three things you would like to learn about them in the second column.

K	W
What I know...	

Construct the Foldable as directed at the beginning of this chapter.

\int Note Taking Tips

- When you take notes, be sure to listen actively.

Always think before you write, but don't get behind in your note-taking. Remember to enter your notes legibly.

- When you take notes, circle, underline, or star anything the teacher emphasizes.
When your teacher emphasizes a concept, it will usually appear on a test, so make an effort to include it in your notes.
\qquad

Invim
 9 Powers and Nonlinear Functions

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on prime factorization, one fact might be that a monomial is a number, a variable, or a product of numbers and/or variables. After completing the chapter, you can use this table to review for your chapter test.

	Lesson	
$9-1$	Powers and Exponents	
$9-2$	Prime Factorization	
$9-3$	Multiplying and Dividing Monomials	
$9-4$	Negative Exponents	
$9-5$	Scientific Notation	
$9-6$	Powers of Monomials	
$9-7$	Linear and Nonlinear Functions	
9		
9		

\qquad
\qquad
\qquad

9-1 Powers and Exponents

What You'll Learn

Skim Lesson 9-1. Predict two things that you expect to learn based on the headings and the Key Concept box.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary
 Review Vocabulary Write the definition next to the term.

(Lesson 1-1)
order of operations

New Vocabulary Label the diagram with the correct term.
exponent
power

base
\qquad
\qquad

Lesson 9-1 (continued)

Main Idea

Details

Use Exponents

pp. 471-472

Fill in the blank for each verbal expression with a numeric expression with exponents.

1. 8 to the seventh power \qquad
2. 3 cubed \qquad
3. 6 to the fourth power \qquad
4. 4 to the first power \qquad
5. 7 squared \qquad

Evaluate Expressions
pp. 472-473

Complete the organizer to evaluate the expression with the values given for x and y.

Helping You Remember

A classmate states that $3^{2}=6$. How would you explain the correct solution? Use words, drawings, or models in your explanation.
\qquad
\qquad
\qquad
\qquad

9-2 Prime Factorization

What You'll Learn

2.

Scan Lesson 9-2. List two headings you would use to make an outline of this lesson.

1. \qquad
\qquad
\qquad
\qquad

Active Vocabulary

monomial

New Vocabulary Match the term with its definition by drawing a line to connect the two.
composite number
factor tree
factor
prime number
prime factorization
when a composite number is expressed as the product of prime factors
to write a number as a product of its factors a whole number with exactly two unique factors, 1 and itself

Abstract

an expression that is a number, a variable, or a product of numbers and variables a way to find the prime factorization of a number a whole number that has more than two factors

Vocabulary Link Composite is a word that is used in everyday English. Find the definition of composite using a dictionary. Explain how the English definition can help you remember how a composite number is used in mathematics.

\qquad
\qquad
Lesson 9-2 (continued)

Main Idea

Write Prime

Factorization
pp. 476-477

Complete the factor tree.

The prime factorization of 72 is \qquad .

Fill in each blank with the monomial whose factors are shown.

1. $2 \quad 3 \quad 3 \quad x \quad y \quad y$ \qquad
2. $-1 \begin{array}{llllll}-1 & 5 & a & a & a\end{array}$ \qquad
3. $\begin{array}{llllllll} & 7 & 11 & s & s & s & s & s\end{array}$ \qquad
4. $-1 \quad x \quad x \quad x$ \qquad

Helping You Remember

Explain the relationship between the terms base, exponent, and power.
\qquad
\qquad
\qquad
\qquad
\qquad

9-3 Multiplying and Dividing Monomials

What You'll Learn Scan the text under the Now heading. List two things you will learn about in the lesson.

1. \qquad
\qquad
2. \qquad

Active Vocabulary Review Vocabulary Write the term next to the definition. (Lessons 1-3 and 2-1)
\qquad $\xrightarrow{\longrightarrow}$ a number less than zero
\qquad
the whole numbers and their opposites

The order numbers are multiplied does not change the product.

The order numbers are grouped does not change the sum.

Finish each property.

Product of Powers Property

$$
\boldsymbol{a} \cdot \boldsymbol{a}^{n}=\boldsymbol{a}^{m}
$$

Quotient of Powers Property
$\boldsymbol{a}^{m} \div \boldsymbol{a}=\boldsymbol{a} \quad n$
\qquad
\qquad
Lesson 9-3 (continued)

Main Idea

Details

Multiply Monomials

pp. 481-482

Fill in the blanks to find each product.

1. $4^{3} 4^{2}=4 \square+\square=4 \square$
2. $2^{5} \quad 2^{3}=2 \square+\square=\square \square$
3. $5^{3} \quad 5^{4}=5 \square+\square=\square \square$
4. $2 y^{3}-3 y^{3}=\square \square \square+\square=\square \square \square$
5. $5 x^{4} \quad 3 x^{3}=\square \square^{\square+} \square=\square \square$

Cross out the one that does not belong. Then state the relationship among the three remaining parts of the circle.

The relationship is:
\qquad
Helping You Remember
Restate the Product of Powers Property and the Quotient of Powers Property in your own words.
\qquad
\qquad
\qquad
\qquad
\qquad

9-4 Negative Exponents

What You'll Learn Skim Lesson 9-4. Predict two things you expect to learn based on the headings and the Key Concept box.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary Review Vocabulary Write the definitions next to each term.

(Lessons 1-1, 1-2, 1-3 and 9-1)
deductive reasoning
\qquad
algebraic expression
\qquad
\qquad
Lesson 9-4 (continued)

Main Idea

Negative Exponents

pp. 486-487

Evaluate Expressions

 p. 488
Details

Fill in each blank to prove $\boldsymbol{y}^{-3}=\frac{\mathbf{1}}{\boldsymbol{y}^{\mathbf{3}}}$.
Start with $\frac{y^{4}}{y^{7}}$.

$\frac{y^{4}}{y^{7}} \longrightarrow$| Using the |
| :--- |
| the quotient is $\square \square^{-} \square$ |, | \square. |
| :--- |

Fill in the diagram to complete the steps to evaluate an expression with negative exponents. Use the terms order of operations, positive, replace, and simplify.

Step 1
 Step 2
 Step 3

Helping You Remember

Explain how negative exponents can be written
as positive exponents.
\qquad
\qquad
\qquad
\qquad
\qquad

9-5 Scientific Notation

What You'll Learn

2.

Scan the text in Lesson 9-5. Write two facts you learned about scientific notation as you scanned the text.

1. \qquad
\qquad
\qquad
\qquad

Active Vocabulary

New Vocabulary Match the following terms with the correct examples by drawing a line to connect the two.
standard form
0.000050
5.0×10^{5}
scientific notation
2.8×10^{3}
3,700
$8,900,000,000$

Vocabulary Link Standard is a word that is used in everyday English. Find the definition of standard using a dictionary. Explain how the English definition can help you remember how standard form is used in mathematics.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Lesson 9-5 (continued)

Main Idea

Scientific Notation
pp. 493-494

Compare and Order Numbers
p. 495

Details

Complete the organizer about scientific notation.

Write the numbers in order from greatest to least.

1. $4.05 \times 10^{5}, 4.2 \times 10^{5}, 3.0 \times 10^{5}, 1.3 \times 10^{5}$
2. $2.4 \times 10^{-3}, 2.0 \times 10^{-2}, 3.1 \times 10^{3}, 2.9 \times 10^{-2}$

Helping You Remember Explain how to express a number greater than 1, a number less than 1 , and then the number 1 in scientific notation.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

9-6 Powers of Monomials

What You'll Learn
 Skim the lesson. Write two things you already know about powers of monomials.

1. \qquad
\qquad
2. \qquad
\qquad

Review Vocabulary Fill in each blank with the correct term or phrase. (Lessons 9-1 and 9-2)
an expression that is a number, a \qquad or a
\qquad of numbers and or variables
power \quad a
a \qquad that is expressed using an \qquad

Vocabulary Link Write a power that has a base of 7 and an exponent of 4 . Then write x to the fifth power. Write y squared. Write a monomial that is the product of the number 2 and k cubed.

Finish for each property.
Power of a Property
$\left(\boldsymbol{a}^{m}\right)^{n}=\boldsymbol{a}^{m _n}$
Power of a Property
$(\boldsymbol{a b})^{m}=\boldsymbol{a}-\boldsymbol{b}-$
\qquad
\qquad
Lesson 9-6 (continued)

Main Idea

Details

Power of a Power
p. 499

Fill in the blanks with each product.

1. $\left(5^{3}\right)^{2}=5 \square \square=5 \square$
2. $\left(x^{5}\right)^{4}=x \square \square=x \square$
3. $\left(6^{2}\right)^{-2}=6 \square \square=6 \square$ or $\frac{\square}{\square}$
4. $\left(y^{-3}\right)^{-4}=y \square \square=y \square$

Power of a Product
pp. 500-501
Compare the two properties of powers by filling out the chart.

	Power of Powers	Power of a Product
Why?		
How?		
Example		

Helping You Remember

Compare and contrast the Quotient of Powers
Property and the Product of Powers Property
\qquad
\qquad
\qquad
\qquad
\qquad

9-7 Linear and Nonlinear Function

What You'll Learn Skim the Examples for Lesson 9-7. Predict two things you think you will learn about linear and nonlinear function.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary Review Vocabulary Write the definition next to each term.

(Lesson 1-5)
function \qquad
\qquad
function rule

function table

\qquad
\qquad
\qquad

New Vocabulary Fill in each blank with the correct term or phrase.
nonlinear functions
functions that \qquad have constant \qquad therefore their graphs are not \qquad
\qquad
\qquad
Lesson 9-7 (continued)

Graphs of Nonlinear Functions
p. 504

Equations and Tables pp. 505-506

Complete the organizer to summarize three ways to determine if a function is linear or nonlinear.

Can the equation of the line be written in the form $y=m x+b$?

In a function table, are the changes in x and y constant?
\qquad
\qquad
\qquad

9-8 Quadratic Functions

What You'll Learn Scan Lesson 9-8. List two headings you would use to make an outline of this lesson.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary
 New Vocabulary Write the definition next to each term.

parabola \qquad
quadratic function

Vocabulary Link A parabola is the shape that is seen in everyday life. Give an example of something that has a parabola shape in real life.
\qquad
\qquad
\qquad
\qquad
Lesson 9-8 (continued)

Main Idea

Graph Quadratic

 Functionpp. 510-511

Details

Complete the organizer by filling in the blanks. Then complete the example.

Use Quadratic Function

 p. 511Fill in the blanks by using the information below.
A ball is thrown into the sky. The equation that gives the ball's height in meters h as a function of time t is $h=-4.9 t^{2}+12 t+3$.

1. What is the height of the ball after $t=1$ second?
\qquad
2. How high is the ball after 2 seconds? \qquad
3. What can you say about the ball's path between 1 and 2 seconds? \qquad
\qquad .
\qquad
\qquad

9-9 Cubic and Exponential Functions

What You'll Learn Scan the text under the Now heading. List two things you will learn about this lesson.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

Review Vocabulary Fill in each blank with the correct term or phrase. (Lesson 9-8)
quadratic function \quad a function that can be written in the form \qquad where $a \neq 0$
parabola the graph of a \qquad function graph

New Vocabulary Match the term with the correct form by drawing a line to connect the two.
cubic function
exponential function
$y=a^{x}+c$, where $a \neq 0, a \neq 1$
$y=a x^{3}+b x^{2}+c x+d$, where $a \neq 0$

Vocabulary Link Exponential is a word that is used in everyday English. Find the definition of exponential using a dictionary. Explain how the English definition can help you remember the shape of the graph of an exponential function in mathematics.
\qquad
\qquad
Lesson 9-9 (continued)

Cubic Functions

pp. 516-517

Fill in the organizer for cubic functions. are given.

What is a cubic function?	Sketch the shape of a graph of a cubic function.
Examples of Cubic Functions	Nonexamples of Cubic Functions

Exponential Functions

pp. 517-518

Fill in each blank with the value of y.

1. $y=2^{x}-1$, when $x=3:(3, \longrightarrow)$
2. $y=4^{x}+2$, when $x=-1:\left(-1, \quad _\right)$
3. $y=2^{x}-3$, when $x=2:(2, \longrightarrow)$
4. $y=5^{x}$, when $x=-2$: $(-2, \longrightarrow)$

Helping You Remember
 You have learned to graph quadratic and cubic

 functions. Make a list of the steps you use to graph the two functions.\qquad
\qquad

CHAPTER
 9
 Powers and Nonlinear Functions

The It Together

Complete the graphic organizer by writing an equivalent form of the exponential expression.
\qquad

$x^{m} \cdot x^{n}$	
$\frac{x^{m}}{x^{n}}$	
$\left(x^{m}\right)^{n}$	
$(x y)^{m}$	
x^{-m}	
x^{0}, when $\neq 0$	

Complete the graphic organizer with types of functions and their general equations.

\qquad

chaptir
 Powers and Nonlinear Functions

Before the Test

Review the ideas you listed in the table at the beginning of the chapter. Cross out any incorrect information in the first column. Then complete the table by filling in the third column.

K	W	L
What I know...	What I want to find out...	What I learned...

Math Online Visit glencoe.com to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 9.

Are You Ready for the Chapter Test?

Use this checklist to help you study.
I used my Foldable to complete the review of all or most lessons.I completed the Chapter 9 Study Guide and Review in the textbook.I took the Chapter 9 Practice Test in the textbook.I used the online resources for additional review options.I reviewed my homework assignments and made corrections to incorrect problems.I reviewed all vocabulary from the chapter and their definitions.

5 Study Tips

- Complete reading assignments before class. Write down or circle any questions you may have about what was in the text.
\qquad
\qquad

cavie
 10 Real Numbers and Right Triangles

Before You Read

Before you read the chapter, think about what you know about real numbers and right triangles. List three things you already know about them in the first column. Then list three things you would like to learn about them in the second column.

K	W
What I know...	

Construct the Foldable as directed at the beginning of this chapter.

Note Taking Tips

- Before going to class, look over your notes from the previous class, especially if the day's topic builds from the last one.
- When you take notes, write down the math problem and each step in the solution using math symbols.
Next to each step, write down, in your own words, exactly what you are doing.
\qquad
\qquad
\qquad

cmatio
 10 Real Numbers and Right Triangles

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on triangles, one fact might be that a vertex is a point where line segments intersect. After completing the chapter, you can use this table to review for your chapter test.

Lesson	Fact
10-1 Squares and Square Roots	
10-2 The Real Number System	
$10-3$ Triangles	
$10-4$ The Pythagorean Theorem	
$10-5$ The Distance Formula	
$10-6$ Special Right Triangles	

\qquad
\qquad

10-1 Squares and Square Roots

What You'll Learn
 Scan the text in Lesson 10-1. Write two facts you learned about squares and square roots as you scanned the text.

1. \qquad
\qquad
2. \qquad

Active Vocabulary

perfect square

New Vocabulary Match the term with its definition by drawing a line to connect the two.
one of a number's two equal factors
square root
indicates a positive square root
radical sign

Main Idea

Find Square Roots p. 537
a rational number whose square root is a whole number

Cross out the square root in the concept circle that does not belong. Then describe the relationship of the remaining three parts.

The relationship is \qquad
\qquad
\qquad
\qquad
\qquad

Lesson 10-1 (continued)

Main Idea

Details

Estimate Square Roots

pp. 538-539
Complete the organizer by following the steps to
estimate a square root. Then complete the example.

Helping You Remember

Tell whether each number has a square root and explain why or why not. Then state if it is a perfect square and explain.

	Real Square Root?	Perfect Square?
26		
-81		
256		
2500		
-5		

\qquad
\qquad

10-2 The Real Number System

What You'll Learn

Scan the text under the Now heading. List two things you will learn about the real number system.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

New Vocabulary Label the diagram with the correct term.
irrational numbers
real numbers

Vocabulary Link Irrational is a word that is used in everyday English. Find the definition of irrational using a dictionary. Explain how the English definition can help you remember how irrational is used in mathematics.
\qquad
\qquad
Lesson 10-2 (continued)

Main Idea

Details

Identify and Compare Real Nmbers
pp. 543-544

Model and explain how to use a number line to list $\frac{7}{8}, 0 . \overline{67}, \sqrt{3}$, and $\frac{3}{4}$ from least to greatest. Write an equality and explanation on the lines below.

Solve Equations p. 545

Complete the organizer by following the steps to solve the equation $x^{2}=10$ using the definition of a square root.

\qquad
\qquad

10-3 Triangles

What You'll Learn

2.

Skim Lesson 10-3. Predict two things that you expect to learn based on the headings and the Key Concept boxes.

1. \qquad
\qquad
\qquad
\qquad

Active Vocabulary

New Vocabulary Write the definition next to each term.
congruent \qquad
triangle \qquad
\qquad

vertex

\qquad
line segment

Main Idea

Find Angle Measures pp. 550-551

Details

Fill in the diagram to determine the angle measures of $\triangle K L M$ with a ratio of $1: 3: 1$.

Step 1
Step 2
Step 3

Use x to represent the measure of the and
.
:---
:---
equation,
Solve for x.

Because $x=\ldots$, the measure of the angles are \qquad
\qquad .
\qquad
\qquad
Lesson 10-3 (continued)

Main Idea

Details

Classify Triangles
pp. 551-552

Summarize information about triangles in the graphic organizer. Sample answers are given.

Draw and label a scalene, isosceles, and equilateral triangle.

Draw and label an obtuse, acute, and right triangle.

Helping You Remember
Describe an obtuse, scalene triangle.

Describe an equilateral triangle. \qquad
\qquad
\qquad

10-4 The Pythagorean Theorem

What You'll Learn Skim the Examples in Lesson 10-4. Predict two things you think you will learn about the Pythagorean Theorem.

1. \qquad
\qquad
2. \qquad
\qquad
\qquad

Active Vocabulary New Vocabulary Write the definition next to each term.
\qquad
\qquad

hypotenuse
 Pythagorean Theorem

\qquad
\qquad
\qquad
converse of the Pythagorean Theorem
\qquad
\qquad
Lesson 10-4 (continued)

Details

Use the Pythagorean Theorem
pp. 558-559

Fill in the organizer about using the Pythagorean Theorem.

Use the Converse of the Pythagorean Theorem p. 600

Fill in the blanks and determine whether each triangle is a right triangle.

1. 12 in., 35 in., 37 in.

$$
a^{2}+b^{2}=c^{2}
$$

\square

\square
\square $\stackrel{\square}{=} \square$

Is it a right triangle?
2. $7 \mathrm{~cm}, 23 \mathrm{~cm}, 24 \mathrm{~cm}$ $a^{2}+b^{2}=c^{2}$

Is it a right triangle?
\qquad
\qquad
\qquad

10-5 The Distance Formula

What You'll Learn
 Skim the lesson. Predict two things that you expect to learn based on the headings and the Key Concept boxes.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

Review Vocabulary Label the diagram with the correct term. (Lessons 10-3 and 10-4)

distance formula

New Vocabulary Fill in each blank with the correct term or phrase.

The distance d between \qquad with coordinates
\qquad and \qquad is given by the formula
$d=$ \qquad
\qquad
\qquad
Lesson 10-5 (continued)

Main Idea

Find the Distance Between Points
pp. 565-566

Apply the Distance Formula
p. 567

Details

Model the solution to find the distance between the points on the coordinate plane. Use the lines to show your calculations. Round to the nearest tenth if necessary.
$\left(x_{1}, y_{1}\right)=(-4,3) ;\left(x_{2}, y_{2}\right)=(5,5)$

AB

\qquad
\qquad

\qquad

Fill in each blank to describe the steps to classify a triangle by its sides on a coordinate plane and then find its perimeter.

Step 1
Step 2
Step 3
Use the distance formula,
to find the \qquad
of each side.

\rightarrow| Step 2 |
| :--- |
| the
 triangle as scalene,
 equilateral, or
 isosceles using the |

Helping You Remember

Describe how you would find the perimeter of
$\triangle S T U$. List any formulas that must be used.
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

10-6 Special Right Triangles

What You'll Learn

Active Vocabulary

\qquad
\qquad -
the point where two line segments that form a side of a triangle meet
figures that have the same shape but not necessarily the same size

Main Idea

Review Vocabulary Write the term next to each definition. (Lessons 6-7, 10-1, 10-3, and 10-4)
formed by three line segments that intersect only at their endpoints
Scan Lesson 10-6. List two headings you would use to make an outline of this lesson.

1. \qquad
\qquad
2. \qquad
\qquad
same

Details

Find Measures in 45-45-90 Triangles pp. 571-572

Use $\triangle A B C$ to fill in each blank.

1. The measure of $\angle B$ is \qquad because \qquad
2. The length of the hypotenuse, h, is \qquad because
\qquad
\qquad
3. The length of side, l, is 12 meters because \qquad
\qquad
\qquad
\qquad

Find Measures in 30-60-90 Triangles pp. 572-573

Compare 45-45 90 and $30 \quad 6090$ triangles by filling in each blank of the organizer.

Special Right Triangles	
\downarrow	\downarrow
$\begin{gathered} 45-45-90 \\ \text { Triangles } \end{gathered}$	$\begin{gathered} 30-60-90 \\ \text { Triangles } \end{gathered}$
\downarrow	\downarrow
The length of the hypotenuse is \qquad times the length of \qquad leg.	The length of the hypotenuse is \qquad times the length of the \qquad leg.
\downarrow	\downarrow
The length of the two legs are \qquad	The length of the \qquad leg is \qquad times the length of the \qquad leg.

Helping You Remember

Describe the properties of a $30^{\circ} 60^{\circ}-90^{\circ}$ triangle. Include the ways that students sometimes mismeasure the side lengths or angles.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad PERIOD \qquad

In

Real Numbers and Right Triangles

Tie It Together

Sketch an example of each type of triangle if possible. If the sketch is not possible mark an X in the box.

| Angle Measure/ |
| :---: | :---: | :---: | :---: |
| Side Length |\quad Acute | Obtuse | Right |
| :--- | :--- |
| Equilateral | |

\qquad
\qquad

curne
 10 Real Numbers and Right Triangles

Before the Test

Review the ideas you listed in the table at the beginning of the chapter. Cross out any incorrect information in the first column. Then complete the table by filling in the third column.

K	W	L
What I know...	What I want to find out...	What I learned...

Math Online Visit glencoe.com to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 10.

Are You Ready for the Chapter Test?

Use this checklist to help you study.I used my Foldable to complete the review of all or most lessons.I completed the Chapter 10 Study Guide and Review in the textbook.I took the Chapter 10 Practice Test in the textbook.I used the online resources for additional review options.I reviewed my homework assignments and made corrections to incorrect problems.I reviewed all vocabulary from the chapter and their definitions.

Study Tips

- Use abbreviations while note-taking to use less time and room. Write neatly and place a question mark by any information that you do not understand.
\qquad
\qquad
\qquad

curne
 11 Distance and Angle

Before You Read

Before you read the chapter, respond to these statements.

1. Write an \mathbf{A} if you agree with the statement.
2. Write a \mathbf{D} if you disagree with the statement.

Before You Read	Distance and Angle
	- Parallel lines intersect to form right angles.
	• A figure that rotates about a fixed point does not change shape or size.
	• A quadrilateral is a polygon that has four sides.
	- An example of a polygon is a circle.
	- The formula to find the circumference of a circle is $C=2 \pi r$.

Construct the Foldable as directed at the beginning of this chapter.

Note Taking Tips

- It is helpful to read through your notes before beginning your homework. Look over any page referenced material.
- As soon as possible, go over your notes.

Clarify any ideas that were not complete.
\qquad
\qquad

curtio
 11 Distance and Angle

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on quadrilaterals, one fact might be that the sum of the measures of the angles of a quadrilateral is 360°. After completing the chapter, you can use this table to review for your chapter test.

Lesson	Fact
11-1 Angle and Line Relationships	
11-2 Congruent Triangles	
$11-3$ Rotations	
$11-4$ Quadrilaterals	
$11-5$ Polygons	
$11-6$ Area of Parallelograms, Triangles,	
and Trapezoids	
$11-7$ Circles and Circumference	
1 Area of Composite Figures	

\qquad

11-1 Angle and Line Relationships

What You'll Learn

Active Vocabulary
vertical angles
adjacent angles
complementary angles
supplementary angles
perpendicular lines
parallel lines
transversal
alternative interior angles
alternative exterior angles
corresponding angles

Skim Lesson 11-1. Predict two things that you expect to learn based on the headings and the Key Concept boxes.
1.
2.

New Vocabulary Write the definition next to each term.
\qquad

Lesson 11-1 (continued)

Details

Angle Relationships

pp. 589-590

Complete the model so that $\angle A B C$ is complementary to $\angle A B D$ and $\angle A B C$ is supplementary to $\angle A B D$. Label each angle measure.

Complementary Angles	Supplementary Angles

Parallel Lines

pp. 590-591

Draw a transversal \boldsymbol{t} which intersects with two parallel lines a and b. Label all interior angles, exterior angles, alternative interior and exterior angles, and corresponding angles.

Helping You Remember

Look up the meaning of the prefix trans- in the dictionary. Write down four words that have trans- as a prefix. How can the meaning of the prefix help you remember the meaning of transversal?
\qquad
\qquad

11-2 Congruent Triangles

What You'll Learn Scan Lesson 11-2. List two headings you would use to make an outline of this lesson.

1. \qquad
\qquad
2. \qquad

Active Vocabulary

Review Vocabulary Write the correct term next to each definition. (Lesson 10-3)
\qquad formed by three line segments that intersect only at their endpoints
the point where two line segments that form a side of a triangle meet

the part of a line containing two endpoints and all of the points between them

New Vocabulary Fill in each blank with the correct term or phrase.
congruent \qquad that have the same \qquad
and \qquad are congruent.
corresponding parts
The \qquad of \qquad triangles that
\qquad or correspond are called corresponding parts.
\qquad
\qquad

Lesson 11-2 (continued)

Main Idea

Corresponding Parts

pp. 598-600

Identify Congruent Triangles pp. 600-601

Details

Fill in each blank to complete the congruence statements for the congruent triangles below.

1. $\triangle J K L \cong \triangle \square$
2. $\triangle K J L \cong \triangle \square$
3. $\triangle \square \cong \triangle N O M$
4. $\triangle \square \cong \triangle O M N$
5. $\triangle J L K \cong \triangle \square$
6. $\triangle L K J \cong \triangle \square$

Fill in the diagram to complete the steps to determine congruent triangles. Use the terms statement, order, angles, vertices, and sides.
Step 1
Step 2
Step 3

Helping You Remember

Corresponding is a word used in everyday English as well as in mathematics. Write the definition of corresponding. Explain how the English definition can help you remember how corresponding is used in mathematics.
\qquad
\qquad
\qquad

11-3 Rotations

What You'll Learn Skim the Examples for Lesson 11-3. Predict two things that you will learn about rotations.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

New Vocabulary Match each definition with the correct term by drawing a line to connect the two.
rotation
center of rotation
rotational symmetry retry
when a figure can be rotated less than 360° about its center so that its image matches the original figure
a transformation where a figure is turned about a fixed point

Vocabulary Link Rotational and symmetry are two words used in everyday English. Find the definitions of rotational and symmetry using a dictionary. List three examples of something that has rotational symmetry.
\qquad
\qquad

Lesson 11-3 (continued)

Main Idea

Rotations

pp. 605-607

Rotational Symmetry

 p. 607Draw the letter after a 90° counterclockwise rotation around the point.

Fill in the organizer about rotational symmetry.

How do you decide if a figure has rotational symmetry?	How do you find the angle of rotation?

Helping You Remember

A classmate was absent the day that rotation and rotational symmetry were taught. Provide an explanation of the two concepts.
\qquad
\qquad
\qquad

11-4 Quadrilaterals

What You'll Learn
 Skim the lesson. Write two things you already know about quadrilaterals.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

Review Vocabulary Write the definition next to each term. (Lesson 10-3)

vertex

segment

New Vocabulary Fill in each blank with the correct term or phrase.
quadrilateral \downarrow A quadrilateral is a __ figure with segments that form a quadrilateral only at their \qquad .

Vocabulary Link Quad- is a prefix used in everyday English as well as in mathematics. Write the meaning of the prefix quad-. Write two examples of words used in everyday life that have quad- as a prefix and their meanings.
\qquad
\qquad

Lesson 11-4 (continued)

Main Idea

Find Angle Measures

pp. 612-613

Details

Explain how the model proves that a quadrilateral has angles whose measures have a sum of 360°.

Classify Quadrilaterals p. 613

Fill in the organizer to classify and describe each figure. Then draw lines to connect the figures and show their relationships.

\qquad
\qquad

11-5 Polygons

What You'l| Learn \quad Scan the text in Lesson 11-5. Write two facts you learned about polygons.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

New Vocabulary Label the diagram with the correct terms.

Vocabulary Link Tessellation can be illustrated by real-world examples. Look around the room. Give two examples of realworld tessellations.
\qquad
\qquad
\qquad
\qquad

Main Idea

Details

Classify Polygons p. 617

Circle the figures that are not polygons. If a figure is not a polygon, write the reason inside or beside the figure.

Fill in each blank with the number of interior angles for each figure. Then write the sum of the measures of the interior angles.

1. heptagon
2. rhombus

A heptagon is a _sided figure.
So, $(n-2) 180=(--2) 180$
$n=$ \qquad The sum is \qquad -

A rhombus is a 4-sided figure. So, $(n-2) 180=(\ldots-2) 180$ $n=$ \qquad The sum is \qquad -

Cross out the figure that can not be used to make a tessellation. Explain.

\qquad
\qquad

11-6 Area: Parallelograms, Triangles, and Trapezoids

What You'll Learn

2.

Scan the text under the Now heading. List two things you will learn about in the lesson.

1. \qquad
\qquad
\qquad
\qquad

Active Vocabulary

base
altitude
New Vocabulary Label the diagram with the correct terms.

Vocabulary Link Altitude is a word that is used in everyday English. Find the definition of altitude using a dictionary.
Explain how the English definition can help you remember how altitude is used in mathematics.
\qquad
\qquad

Lesson 11-6 (continued)

Main Idea

Area of Parallelograms

 p. 624
Details

Compare the area of a rectangle and the area of a parallelogram.

Area		
	Rectangle	Parallelogram
Formula	$A=l w$	$A=$
Words	Area is length times width.	Area is \qquad times \qquad
Model		
Examples	A rectangle with length 6 cm and width 5 cm has an area of	A parallelogram with base 10 mm and height 9 mm has an area of

Area of Triangles and Trapezoids

pp. 625-626

Complete to summarize the area of a triangle and a trapezoid.

A parallelogram divided in half by a diagonal results in two congruent triangles. The area of a parallelogram is the sum of the area of the two \qquad . Because the area of a parallelogram is \qquad times \qquad the area of a triangle is half the \qquad times \qquad or \qquad .

A trapezoid with base a and base b can be divided in half by a \qquad resulting in two noncongruent triangles. The sum of the area of those two triangles is $\frac{1}{2} a h+\frac{1}{2} b h$ which is equal to \qquad ($+$ \qquad).

Helping You Remember

> Match the formula with the correct figure by drawing a line to connect them. Then find its area.

$$
A=\frac{1}{2} h(a+b)
$$

$A=\frac{1}{2}(b h)$

$A=b h$
\qquad
\qquad

11-7 Circles and Circumference

What You'll Learn
 Skim Lesson 11-7. Predict two things that you expect to learn based on the headings and the Key Concept box.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary
 New Vocabulary Fill in each blank with the correct term or phrase.

circle \quad the set of all \qquad in a plane that is the same
$\overline{\text { plane }}$ from a given ___ in the
center the given \qquad in the middle of a

\qquad
\qquad

Details

Circumference of Circles

 pp. 631-632Use Circumference to Solve Problems
p. 632

Label each part of the circle. Then find its circumference with the given diameter or radius. Round to the nearest tenth.

1. $r=15 \mathrm{~mm} \quad$ Use $C=2 \pi r$.
$C=2 \pi($ \qquad
$C=$ \qquad π
$C \approx$ \qquad mm
2. $d=8 \mathrm{yd} \quad$ Use $C=\pi d$.
$C=\pi($ \qquad _)
$C \approx$ \qquad yd

$$
-y u
$$

Fill in the blanks to complete the organizer. Round to the nearest tenth.

\qquad
\qquad

11-8 Area of Circles

What You'll Learn

Scan Lesson 11-8. List two headings you would use to make an outline of this lesson.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

New Vocabulary Label the diagram with the correct term or phrase.

Vocabulary Link Sector is a word that is used in everyday English. Find the definition of sector using a dictionary. Explain how the English definition can help you remember how sector is used in mathematics.
\qquad
\qquad

Main Idea

Area of Circles

pp. 636-637

Area of Sectors

p. 638

Details

Fill in each blank to summarize the formula for the area of a circle.

1. The area of a parallelogram is \qquad .
2. The circumference of a circle is \qquad .
3. The base of the parallelogram is \qquad the circumference of the circle.
So, $b=\frac{1}{2} C=\frac{1}{2}$ (\qquad) $=$ \qquad .
4. The height of the parallelogram is the \qquad of the circle.
So, $h=$ \qquad .
5. Substitute the values for b and h.

$$
A=b h=
$$

\qquad
\qquad
Fill in each blank to find the area of a sector.

$$
\begin{array}{rlrl}
A & =\frac{N}{360}\left(\pi r^{2}\right) & & \text { Use the formula. } \\
& =\frac{\square}{360}\left(\pi \square^{2}\right) & \begin{array}{l}
N \text { is the number } \\
\text { of degrees of the } \\
\text { central angle. }
\end{array} \\
& =-\pi & \begin{array}{l}
\text { Substitute for } N \\
\text { and } r .
\end{array} \\
& =\square \pi & \text { Simplify. }
\end{array}
$$

\qquad

11-9 Area of Composite Figures

What You'll Learn
 Skim the Examples for Lesson 11-9. Predict two things that you will learn about the area of composite figures.

2.
3. \qquad
\qquad
\qquad
\qquad

Active Vocabulary

Review Vocabulary Write the definition next to each term.
(Lesson 11-7)
circle \qquad
\qquad
radius \qquad
\qquad

New Vocabulary Fill in the blank with the correct term or phrase.
composite figure \quad A composite figure is made up of \qquad .
\qquad
\qquad

Main Idea

Area of Composite

 Figurespp. 644-645

Details

Fill in each blank to find the area of the composite figure.

Name the shapes that make up each composite figure. Then draw lines that show the shapes.
1.

2.

\qquad
\qquad

Helping You Remember

of the composite figure.
Polygon 1: \qquad
Polygon 2: \qquad
Polygon 3: \qquad

Composite Figure: \qquad
Find the area of each polygon and then the area

\qquad
\qquad

CHAPTER
 11 Distance and Angle

Tie It Together

Complete each graphic organizer with a term or formula from the chapter.

\qquad
\qquad

chaptir
 11 Distance and Angle

Before the Test

Now that you have read and worked through the chapter, think about what you have learned and complete the table below. Compare your previous answers with these.

1. Write an \mathbf{A} if you agree with the statement.
2. Write a \mathbf{D} if you disagree with the statement.

Distance and Angles	After You Read
- Parallel lines intersect to form right angles.	
- A figure that rotates about a fixed point does not change shape or size.	
- A quadrilateral is a polygon that has four sides.	
- An example of a polygon is a circle.	
- The formula to find the circumference of	
a circle is $C=2 \pi r$.	

Math Online Visit glencoe.com to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 11.

Are You Ready for the Chapter Test?

Use this checklist to help you study.I used my Foldable to complete the review of all or most lessons.I completed the Chapter 11 Study Guide and Review in the textbook.I took the Chapter 11 Practice Test in the textbook.I used the online resources for additional review options.
\square I reviewed my homework assignments and made corrections to incorrect problems.
\square I reviewed all vocabulary from the chapter and their definitions.

- Use the SQ3R method of reading: Survey, Question, Read, Recite, and Review. Survey the text by previewing the headings, boldface words, and examples. Ask questions about what you survey, read with purpose, recite out loud the main points and concepts without looking at the text, and review your text notes or use the chapter review at the end of the chapter.
\qquad
\qquad

Surface Area and Volume

Before You Read

Before you read the chapter, think about what you know about surface area and volume. List three things you already know about them in the first column. Then list three things you would like to learn about them in the second column.

K	W
What I know...	

Construct the Foldable as directed at the beginning of this chapter.

Note Taking Tips

- Include pictures with your notes.

Having diagrams that are labeled with specific parts of each figure will help you understand the formulas.

- Remember to study your notes daily.

Reviewing small amounts at a time will help you retain the information.
\qquad
\qquad
\qquad

chatio
 12 Surface Area and Volume

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on three-dimensional figures, one fact might be that a face is a flat surface. After completing the chapter, you can use this table to review for your chapter test.

Lesson	Fact
12-1 Three-Dimensional Figures	
12-2 Volume of Prisms	
12-3 Volume of Cylinders	
12-4 Volume of Pyramids, Cones, and Spheres	
12-5 Surface Area of Prisms	
12-6 Surface Area of Cylinders	
12-7 Surface Area of Pyramids and Cones	
12-8 Similar Solids	

\qquad

12-1 Three-Dimensional Figures

What You'll Learn Skim Lesson 12-1. Predict two things that you expect to learn based on the headings and the Key Concept box.

1. \qquad
2.

Active Vocabulary New Vocabulary Write the definition next to each term.
plane \qquad
\qquad
\qquad
\qquad
cone \qquad
cross section
\qquad
\qquad

Lesson 12-1 (continued)

Details

Identify ThreeDimensional Figures
pp. 664-665

Complete the organizer about three-dimensional figures.

What are they?	Draw a picture of a three-dimensional figure.
	Identify these figures.
Name some examples.	

Fill in each blank to summarize cross sections.

1. If a cylinder is sliced vertically, the cross section that would result is $\mathrm{a}(\mathrm{n})$ \qquad -.
2. When a triangular pyramid is sliced horizontally, the cross section that results is a(n) \qquad —.
3. When a cone is sliced at an angle, the cross section that results is a(n) \qquad .
4. If a \qquad is sliced vertically, the cross section that would result is a square.

Helping You Remember

The word polyhedron is composed of the prefix poly- and the root word-hedron. Find the definitions of poly- and hedron- in a dictionary. Write their definitions.
\qquad
\qquad

12-2 Volume of Prisms

What You'll Learn

2.

Scan Lesson 12-2. List two headings you would use to make an outline of this lesson.

1. \qquad
\qquad
\qquad
\qquad

Active Vocabulary

simplest form
like terms
simplifying the expressions

Review Vocabulary Match the term with its definition by drawing a line to connect the two. (Lessons 4-1, 4-2, and 5-1) equation that shows a relationship between quantities terms that contain the same variable
an algebraic expression that has no like terms and no parentheses
formula combine like terms

New Vocabulary Fill in each blank with the correct word or phrase.
volume
The measure of the \qquad occupied by a three-dimensional
\qquad .

Vocabulary Link Volume is a word that is used in everyday English. Find the definition of volume using a dictionary. Write two sentences of how the word volume is used in everyday life.
\qquad
\qquad

Details

Volume of Prism

pp. 671-672

Volume of Composite Figures p. 673

Compare finding the volume of a rectangular prism with a triangular prism.

	Rectangular Prism	Triangular Prism
Formula	$V=$	$V=$
Area of base	$B=$	$B=$
Sketch the prism and find its volume.	$\square 10 \mathrm{~cm}$	5 cm

Find the volume of the figure. Show your work.

Find the volume of the top.
Find the volume of the bottom. \qquad
Add the volumes. \qquad
\qquad
\qquad

12-3 Volume of Cylinders

What You'll Learn Scan the text under the Now heading. List two things you will learn about in the lesson.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

Review Vocabulary Write the term next to each definition. (Lessons 5-1 and 11-7)
\qquad the distance around a figure
\qquad an equation that shows a relationship between quantities
the surface enclosed by a figure
\qquad given point called the center
the given point from which all points on the circle are the same distance
the distance from the center to any point on the circle
\qquad the distance across the circle through its center
\qquad
the distance around a circle
\qquad the ratio of the circumference to the diameter of the circle
\qquad
\qquad

Lesson 12-3 (continued)

Volume of Cylinders
pp. 677-678

Volumes of Composite Figures
p. 678

Compare how to find the volume of the two figures by completing the chart.

Volume		
	Rectangular Prism	Cylinder
Formula	$V=B h=l w h$	$V=B h=$
Words	Volume is the area of the base times the height.	Volume is the
Model		sample model:
Examples	A rectangular prism with length 5 in., a width 9 in., and a height of 10 in. has a volume of	A cylinder with radius 7 mm and height 15 mm has a volume of

Fill in each blank to complete the steps to find the volume of a composite figure.

Step 1
Step 2
Step 3

the

Find the
of each
correct \quad using the

Find the of the or the volume of the

Helping You Remember

Describe how to find the height of a cylinder that has a volume of $2,211 \mathrm{~mm}^{3}$ and a radius of 8 mm .
\qquad
\qquad
\qquad

12-4 Volume of Pyramids, Cones, and Spheres

What You'll Learn

Skim Lesson 12-4. Predict two things you expect to learn based on the headings and the Key Concept boxes.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

Review Vocabulary Match each term with its definition by drawing a line to connect the two. (Lesson 12-1)
solid a three-dimensional figure with one circular base and a vertex connected by a curved side
polyhedron a three-dimensional figure
prism a solid with flat surfaces that are polygons
cone a polyhedron with one base that is a polygon
pyramid a polyhedron with two parallel congruent bases
New Vocabulary Fill in each blank with the correct term or phrase.
sphere \quad A set of \qquad in space that are a given \qquad r from the \qquad phrase.
\qquad
\qquad

Main Idea

Volume of a Cone p. 684

Volume of a Sphere pp. 684-685

Details

Compare the volume of a cylinder and a cone.
Step 1: Find the volume of the two figures.

$V=$
$V \approx$
Step 2: Make a conjecture about the relationship between the volume of a cylinder and the volume of a cone with the same height and radius.
\qquad

Write out each step to find the volume of a sphere with $r=3 \mathrm{~cm}$.

Helping You Remember pyramid at the right.
$V=\frac{1}{3} B h$
$V=\frac{1}{3}\left(\frac{1}{2} \cdot 5 \cdot 8\right) 27$
$V \approx 180$ \qquad

\qquad
\qquad

12-5 Surface Area of Prisms

What You'll Learn
 Scan the text in Lesson 12-5. Write two facts you learned about the surface area of prisms as you scanned the text.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

Review Vocabulary Write the term next to each definition. (Lessons 5-1 and 12-1)
the distance around a figure
a flat surface of a solid
one of two congruent faces of a prism

New Vocabulary Write the definition next to each term.

lateral face

\qquad
lateral area \qquad
surface area

Vocabulary Link Lateral is a word that is used in everyday English. Find the definition of lateral using a dictionary. Explain how the English definition can help you remember how lateral is used in mathematics.
\qquad
\qquad
\qquad
\qquad

Details

Prisms

pp. 691-692
Summarize information about lateral and surface area in the graphic organizer below.

Describe how to find the surface area of the figure below.
\qquad
\qquad
\qquad

\qquad

Helping You Remember

How does drawing a net help you find the surface area of a prism? Draw a prism and its net to justify your answer.
\qquad
\qquad

12-6 Surface Area of Cylinders

What You'll Learn Skim the lesson. Write two things you already know about the surface area of cylinders.

1. \qquad
\qquad
2. \qquad

Review Vocabulary Fill in each blank with the correct term or phrase. (Lesson 12-1)
cylinder a three-dimensional figure with congruent, bases that are circles connected by a \qquad side

cone a three-dimensional figure with one \qquad base and a
\qquad connected by a \qquad side
vertex where \qquad or more planes intersect at a \qquad
face a flat \qquad of a \qquad

Vocabulary Link Cylinders are used in everyday life. List four examples of when the lateral area or surface area of a cylinder may be needed.
\qquad
\qquad

Lesson 12-6 (continued)

Main Idea

Details

Surface Area of Cylinders

pp. 697-698
Draw the net of the cylinder. Label the radius (r), height (h), and circumference (C) on the net. Net

Fill in the blanks to complete the organizer about surface area of a cylinder.

Helping You Remember

You want to decorate the side and bottom of a cylindrical flower pot with material. Do you need to calculate the surface area of the pot or the lateral area?
\qquad
\qquad

12-7 Surface Area of Pyramids and Cones

What You'll Learn
 Skim the Examples for Lesson 12-7. Predict two things you think you will learn about the surface area of pyramids and cones.

1. \qquad
\qquad
2. \qquad

Active Vocabulary

Review Vocabulary Write the definition next to each term.
(Lesson 12-5)
lateral face \qquad

lateral area

\qquad
surface area

New Vocabulary Draw an arrow to the diagram that points the slant height of the pyramid. Then label it with the term slant height.
slant height $>$
regular pyramid

This figure is a \qquad because it has a base that is a regular polygon.
\qquad
\qquad

Main Idea

Details

Surface Area of Pyramids

pp. 702-703

Draw the net of the pyramid. Label slant height (ℓ), base (B), and side length (s) of the base on the net.

Figure

Net

Surface Area of Cones

p. 704

Compare the volume of a cone and the surface area of a cone by filling out the chart. Sample answers are given.

Cone	Volume	Surface Area
Formula	$V=\frac{1}{3} \pi r^{2} h$	$S=L+\pi r^{2}$
Words		
Example	Find the volume of a cone with a radius of 5 cm and a height of 7 cm. $V \approx$	Find the surface area of a cone with a radius of 5 cm and a slant height of 7 cm. $S \approx$

Helping You Remember

Prepare a script for a short presentation on how
to find the surface areas of pyramids and cones. Be sure to include any necessary vocabulary terms in your explanation. You may wish to include diagrams with your presentation.
\qquad
\qquad

12-8 Similar Solids

What You'll Learn

Active Vocabulary

Scan Lesson 12-8. List two headings you would use to make an outline of this lesson.

1. \qquad
\qquad
2. \qquad
\qquad
Review Vocabulary Match the term with the definition by drawing a line to connect the two. (Lessons 6-5 and 6-7)
cross products
similar figures
proportion
figures with congruent corresponding angles and proportional corresponding side lengths

New Vocabulary Fill in each blank with the correct term or phrase.
similar solid
Two figures that have the same \qquad and their measures are
\qquad .

Vocabulary Link Similar solids are seen in everyday life. Give an example of items that have the same shape but not necessarily the same size in real life.
\qquad
\qquad

Identify Similar Solids pp. 709-710

Properties of Similar Solids

pp. 710-711

Complete the organizer by filling in each blank to identify similar solids. Then complete the example.

Step 3:

If the \qquad are the solids are .

For each pair of solids listed in the table below, describe measurements you would need to determine if the pair is similar.

Pair of Solids	Measurements Needed
Rectangular Prisms	
Cylinders	
Square Pyramids	
Triangular Prisms	
Cones	

Helping You Remember

Describe the relationship between similar
figures for surface area and volume.
\qquad
\qquad
\qquad

cuntio
 12 Surface Area and Volume

Tre It Together

Fill in the formulas for each solid. Label the appropriate variables on each figure.

	Prism	Cylinder	Pyramid
Volume			
Lateral Area			
Surface Area			

\qquad
\qquad
\qquad

counte
 Surface Area and Volume

Before the Test

Review the ideas you listed in the table at the beginning of the chapter. Cross out any incorrect information in the first column. Then complete the table by filling in the third column.

K	W	L
What I know...	What I want to find out...	What I learned...

Math Online Visit glencoe.com to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 12.

Are You Ready for the Chapter Test?

Use this checklist to help you study.I used my Foldable to complete the review of all or most lessons.I completed the Chapter 12 Study Guide and Review in the textbook.I took the Chapter 12 Practice Test in the textbook.I used the online resources for additional review options.I reviewed my homework assignments and made corrections to incorrect problems.I reviewed all vocabulary from the chapter and their definitions.

- On handouts, homework, and workbooks that can be written in, underline and highlight significant information.
\qquad
\qquad
\qquad

chaptir
 13 Statistics and Probability

Before You Read

Before you read the chapter, respond to these statements.

1. Write an \mathbf{A} if you agree with the statement.
2. Write a \mathbf{D} if you disagree with the statement.

Before You Read	Statistics and Probability
	- The median of a set of data is the same thing as the average.
	- The range is the difference between the least and greatest numbers.
	A histogram is a type of graph that uses bars.
	- Probability is expressed as a number between 1 and 100.
	- When something is likely to happen, it is certain.

FOLDÁS B ES Study Organizer

Construct the Foldable as directed at the beginning of this chapter.

Note Taking Tips

- When you take notes, it may be helpful to sit as close as possible to the front of the class.
There are fewer distractions and it is easier to hear.
- When taking notes on statistics, include your own statistical examples as you write down concepts and definitions.
This will help you to better understand statistics.
\qquad
\qquad
\qquad

chante
 Statistics and Probability

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on measures of variation, one fact might be that the median of a set of data separates the set in half. After completing the chapter, you can use this table to review for your chapter test.

Lesson	Fact
$13-1$ Measures of Central Tendency	
$13-2$ Stem-and-Leaf Plots	
$13-3$ Measures of Variation	
$13-4$ Box-and-Whisker Plots	
$13-5$ Histograms	
$13-6$ Theoretical and Experimental	
$13-7$ Usobability	
$13-10$ Probability of Compound Events	
1 Permutations and Combinations	

\qquad
\qquad

13-1 Measures of Central Tendency

What You'll Learn
 Skim Lesson 13-1. Predict two things that you expect to learn based on the headings and the Key Concept box.

1. \qquad
\qquad
2. \qquad

Active Vocabulary

New Vocabulary Fill in each blank with the missing term or phrase.
mode the \qquad that occur \qquad
the \qquad when data is ordered from \qquad to
\qquad or the \qquad of the \qquad two numbers
measures of central tendency -
describes the \qquad of the data
mean
the \qquad of the data \qquad by the
\qquad of items in the \qquad set

Vocabulary Link Median is a word that is used in everyday English. Find the definition of median using a dictionary. Give two examples of how median might be used in everyday life.
\qquad
\qquad

Measures of Central Tendency
pp. 730-732

Details

Complete the organizer. Write the three kinds of measures of central tendency with its definition. Then write a problem with the solution to show an example for each.

The heights of a group of friends are $54,62,48,62,58$, and 58 inches. Fill in each blank to find the measures of central tendency.

1. Write the numbers in order from \qquad to \qquad
2. Find the \qquad of the numbers and \qquad by \qquad
3. The mean is \qquad the median is \qquad and
the mode is \qquad
\qquad
\qquad

13-2 Stem-and-Leaf Plots

What You'll Learn

Scan Lesson 13-2. List two headings you would use to make an outline of this lesson.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

New Vocabulary Label the stems and leaves in both plots. Then name the two types of plots.

leaves	863	0	479	0	479
	0	1	3779	1	3779
	8533	2	0058	2	0058
stem-and-leaf plot back-to-back stem-and-plot	9974	3	00113	3	0011347
	21	4	37	4	37
		5	1	5	1
			$3 \mid 1=31$		$0 \mid 9=9$

Main Idea

Details

Display Data p. 737

Explain the steps to construct a stem-and-leaf plot.

\qquad
\qquad

Details

Interpret Data

pp. 738-739

Complete the stem-and-leaf plot using the data in the table.

Books Checked Out Weekly					
115	113	125	145	119	117
101	156	154	118	154	132
100	122	106	111	126	130

What does the Stem ' 14 ' represent? \qquad
What is the greatest number of books checked out? \qquad
What is the mode of the data? \qquad
How many weeks does the data cover? \qquad

Helping You Remember

Measures of central tendency can be easily found using a stem-and-leaf plot. Explain how you could use the data in the stem-and-leaf plot below to find the mean, median, and mode. Then find the measures.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

13-3 Measures of Variation

What You'll Learn
 Skim the Examples for Lesson 13-3. Predict two things that you will learn about measures of variation.

1. \qquad
\qquad
2. \qquad

Active Vocabulary

Review Vocabulary Write the term next to the definition.
(Lesson 13-1)
\qquad The middle number when data is ordered from least to greatest or the mean of the middle two numbers

New Vocabulary Fill in the diagram with correct terms.
quartiles
upper quartile
lower quartile
interquartile range
outlier

\qquad
\qquad

Lesson 13-3 (continued)

Main Idea

Measures of Variation

pp. 743-745

Use Measures of Variation
pp. 745-746

Use the test scores from the table to answer the questions below.

Jackson	67	80	78	75	80	79	77	79	55
Terry	68	77	60	77	71	72	52	63	59

What is the range of Jackson's and Terry's scores? \qquad
What conclusions can be drawn from the ranges? \qquad
\qquad

What are the interquartile ranges for each student?

What conclusions can be drawn from the interquartile ranges?
\square
\qquad
\qquad
\qquad

13-4 Box-and-Whisker Plots

What You'll Learn
 Skim the lesson. Write two things you already know about box-and-whisker plots.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

New Vocabulary Fill in each blank with the correct term or phrase.
box-and-whisker plot \downarrow
uses a \qquad to show the \qquad of a set
of \qquad ; also known as a \qquad

Main Idea

Display Data p. 750

Details

Complete the organizer to explain the steps to construct a box-and-whisker plot. Then complete the example.

\qquad
\qquad

Main Idea

Interpret Box-andWhisker Plots
p. 750

Details

Use the information from the box-and-whisker plot to answer each question.

Ages of Arcade Players

1. Which arcade attracts a wider range of ages? \qquad
2. What age is 25% of the age group at Jim's Arcade less than?
3. Compare the median for both arcades. What can you conclude?
\qquad
\qquad

Helping You Remember

Describe in detail how to determine if an outlier exists in a data set.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

13-5 Histograms

What You'll Learn

Scan the text in Lesson 13-5. Write two facts you learned about histograms.

1. \qquad
\qquad
2. \qquad
\qquad

Review Vocabulary Write the term under the correct display. (Lessons 13-2 and 13-4)

New Vocabulary Write the term histogram under the correct display.

Vocabulary Link The data on a histogram is in equal intervals. Name three examples of data that could be displayed in a histogram.
\qquad
\qquad

Displayed Data
p. 757

Interpret Data

p. 758

Cross out the part of the concept circle that does not belong. Explain.

Use the information from the histogram to answer each question.

1. How many park visitors are under the age of 10 ? \qquad Ages of Park Visitors
2. How many more visitors are in the 10-14 age interval than in the 0-4 age interval?
3. About what percent of the visitors are between ages 15 and 19 ? \qquad
\qquad
\qquad
\qquad

Helping You Remember

Label the histogram: frequency, bar, interval, and histogram. Make a frequency table showing the same information as the histogram.

\qquad
\qquad

13-6 Theoretical and Experimental Probability

What You'll Learn
 Scan the text under the Now heading. List two things you will learn about in the lesson.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary New Vocabulary Fill in each blank with the correct term or

 phrase.simple event one \qquad or a collection of \qquad
outcomes the \qquad of an event or experiment
sample space \quad the set of all possible \qquad
random when each outcome is equally \qquad to occur
> probability

a \qquad that compares the number of \qquad outcomes to the number of \qquad outcomes
theoretical probability
what \qquad occur in an experiment experimental probability
what \qquad occurs when repeating a probability experiment many times
odds in favor the ___ that compares the number of ways an event \qquad occur to the number of ways that the event \qquad occur
odds against \quad the \qquad that compares the number of ways an event
\qquad occur to the number of ways that the event \qquad occur
\qquad
\qquad

Main Idea

Probability of Simple

 Eventspp. 765-767

Details

Fill in each blank with the terms, certain, impossible, or equally likely. Then answer the questions below with true or false.

1. Probability is a ratio that compares the number of possible outcomes to the number of favorable incomes.
\qquad
2. The closer a probability is to 1 , the less likely it is to occur.
3. Experimental probability is what actually happens, while theoretical probability is what should happen. \qquad

Use a Sample to Make a Prediction
p. 767

The table shows the results from a survey that asked students about their favorite school subject. If 50 more students are picked at random, predict how many will not have a favorite subject of math?

Favorite Subject	
subject	frequency
science	22
social studies	22
language arts	26
math	30

Helping You Remember

Look up theoretical and experimental in the dictionary. How can the definitions help you to remember the difference between theoretical probability and experimental probability?
\qquad
\qquad
\qquad
\qquad

13-7 Using Sampling to Predict

What You'll Learn Skim the lesson. Write two things you already know about using sampling to predict.

1. \qquad
2. \qquad

Active Vocabulary sample
population
unbiased sample
simple random sample
stratified random sample
systemic random sample
biased sample
convenience sample
voluntary response sample
\qquad
\qquad

Lesson 13-7 (continued)

Identify Sampling Techniques
pp. 771-772

Validating and Predicting Samples pp. 772-773

Compare biased and unbiased sampling techniques by completing the chart below. Sample answers are given.

Technique	Biased Sampling	Unbiased Sampling
What is it?		
How are they the same?		
How are they different?		
What are some examples?		
Is it biased or unbiased?	on-line polls that request visitors to participate: a surveyor who visits every $25^{\text {th }}$ house in neighborhood:	

A manufacturer makes 1500 phones and tests every $10^{\text {th }}$ phone for defects. Of the phones, 24 were defective.
Is this sampling valid? \qquad
How many of the 1500 could you expect to be defective? \qquad

Helping You Remember

biased and unbiased sampling?
How can you remember the difference between
\qquad
\qquad

13-8 Counting Outcomes

What You'll Learn
 Skim Lesson 13-8. Predict two things that you expect to learn based on the headings and the Key Concept box.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

Review Vocabulary Match each definition with the term by drawing a line to connect the two. (Lesson 13-6)
random
sample space
probability
outcomes
tree diagram -a Principle
the results of an event or experiment
the set of all possible outcomes
when each outcome is likely to occur
a ratio that compares the number of favorable outcomes to the number of possible outcomes

New Vocabulary Fill in each blank with the missing term or phrase.
\qquad that shows different \qquad for an \qquad or
\qquad
\qquad to the \qquad of
\qquad
\qquad

Lesson 13-8 (continued)

Main Idea

Details

Counting Outcomes

pp. 777-778

Write the two methods to find possible outcomes of an event. Then use each method to find the outcomes of the example.

Find the Probability of an Event
pp. 778-779

Find each probability using a number cube labeled 1 through 6.

1. What is the probability of tossing a 1 and then a 2 ?
2. What is the probability of tossing a number greater than 4 on two consecutive tosses?
\qquad
\qquad

13-9 Permutations and Combinations

What You'll Learn Scan Lesson 13-9. List two headings you would use to make an outline of this lesson.

1. \qquad
\qquad
2. \qquad

Active Vocabulary

Review Vocabulary Write the definition next to each term. (Lesson 13-6)
random
probability

theoretical probability

experimental probability
\qquad
\qquad
\qquad
\qquad
\qquad

New Vocabulary Fill in each blank with the correct word or phrase.

permutations

an \qquad or listing in which order \qquad important
an \qquad or listing in which order \qquad important

Vocabulary Link The root of permutation is permute. Look up permute in the dictionary. How can the English definition help you remember the mathematic definition?
\qquad
\qquad

Lesson 13-9 (continued)

Main Idea

Use Permutations

pp. 783-784

Use Combinations

pp. 784-785

Details

Fill in each blank to answer the question.
How many ways can a 4 -digit PIN number be made using the numbers 0 through 9 if each number can only be used once?
$P\left(__{~}\right)=\quad$ Write the notation for a permutation with 10 digits used 4 at a time.

$P(-\quad)$	$=-Z_{-} \cdot-\cdot$
$=$	

Use the Fundamental Counting Principle to find the number of possible permutations.

Cross out the part of the concept circle that does not belong. Then state the relationship between the remaining parts.

Helping You Remember

Complete the diagram by writing the words combinations and permutations in the correct blanks. Then write a sentence based on the diagram stating the difference between permutations and combinations.
\qquad

\qquad
\qquad

13-10 Probability of Compound Events

What You'll Learn

Skim the Examples for Lesson 13-10. Predict two things that you will learn about the probability of compound events.

1. \qquad
\qquad
2. \qquad
\qquad

Review Vocabulary Write the term next to the definition.
(Lesson 13-6)
\qquad
New Vocabulary Write the term next to each definition.
\qquad - The outcome of one event does not influence the outcomes of a second event.
consists of two or more simple events
two events that cannot happen at the same time

- The outcomes of one event affects the outcomes of a second event.

Vocabulary Link Independent and dependent are words that are used in everyday English. Describe an independent and dependent event that occurs in everyday life.
\qquad
\qquad
\qquad
\qquad
\qquad

Main Idea

Details

Probabilities of Independent and Dependent Events pp. 790-791

Mutually Exclusive Events
p. 792

Fill in each blank with dependent or independent.

1. A card is turned over and a number cube is tossed.
\qquad
2. One marble is randomly picked from a bag. Then a second marble is chosen without replacing the first marble. \qquad
3. A scarf is randomly chosen from a bag. After putting the first scarf back into the bag, another scarf is chosen.
\qquad
4. Two coins are tossed at the same time. \qquad
5. There are a dozen different flavored bagels in a bag. Jackson reaches in and grabs one. Then Iona grabs one.

Compare finding the probability of an independent or dependent event, and two mutually exclusive events. Sample answers are given.

	Independent Events	Dependent Events	Mutually Exclusive Events
What is it?			
How do you find the probability?			

\qquad
\qquad

CHAPTER
 Statistics and Probability

Tie It Together
List concepts and vocabulary from the chapter that fit into each square.

Statistics	Data Displays
Sampling	

\qquad
\qquad
\qquad

charite
 Statistics and Probability

Before the Test

Now that you have read and worked through the chapter, think about what you have learned and complete the table below. Compare your previous answers with these.

1. Write an \mathbf{A} if you agree with the statement.
2. Write a \mathbf{D} if you disagree with the statement.

Statistics and Probability	After You Read
- The median of a set of data is the same thing as the average.	
- The range is the difference between the least and greatest numbers.	
- A histogram is a type of graph that uses bars.	
- Probability is expressed as a number between 1 and 100 .	
- When something is likely to happen, it is certain.	

Math Online Visit glencoe.com to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 13.

Are You Ready for the Chapter Test?

Use this checklist to help you study.
\square I used my Foldable to complete the review of all or most lessons.I completed the Chapter 13 Study Guide and Review in the textbook.I took the Chapter 13 Practice Test in the textbook.I used the online resources for additional review options.I reviewed my homework assignments and made corrections to incorrect problems.I reviewed all vocabulary from the chapter and their definitions.

Study Tips

- If possible, rewrite your notes. Not only can you make them clearer and neater, rewriting them will help you remember the information.

