SKILL

TEACHER NOTES

Variables and Expressions

OBJECTIVE: Understand the uses of variables and expressions in algebra. Evaluate expressions. (Strand: Algebra)

f

USING THE TRANSPARENCY: Have students work in groups to determine the correct expression for the amount of money earned when working h hours in a week. Test out answers by evaluating the expressions with the hours worked shown in the table and compare answers for money earned.

USING THE STUDENT WORKBOOK: Encourage students to show all work clearly when evaluating expressions, including all steps in the order of operations process.

EXTENSION: Ask students to write an algebraic expression for the perimeter of a square.

Transparency, Skill 1

SKILL WARM UP

Variables and Expressions
In algebra, letters called variables are used to represent unknown quantities. A combination of one or more variables, numbers, and at least one operation is called an algebraic expression. To evaluate an algebraic expression, replace the variable or variables with known values and then use the order of operations.

Nate works as a waiter at Angelo's Italian Restaurant. He earns $\$ 3$ per hour worked plus a weekly tip amount of $\$ 35$. The table shows several possibilities for number of hours worked during one week and the amount earned.

Number of Hours Worked in a Week	Money Earned
8	$3 \cdot 8+35$ or 59
12	$3 \cdot 12+35$ or 71
16	$3 \cdot 16+35$ or 83
20	$3 \cdot 20+35$ or 95
h	$?$

If h represents any number of hours, what expression could you write to represent the amount of money Nate would earn when working h hours in a week? Use that expression to determine how much money Nate would earn when working a 25 -hour work week. Words The table shows the amount of money earned is calculated by multiplying Nate's hourly wage ($\$ 3$) and the amount of hours worked and then adding the \$35 weekly tip amount to that product.

Variable Let h represent the number of hours Nate works in a week.
Expression $3 \cdot h+35$ or $3 h+35$
If Nate works 25 hours in one week, he would earn $3 \cdot 25+35$ or $\$ 110$. \qquad

Student Workbook, p. 2

13. $4 x-2 y 26$	14. $6 z-x 3$	15. $18-2 \times 0$
16. $6 y-(x+z) 19$	17. $3 x-z 25$	18. $5(y+7) 60$
19. $2 x+y-z 21$	20. $5 z-y 5$	21. $4 x-(z+2 y)$
22. $\frac{2 x+3 z}{12} \quad 2$	23. $\frac{7 z-Y}{X}$	24. $\frac{5 y-7}{x} 2$
25. $(11-3 z)+x+y 19$	26. $7(x-z) 49$	27. $6 y-9 z 12$
28. $\frac{x y}{3}-z 13$	29. $\frac{40}{y}+x \quad 17$	30. $\frac{4(x-y)}{z} 8$
31. $3 x-2(y-z) 21$	32. $(14-6 z)+x$	33. $10 z-(x+y)$

APPLICATIONS

34. The weekly production costs at Jessica's T-Shirt Shack are given by the algebraic expression $75+7 s+12 t$ where s represents the number of short-sleeve shirts produced during the week and t represents the number of long-sleeve shirts produced during the week. Find the production cost for a week in which 30 short-sleeve and 24 long-sleeve shirts were produced. \$573
35. The perimeter of a rectangle can be found by using the formula $2 l+2 w$, where / represents the length of the rectangle and w epresents the width of the rectangle. Find the perimeter of a rectangular swimming pool whose length is 32 feet and whose width is 20 feet. $\mathbf{1 0 4}$ feet

Writing Expressions and Equations

OBJECTIVE: Translate verbal phrases and sentences into algebraic expressions and equations. (Strand: Algebra)

USING THE TRANSPARENCY: Use the same situation with varying numbers of friends, amounts spent on snacks, or total amounts spent and have students translate to the appropriate equation.

USING THE STUDENT WORKBOOK: Have students write their own verbal phrases and sentences and translate them together as a class.

EXTENSION: Have students find similar cell phone plans from different companies and write equations for each.

Student Workbook, p. 3

Name Date Writing Expressions and Equations
$T_{\text {ranslating verbal phrases and sentences into algebraic expressions and equations is }}$ an important skill in algebra. Key words and phrases play an essential role in this skill. The first step in translating a verbal phrase into an algebraic expression or a verbal sentence into an algebraic equation is to choose a variable and a quantity for the variable to represent. This is called defining a variable.
The following table lists some words and phrases that suggest addition, subtraction, multiplication, and division. Once a variable is defined, these words and phrases will be helpful in writing the complete expression or equation.

Addition	Subtraction	Multiplication	Division
plus	minus	times	divided
sum	difference	product	quotient
more than	less than	multiplied	per
increased by	subtract	each	rate
in all	decreased by	of	ratio
together	less	factors	separate

EXAMPLES

Translate the phrase "three times the number of students per class" into an algebraic expression.
Words three times the number of students per class Variable Let s represent the number of students per class. Expression 3s

Translate the sentence "The weight of the apple increased by five is equal to twelve ounces." into an algebraic equation.
Words The weight of the apple increased by five is equal to twelve ounces.
Variable Let w represent the weight of the apple. Equation $w+5=12$

[^0]
Transparency, Skill 2

SKILL WARM UP
Writing Expressions and Equations
Brittany is going to the movies with two friends. They spend a total of $\$ 22$ on tickets and snacks, $\$ 10$ of which is spent on snacks. Write an equation which could be used to find the price of a movie ticket.

The first step in translating verbal phrases and sentences into algebraic expressions and equations is to choose a variable and a quantity for the variable to represent.

In this example, the unknown quantity to be represented by a variable is the price of a movie ticket. Let p represent the price of a movie ticket.

Words The amount spent on movie tickets plus the amount spent on snacks equals the total amount spent, \$22.

Variable Let p represent the price of a movie ticket.

	amount spent on tickets	plus	amount spent on snacks	equals	total amount
	\downarrow	\downarrow		\downarrow	
Expression	$3 p$	+	10	=	22

So, the equation is $3 p+10=22$.

Glencoe/McGraw-Hill Course 2 Intervention

Student Workbook, p. 4

```
EXERCISES Translate each phrase into an algebraic expression
    1. seven points less than yesterday's score s-7
    2. the number of jelly beans divided into nine piles \frac{b}{9}
3. the morning temperature increased by sixteen degrees t+16
4. six times the cost of the old book 6b
5. two times the difference of a number and eight 2(n-8)
Translate each sentence into an algebraic equation.
6. The sum of four and a number is twenty. 4+\boldsymbol{n}=\mathbf{20}
7. Fourteen is the product of two and a number. 14=2n
8. Nine less than a number is three. }\boldsymbol{n}-\mathbf{9}=\mathbf{3
9. The quotient of a number and five is eleven. }\frac{\boldsymbol{n}}{\mathbf{5}}=\mathbf{11
0. Fifteen less than the product of a number and three is six
    3n-15=6
APPLICATIONS
11. Sierra purchased an ice cream cone for herself and three friends. The cost was \(\$ 8\). Define a variable and then write an equation that can be used to find how much Sierra paid for each ice cream cone. \(4 \mathbf{4 c}=\mathbf{8}\)
12. Nicholas weighed 83 pounds at his most recent checkup. He had gained 9 pounds since his last checkup. Define a variable and then write an equation to find Nicholas' weight at the previous checkup. \(\boldsymbol{w}+9=\mathbf{8 3}\)
13. There are three times as many people at the amusement park today than there were yesterday. Today's attendance is 12,000. Define a variable and then write an equation to find yesterday's attendance \(3 \mathbf{a}=12,000\)
Glencoe/McGraw-Hill Course 2 Intervention
```


Simplifying Expressions and Equations

OBJECTIVE: Write an algebraic expression or equation in simplest form by using the Distributive Property and combining like terms. (Strand: Algebra)

USING THE TRANSPARENCY: Have the students attempt to translate the word problem into an algebraic expression on their own before beginning the simplification process.

USING THE STUDENT WORKBOOK: Encourage students to check their solution for the problems involving the solution of an equation.

EXTENSION: Write terms involving similar variables on index cards and have students play a game by drawing several of the cards and creating an expression in simplest form with the terms on the cards drawn.

Student Workbook, p. 5

Transparency, Skill 3

sKILL WARM UP

Simplifying Expressions and Equations
Sophie earned d dollars babysitting. Her friend, Lily, earned two dollars more than Sophie. A third friend, Sarah, earned twice as much as Lily. Write an expression in simplest form that represents the total amount earned by the three girls.
Words Sophie earned d dollars. Lily earned two dollars more than Sophie. Sarah earned twice as much as Lily.
Variables Let $d=$ the amount Sophie earned. Let $d+2=$ the amount Lily earned. Let $2(d+2)=$ the amount Sarah earned.

Expression To find the total, add the expressions.
$d+(d+2)+2(d+2)=d+(d+2)+2(d)+2(2)$ Distributive Property
$=d+(d+2)+2 d+4 \quad$ Multiply.
$=(d+d+2 d)+2+4 \quad$ Associative Property Identity Property Distributive Property

Simplify.

Student Workbook, p. 6

```
EXERCISES Simplify each expression.
```

$\begin{array}{llll}\text { 1. } 6 y+9 y & \text { 15y } & \text { 2. }-4 m+2 m & -2 m \\ 3 . & 13 v-9 v & 4 v\end{array}$
4. $7 z+5-3 z+24 z+7$ 5. $2 p-11 p-9 p \quad$ 6. $3 g-6+6 \quad 3 g$
Solve each equation
7. $18 p-2 p+6=9+5 \frac{1}{2} \quad$ 8. $10 b-4-6 b=24-4 \quad 6$
9. $8 n+6=19+7 n \quad 13 \quad$ 10. $-3 m+8 m=11-4-2 m \quad 1$
11. $6(3 w+5)=2(10 w+10) \quad 5 \quad$ 12. $5(3 x+1)=2(13 x-3) \quad 1$
13. $3 a+4-2 a-7=4 a+3-2$ 14. $4(8-3 w)=32-8(w+2) \quad 4$

APPLICATIONS

15. Suppose you buy 5 videos that each cost c dollars, a DVD for $\$ 30$, and a CD for $\$ 20$. Write an expression in simplest form that represents the total amount spent. $\mathbf{5 c}+\mathbf{5 0}$
16. Malik earned d dollars raking leaves. His friend Isaiah earned three times as much. A third friend, Daniel, earned five dollars les than Malik. Write an expression in simplest form that represents the total amount earned by the three friends. 5d - 5
17. A rectangle has length $2 x-3$ and width $x+1$. Write an expression in simplest form that represents the perimeter of the rectangle. $\mathbf{6 x}-\mathbf{4}$

Adding and Subtracting Decimals

OBJECTIVE: Add and subtract decimals. (Strand: Number and Operation)

USING THE TRANSPARENCY: Give groups of three students an addition or subtraction problem. Have one student line up the decimal points and another student find the sum or difference. The third student checks the answer with a calculator.

USING THE STUDENT WORKBOOK: Have pairs of students create additional addition and subtraction problems using menus or advertisements.

EXTENSION: Tell students that the perimeter of a rectangle is 20 centimeters and the width is 6.25 centimeters. Ask them to find the length of the rectangle.

Transparency, Skill 4

sKILL WARM UP

Adding and Subtracting Decimals
To add 5.1, 3.84, and 4.3245, follow these steps.

Step 1	Step 2
Line up the decimal points.	Add as with whole numbers.
5!1000	5:1000
3;8400	3;8400
+43245	+413245
\downarrow	$13 ; 2645$
Annex zeros as needed to align the decimal points.	Place the decimal point in the answer in line with the decimal point in the addends.

To subtract 5.493 from 34.1, follow these steps.

Step 1	Step 2
Line up the decimal points.	Subtract as with whole numbers. $34: 100$ $28: 100$
Annex zeros as needed to align the decimal points.	lace the decimal point in the answer in line with the decimal points.

Student Workbook, p. 8

Multiplying and Dividing

 DecimalsOBJECTIVE: Multiply and divide decimals. (Strand: Number and Operation)

USING THE TRANSPARENCY: Ask the students what they should do if the product has fewer digits than the number of decimal places it needs. Ask the students what they should do if the dividend does not have enough decimal places to move the decimal point the same number of places as the divisor.

USING THE STUDENT WORKBOOK: Show students several meat labels. Read the weight of the meat and the price per pound. Ask the students how they would determine the total cost of the package of meat.

EXTENSION: Have pairs of students use the financial pages of a newspaper to make up problems about changing one currency to another.

Student Workbook, p. 9

Transparency, Skill 5

SKILL WARM UP

Multiplying and Dividing Decimals
Allison earns $\$ 10.25$ per hour as a cashier at a grocery store. One week, she worked 32.5 hours. How much did she earn that week?

To determine how much Allison earned, multiply $\$ 10.25$ by 32.5.

10.25 $\times 32.5$	\leftarrow two decimal places
5125	\leftarrow one decimal place
2050	
$\frac{3075}{333.125}$	\leftarrow three decimal places

Allison earned 333.125, or \$333.13.
If Allison earned $\$ 358.75$ one week, how many hours did she work that week?

To determine how many hours Allison worked, divide $\$ 358.75$ by $\$ 10.25$.
$10.25 . \frac{35}{358.75}$.
$\frac{3075}{5125}$
Change 10.25 to 1025 by moving the decimal point two places to the right.
Move the decimal point in the dividend two places to the right.
Divide as with whole numbers. Because the division ends with the ones place, it is not necessary to move the decimal point to the quotient.

Allison worked 35 hours.

Student Workbook, p. 10

7. 20.03	8. 10.26	9. 49.76
+1.86	+30.5	+ 5.17
37.2558	312.93	257.2592
Divide.		
2.3	0.35	3.4
10. $0 . 0 4 \longdiv { 0 9 2 }$	11. $0 . 7 \longdiv { 0 . 2 4 5 }$	12. $0 . 0 6 \longdiv { 0 . 2 0 4 }$
12	25	16.3
13. $0 . 6 3 \longdiv { 7 . 5 6 }$	14. $4 . 6 \longdiv { 1 1 5 }$	15. $8 . 1 \longdiv { 1 3 2 . 0 3 }$
9.23	6.5	30.5
16. $4 . 7 \longdiv { 4 3 . 3 8 1 }$	17. $0 . 6 8 \longdiv { 4 . 4 2 }$	18. $0 . 8 4 \longdiv { 2 5 . 6 2 }$
APPLICATIONS		
19. Members of the student body ran 87.75 miles on a 0.25 mile track to raise money for charity. How many laps did they run?		
20. A factory manager needs 3.25 yards of material to make a skirt. How many yards of fabric must be used to make 200 skirts? 650 yd		
21. Samantha worked 40.5 hours this week. She makes $\$ 9.50$ per hour. How much money did she earn this week? \$384.75		
22. Batting averages are calculated to the nearest thousandth. Hikiro has 85 hits in 200 at bats. What is his batting average? 0.425		
23. Joshua took a 37.5 -mile boat trip. It took him 2.5 hours. What was the average speed of the boat? $\mathbf{1 5}$ miles per hour		
24. Julia boug How much	nds of mixed n ounds of nuts cos	cost $\$ 7.49$ per pou 6.22

OBJECTIVE: Add and subtract fractions. (Strand: Number and Operation)

USING THE TRANSPARENCY: On the chalkboard, draw an oversized ruler marked in eighth-inch increments. Draw arrows to model $\frac{1}{8}+\frac{1}{4}$.
USING THE STUDENT WORKBOOK: Explain that there are many common denominators for any set of fractions, but only one least common denominator. Other common denominators may be used, but the answers will need to be simplified.

EXTENSION: Have students use fraction tiles to model one of the application exercises.

Student Workbook, p. 11

Name Date

Adding and Subtracting Fractions
$T_{\text {o add or subtract fractions with unlike denominators, rename the fractions }}$ so that they have a common denominator.
EXAMPLES Find each sum or difference.

The difference is $\frac{5}{9}$. The difference is $\frac{11}{24}$. The difference is $2 \frac{3}{5}$.

Transparency, Skill 6

SKIIL WARMUP

Adding and Subtracting Fractions
What fraction of each dollar is spent on utilities and mortgage expenses?

Add $\frac{6}{25}$ and $\frac{3}{10}$

To add fractions with unlike denominators, rename the fractions so that they have a common denominator.

Household Expenses	
Mortgage	$\frac{3}{10}$
Maintenance	$\frac{9}{100}$
Housekeeping Supplies	$\frac{1}{10}$
Property Taxes	$\frac{3}{25}$
Utilities	$\frac{6}{25}$
Furnishings	$\frac{3}{20}$

$$
\begin{array}{ll}
\frac{6}{25}=\frac{12}{50} & \text { Find the } L C D \text { of } 25 \text { and } 10 . \\
+\frac{3}{10}=+\frac{15}{50} & \text { The } L C D \text { of } 25 \text { and } 10 \text { is } 50 . \\
\frac{27}{50} & \text { Rename } \frac{6}{25} \text { as } \frac{12}{50} \text {, and } \frac{3}{10} \text { as } \frac{15}{50} . \\
\frac{27}{50} \text { is spent on utilities and mortgage expenses. }
\end{array}
$$

How much more is spent on furnishings than is spent on housekeeping supplies?
Subtract $\frac{1}{10}$ from $\frac{3}{20}$.

Student Workbook, p. 12

7. $5 \frac{1}{4}$	8.		9.	13
$+7 \frac{1}{3}$		$+8 \frac{2}{3}$		$+9 \frac{7}{8}$
127 ${ }^{12}$		$20 \frac{5}{12}$		$22 \frac{7}{8}$
10. $15 \frac{1}{2}$	11.	$12 \frac{1}{2}$	12.	$14 \frac{5}{8}$
$+9 \frac{4}{5}$		$-8 \frac{2}{3}$		$-6 \frac{5}{6}$
$25 \frac{3}{10}$		$3 \frac{5}{6}$		$7 \frac{19}{24}$
13. $18 \frac{7}{8}-1357$		11-3 ${ }^{\frac{5}{9}} \mathbf{7} \mathbf{4}$	15.	$16 \frac{2}{5}-13 \frac{3}{4} \quad 2 \begin{aligned} & 13 \\ & 20\end{aligned}$
16. $\frac{3}{10}+\frac{4}{15} \frac{17}{30}$	17.	$\frac{3}{8}+\frac{5}{12} \quad \frac{19}{24}$	18.	$18 \frac{5}{18}-8 \frac{1}{9} \quad \mathbf{1 0} \frac{1}{6}$
19. $2 \frac{1}{4}+3 \frac{1}{2}+5 \frac{5}{6}$	20.	$15 \frac{3}{4}+12 \frac{5}{16}+10 \frac{3}{8}$	21.	$21+8 \frac{7}{10}+14 \frac{3}{4}$
$1 \frac{17}{12}$		$38 \frac{7}{16}$		$44 \frac{9}{20}$
APPLICATIONS				

22. Ashley spends $\frac{1}{4}$ of her study time studying math and $\frac{1}{6}$ of her time studying history. How much of her study time does she spend on math and history? $\frac{5}{12}$
23. Hinto repaired her bike for $\frac{5}{6}$ hour and then rode it for $\frac{3}{5}$ hour. How much more time did she spend repairing her bike? $\frac{\mathbf{7}}{\mathbf{3 0}}^{5} \mathbf{h}$
24. A tailor buys some cloth to make pants. He buys $3 \frac{5}{6}$ yards of one type of fabric and $4 \frac{7}{36}$ yards of another. How much fabric did he buy in all? $8 \frac{1}{36} \mathbf{y d}$
25. A park ranger led a group of campers on a $5 \frac{1}{2}$-mile hike. They have already hiked $2 \frac{1}{3}$ miles. How far do they have yet to hike? $\mathbf{3} \frac{\mathbf{1}}{\mathbf{1 6}} \mathbf{~ m i}$

SKILL

 TEACHER NOTESMultiplying and Dividing Fractions

OBJECTIVE: Multiply and divide fractions. (Strand: Number and Operation)

USING THE TRANSPARENCY: Illustrate $\frac{5}{8} \times \frac{1}{2}$ by drawing a rectangle and shading $\frac{5}{8}$ of it. Then use darker shading for $\frac{1}{2}$ the shaded region.

USING THE STUDENT WORKBOOK: Illustrate division of fractions by drawing $\frac{3}{4}$ of a circle. Ask students how many $\frac{1}{8}$ sections are in the drawing.

EXTENSION: Use colored transparency strips to model multiplication and division.

Student Workbook, p. 13

Name
Multiplying and Dividing Fractions
$T_{\text {o multiply fractions, multiply the numerators and multiply the denominators. }}$
EXAMPLE
What is the product of $\frac{5}{6}$ and $\frac{9}{10}$?
$\frac{5}{6} \times \frac{9}{10}=\frac{5 \times 9}{6 \times 10} \quad \begin{aligned} & \text { Multiply the numerators. } \\ & \text { Multiply the denominators. }\end{aligned}$
Multiply the denominators.
$=\frac{45}{60}$ or $\frac{3}{4} \quad$ Simplify.
The product is $\frac{3}{4}$.
$T_{\text {o divide by a fraction, multiply by its reciprocal. }}$
EXAMPLE What is the quotient of $\frac{4}{15}$ and $\frac{2}{5}$?

$\frac{4}{15} \div \frac{2}{5}=\frac{4}{15} \times \frac{5}{2}$	Multiply by the reciprocal of $\frac{2}{5}$, which is $\frac{5}{2}$. $=\frac{4}{15} \times \frac{5}{2}$
Multiply the numerators. $=\frac{20}{30}$ or $\frac{2}{3}$ Mutiply the denominators. Suplify.	
quotient is $\frac{2}{3}$.	

EXERCISES
Multiply. Express each answer in simplest form.
$\begin{array}{lll}\text { 1. } \frac{2}{3} \times \frac{1}{4} \frac{1}{6} & \text { 2. } \frac{3}{7} \times \frac{1}{2} \frac{3}{14} & \text { 3. } \frac{7}{10} \times \frac{5}{7} \frac{1}{2}\end{array}$
$\begin{array}{lll}\text { 4. } \frac{5}{8} \times \frac{1}{4} \frac{5}{32} & \text { 5. } \frac{1}{6} \times \frac{3}{5} & \frac{1}{10}\end{array}$ 6. $\frac{4}{5} \times \frac{9}{10} \frac{18}{25}$
$\begin{array}{llll}\text { 7. } 6 \times \frac{2}{3} & 4 & \text { 8. } \frac{3}{5} \times 10 \quad 6 & \text { 9. } 12 \times \frac{5}{16} \quad 3 \frac{3}{4}\end{array}$

Transparency, Skill 7

SKIII WARM UP

Multiplying and Dividing Fractions
If two thirds of the junior class are girls, what fraction of the entire school population are girls in the junior class?
Multiply $\frac{3}{10}$ by $\frac{2}{3}$.
To multiply fractions, multiply the numerators and multiply the denominators.

Central High School	
Class	Fraction of School Population
Freshman	$\frac{1}{4}$
Sophomore	$\frac{1}{5}$
Junior	$\frac{3}{10}$
Senior	$\frac{1}{4}$

$\frac{3}{10} \times \frac{2}{3}=\frac{3 \times 2}{10 \times 3} \quad \begin{aligned} & \text { Multiply the numerators. }\end{aligned}$ $=\frac{6}{30}$ or $\frac{1}{5}$ Simplify.
One fifth of the student population are girls in the junior class.
If $\frac{3}{32}$ of the student population are boys in the freshman class,
what fraction of all freshman are boys?
Divide $\frac{3}{32}$ by $\frac{1}{4}$.
To divide by a fraction, multiply by its reciprocal.
$\frac{3}{32} \div \frac{1}{4}=\frac{3}{32} \times \frac{4}{1}$ Multiply by the reciprocal of $\frac{1}{4}$, which is $\frac{4}{1}$.
$=\frac{3 \times 4}{32 \times 1}$ Multiply the numerators.
$=\frac{3 \times 4}{32 \times 1}$ Multiply the denominators.
$=\frac{12}{32}$ or $\frac{3}{8}$ Simplify.
Three eighths of the freshman class are boys.

Student Workbook, p. 14

$$
\begin{aligned}
& \text { Divide. Express each answer in simplest form. } \\
& \begin{array}{llll}
\text { 10. } \frac{3}{4} \div \frac{1}{2} \frac{1}{2} & \text { 11. } \frac{1}{5} \div \frac{1}{4} \frac{4}{5} & \text { 12. } \frac{3}{8} \div \frac{3}{4} \frac{1}{2} \\
\begin{array}{llll}
\text { 13. } \frac{4}{5} \div \frac{2}{5} & \text { 14. } \frac{7}{8} \div \frac{1}{4} & 3 \frac{1}{2} & \text { 15. } \frac{4}{7} \div \frac{8}{9} \frac{9}{14} \\
\text { 16. } \frac{4}{9} \div \frac{2}{3} & \frac{2}{3} & \text { 17. } \frac{5}{9} \div 5 \frac{1}{9} & \text { 18. } 20 \div \frac{3}{10} 66 \frac{2}{3} \\
\text { Find each product or quotient. Express each answer in simplest form. } \\
\text { 19. } \frac{2}{3} \times \frac{5}{9} \frac{10}{27} & \text { 20. } \frac{1}{6} \div \frac{2}{9} \frac{3}{4} & \text { 21. } \frac{9}{10} \div \frac{1}{4} 3 \frac{3}{5} \\
\text { 22. } \frac{1}{15} \times 15 & \text { 13. } \frac{15}{16} \div \frac{15}{16} & \text { 14. } \frac{4}{5} \times \frac{15}{24} \frac{1}{2}
\end{array}
\end{array} . l
\end{aligned}
$$

APPLICATIONS

25. A piece of lumber 12 feet long is cut into pieces that are each $\frac{2}{3}$ foot long. How many short pieces are there? 18
26. About $\frac{1}{20}$ of the population of the world lives in South America. If $\frac{1}{35}$ of the population of the world lives in Brazil, what fraction of the population of South America lives in Brazil? $\frac{4}{7}$
27. There is $\frac{1}{3}$ pound of peanuts in 2 pounds of mixed nuts. What part of the mixed nuts are peanuts? $\frac{\mathbf{1}}{\mathbf{6}}$
28. Three fourths of an apple pie is left over from dessert. If the pie was originally cut in $\frac{1}{16}$ pieces, how many pieces are left? 12
29. A recipe calls for $\frac{1}{8}$ cup of sugar. Christopher is making half
the recipe. How much sugar will he need? $\frac{\mathbf{1}}{16} \mathrm{c}$
30. Ms. Valdez has 2 dozen golf balls. She lost $\frac{1}{3}$ of them. How many golf balls does she have left? 16

Work Backward

OBJECTIVE: Solve problems by working backward or backtracking. (Strand: Problem Solving)

USING THE TRANSPARENCY: Discuss inverse operations and their role in the workbackward strategy.

USING THE STUDENT WORKBOOK: Separate the class into small groups. Read the following problem. If I add 3 to my number, then divide by 6 , the answer is 2 . Guess my number. Ask one student in each group to state a problem involving two operations similar to the example. The student who correctly determines the number then makes up a problem.

EXTENSION: Ask students to suggest situations for which the working-backward strategy is a reasonable strategy.

Student Workbook, p. 15

Name Date
Work Backward
Some problems start with the end result and ask for something that happened earlier. The strategy of working backward, or backtracking, can be used to solve problems like this. To use this strategy, start with the end result and undo each step.

Transparency, Skill 8

SKILL 8 WARM UP

Work Backward
Whitney is buying a new coat. She has a coupon for $\$ 5$ off the price of the coat which is applied after her end-of-the-season discount. If the final price of the coat is $\$ 72$, what was the original
 price of the coat?
To solve this problem, use a flowchart to work backward from the final price.

Start with the final price.

Add $\$ 5$ to the final price.

Divide by 0.5 .
$\$ 154 \xrightarrow{\times 0.5} \$ 77-572$
The original price of the coat was $\$ 154$.

Glencoe/MCGraw-Hill Course 2 Intervention

Student Workbook, p. 16

EXERCISES Solve by working backward

1. A number is added to 12 , and the result is multiplied by 6 . The final answer is 114. Find the number. 7
2. A number is divided by 3 , and the result is added to 20 . The result is 44 . What is the number? 72
3. A number is divided by 8 , and the result is added to 12 . The final answer is 78 . Find the number. 504
4. Twenty five is added to a number. The sum is multiplied by 4, and 35 is subtracted from the product. The result is 121 . What is the number? 14
5. A number is divided by three, and 14 is added to the quotient. The sum is multiplied by 7 . The product is doubled. The result is 252 . What is the number? 12

APPLICATIONS

6. A bacteria population doubles every 8 hours. If there are 1,600 bacteria after 2 days, how many bacteria were there at the beginning? 25 bacteria
7. Each school day, Alexander takes 35 minutes to get ready for school. He takes 5 minutes to walk to Jaaron's house. The two boys take 15 minutes to walk from Jaaron's house to school School starts at 8:10 A.M. If the boys want to get to school at least 10 minutes before school starts, what is the latest Alexander must get out of bed? 7:05 A.M.
8. A fence is put around a dog pen 10 feet wide and 20 feet long. Enough fencing is left over to also fence a square garden with an area of 25 square feet. If there are 3 feet left after the fencing is completed, how much fencing was available at the beginning? $\mathbf{8 3} \mathbf{~ f t}$

Properties

OBJECTIVE: Review addition and multiplication properties. (Strand: Number and Operation)

USING THE TRANSPARENCY: Watch for students who confuse the Commutative Property with the Associative Property. Emphasize that the Commutative Property involves only the order of numbers, while the Associative Property involves only the grouping of numbers.

USING THE STUDENT WORKBOOK: Use base-ten blocks or counters to illustrate the Commutative, Associative, and Distributive Properties for expressions. For example, $5 \times 3=3 \times 5,3 \times(4 \times 5)=(3 \times 4) \times 5$, and $3 \times(4+5)=3 \times 4+3 \times 5$.

EXTENSION: Have the students work together to research the Reflexive, Symmetric, and Transitive Properties of Equality.

Student Workbook, p. 17

Name

Properties

$T_{\text {The alue stows the properies for addition and mulutipiciaion. }}$

Property	Examples	
Commutative The sum or product of two numbers is the same regardless of the order in which they are added or multiplied.	$\begin{aligned} & \text { Addition } \\ & 2+3=3+2 \\ & 5=5 \end{aligned}$	Multiplication $4 \times 6=6 \times 4$ $24=24$
Associative The sum or product of three or more numbers is the same regardless of the way in which they are grouped.	Addition $\begin{aligned} (5+2)+6 & =5+(2+6) \\ 7+6 & =5+8 \\ 13 & =13 \end{aligned}$	Multiplication $\begin{aligned} (3 \cdot 4) \cdot 7 & =3 \cdot(4 \cdot 7) \\ 12 \cdot 7 & =3 \cdot 28 \\ 84 & =84 \end{aligned}$
Distributive The sum of two addends multiplied by a number is equal to the products of each addend and the number.	$\begin{aligned} 5 \cdot(6+2) & =(5 \cdot 6)+(5 \cdot 2) \\ 5 \cdot(8) & =30+10 \\ 40 & =40 \end{aligned}$	
Identity Property of Addition The sum of a number and 0 is the number.	$9+0=9$	
Identity Property of Multiplication The product of a number and 1 is the number.	$15 \times 1=15$	
Inverse Property of Addition The sum of a number and its additive inverse (opposite) is 0 .	$4+(-4)=0$	
Inverse Property of Multiplication The product of a number and its multiplicative inverse (reciprocal) is 1.	$\begin{aligned} 2 \times \frac{1}{2} & =\frac{2}{1} \times \frac{1}{2} \\ & =1 \end{aligned}$	

EXERCISES Name the additive inverse, or opposite of each number. $\begin{array}{llllll}\text { 1. } 8 & -8 & \text { 2. } 5-5 & \text { 3. } \frac{3}{4}-\frac{3}{4} & \text { 4. } 1 \frac{1}{2} & -1 \frac{1}{2}\end{array}$
Name the multiplicative inverse, or reciprocal of each number.
$\begin{array}{llllllll}\text { 5. } 4 & \frac{1}{4} & \text { 6. } 7 \frac{1}{7} & \text { 7. } \frac{2}{5} \frac{5}{2} & \text { 8. } \frac{7}{16} & \frac{16}{7}\end{array}$

Transparency, Skill 9

9

WARM UP

Properties
The table below describes the properties for addition and multiplication. The Examples column provides examples of each property using numbers.

Property	Examples	
Commutative The sum or product of two numbers is the same regardless of the order in which they are added or multiplied.	$\begin{aligned} & \text { Addition } \\ & 4+6=6+4 \\ & 10=10 \end{aligned}$	Multiplication $\begin{aligned} 8 \times 3 & =3 \times 8 \\ 24 & =24 \end{aligned}$
Associative The sum or product of three or more numbers is the same regardless of the way in which they are grouped.	Addition $\begin{aligned} (1+3)+7 & =1+(3+7) \\ 4+7 & =1+10 \\ 11 & =11 \end{aligned}$	Multiplication $\begin{aligned} (5 \cdot 2) \cdot 3 & =5 \cdot(2 \cdot 3) \\ 10 \cdot 3 & =5 \cdot 6 \\ 30 & =30 \end{aligned}$
Distributive The sum of two addends multiplied by a number is equal to the products of each addend and the number.	$\begin{aligned} 9 \cdot(4+8) & =(9 \cdot 4)+(9 \cdot 8) \\ 9 \cdot(12) & =36+72 \\ 108 & =108 \end{aligned}$	
Identity Property of Addition The sum of a number and 0 is the number.	$15+0=15$	
Identity Property of Multiplication The product of a number and 1 is the number.	$32 \times 1=32$	
Inverse Property of Addition The sum of a number and its additive inverse (opposite) is 0 .	$2+(-2)=0$	
Inverse Property of Multiplication The product of a number and its multiplicative inverse (reciprocal) is 1.	$\begin{aligned} 3 \times \frac{1}{3} & =\frac{3}{1} \times \frac{1}{3} \\ & =1 \end{aligned}$	

GlencoemGGraw+Hill

Student Workbook, p. 18

Name the property shown by each statement.
9. $34+42=42+34$ Commutative Property of Addition
11. $\frac{1}{16} \times 16=1$

Inverse Property of Multiplication
13. $\frac{2}{5} \cdot \frac{5}{3}=\frac{5}{3} \cdot \frac{2}{5}$

Commutative Property of Multiplication
15. $256+0=256$

Identity Property of Addition
17. $1 \times 143=143$ Identity Property of Multiplication
10. $8 \times(53+12)=(8 \times 53)+(8 \times 12)$ Distributive Property
12. $16 \cdot(5 \cdot 15)=(16 \cdot 5) \cdot 15$ Associative Property of Multiplication
14. $(32+48)+52=32+(48+52)$ Associative Property of Addition
16. $\frac{3}{10} \cdot \frac{10}{3}=$ Inverse Property of Multiplication
18. $81+(-81)=0$ Inverse Property of Addition

APPLICATIONS

19. Michael rides his bike $2 \frac{3}{5}$ as long as Jacob. Find Michael's riding time if Jacob rides for 45 minutes. 117 minutes
20. A daisy is 24 inches tall. The height of a sunflower is $3 \frac{1}{2}$ times the height of the daisy. Find the height of the sunflower. 84 inches
21. Jasmine buys an apple for $\$ 0.45$, an orange for $\$ 0.55$, and a pear for $\$ 0.99$. Write an expression you could use to mentally calculate her total. What is her total? ($\mathbf{0 . 4 5}+\mathbf{0 . 5 5})+\mathbf{0 . 9 9 ;} \mathbf{\$ 1 . 9 9}$
22. The distance from the library to the park is 1.2 miles, and the distance from the park to the pool is 0.5 mile. The park is between the library and the pool Show that the distance from the library to as the distance from the pool to the library. $\mathbf{1 . 2}+\mathbf{0 . 5}=\mathbf{0 . 5}+\mathbf{1 . 2}$
23. Greeting cards cost $\$ 2$ each and wrapping paper costs $\$ 3$ per roll. Write an expression you could use to find the total cost of buying 6 greeting cards and 6 rolls of wrapping paper. What is the total cost? $\mathbf{6 (2}+\mathbf{3}) ; \mathbf{3 0}$

SKILL

TEACHER NOTES

Function Tables

OBJECTIVE: Make function tables. (Strand: Algebra)

USING THE TRANSPARENCY: Tell students that a handicap in golf is subtracted from the actual score. Ask students to write an equation for finding the final score if a person has a handicap of 15 .

USING THE STUDENT WORKBOOK: If a family of 9 wants to buy each family member x tacos, the equation $y=9 x$ represents the number of tacos they would need to buy. Ask students to write an equation for their family.

EXTENSION: Ask students to write an equation for the function table.

x	\boldsymbol{y}
0	0
5	45
8	72

10

WARM UP

Function Tables
Shelby likes to go bowling. In her Saturday morning league, she has a handicap of 12 points. This means that she must add 12 points to each game score. In this way, all bowlers have a chance to win.

The equation that can be used to compute Shelby's final game score is $y=x+12$, where x is the actual score and y is the final score. Make a function table showing the final score if Shelby's actual score is $115,120,122,124,127$, or 130 .
$y=x+12$

\boldsymbol{x}	$\boldsymbol{x}+12$	\boldsymbol{y}
115	$115+12$	127
120	$120+12$	132
122	$122+12$	134
124	$124+12$	136
127	$127+12$	139
130	$130+12$	142

Student Workbook, p. 20

Problem-Solving Strategies

OBJECTIVE: Solve problems using guess-andcheck, looking for a pattern, or eliminating possibilities. (Strand: Problem Solving)

USING THE TRANSPARENCY: Discuss the usefulness of examining information to look for a pattern. Encourage students to describe the pattern using words.

USING THE STUDENT WORKBOOK: Tell students that when using the guess-and-check strategy, each new guess should reflect the results from the last guess. You may want to suggest that students cross out the eliminated possibilities when using the eliminatingpossibilities strategy.

EXTENSION: Have students make up several patterns that begin with $1,2, \ldots$.

Transparency, Skill 11

sKILL WARM UP

Problem-Solving Strategies

Logan has a part of a schedule for the bus that leaves from the corner near his house to go downtown. He wants to catch the bus sometime between 11:00 A.M. and 11:30 A.M. When should he expect the bus to pick up passengers during this time frame?
To solve this problem, look for a pattern.

The bus seems to leave every 35 minutes. Extend the pattern to find when the bus will leave between 11:00 A.m. and 11:30 A.m.

According to the pattern, the bus will pick up passengers at the corner near Logan's house at 11:15 A.M.

Student Workbook, p. 21

Student Workbook, p. 22

```
EXERCISES Solve.
    1. Fill in the boxes at the right with the digits 0, 1, 3,4,5, and 7
        to make a correct multiplication problem. Use each digit
        exactly once.
    2. Write the next two numbers in the pattern
        \frac{1}{2}},\frac{2}{3},\frac{3}{4},\frac{4}{5}\ldots\frac{5}{6},\frac{6}{7
        M 
    3. Does 81.4 }\times0.68\mathrm{ equal 553.52,55.352, or 5.5352? Do not
        actually compute. 55.352
    4. What is the total number of rectangles in the
        figure at the right? }\mathbf{36}\mathrm{ rectangles
```


applcations

```
5. Abby's test scores were \(95,82,78,84\), and 88 . Is the best estimate of her average test score \(90,85,70\), or 75 ? 85
6. Erica has some quarters and dimes in her pocket. The value of the coins is \(\$ 1.65\). If she has a total of 9 coins, how many quarters and how many dimes does Erica have? 5 quarters and 4 dimes
7. James wants to work up to doing 40 sit-ups a day. He plans to do 5 sit-ups the first day, 9 sit-ups the second day, 13 sit-ups do 5 sit-ups the first day, 9 sit-ups the second day, 13 sit-ups
the third day, and so on. On what day will he do 45 sit-ups? 11th day
8. The school bell rings at 8:05 A.M., 8:47 A.M., 8:50 A.M., 9:32 A.M., 11:05 A.M, 9:35 A.M., 10:17 A.M., 10:20 A.M., and 11:02 A.M. If the pattern 11:47 A.M., continues, what are the next three times the bell will ring? 11:50 A.m.
9. Armando bought a car. He paid \(\$ 3,000\) down and will pay \(\$ 350\) per month for 48 months. Does the car cost closer to \(\$ 30,000, \$ 25,000, \$ 20,000\), or \(\$ 15,000\) ? \(\mathbf{\$ 2 0 , 0 0 0}\)
10. Jennifer bought some cookies for 554 each and some bottles of fruit drink for \(80 \$\) each. She spent \(\$ 5.70\). How many cookies and bottles of fruit drink did she buy? \(\mathbf{6}\) cookies and \(\mathbf{3}\) bottles fruit drinks
11. The length of a rectangle is 6 more inches than the width.
The area of the rectangle is 216 square inches. What are the dimensions of the rectangle? 12 in . by 18 in.
Glencoe/McGraw-Hill Course 2 Intervention
```


Divisibility Rules

OBJECTIVE: Determine if a number is divisible by 2, 3, 5, 6, 9, or 10 . (Strand: Number and Operation)

USING THE TRANSPARENCY: Have students make a chart in which they list the divisibility rules with several examples for each. Focus on the relationship between the rules for 2,3 , and 6 .

USING THE STUDENT WORKBOOK: Have students write down his or her house number or the last four digits of his or her phone number and determine if the number is divisible by $2,3,5,6,9$, or 10 .

EXTENSION: Have students write a rule for a number that is divisible by 15 .

Student Workbook, p. 23

Name Date \qquad
Divisibility Rules
Son
ometimes we need to know if a number is divisible by another number. In other words, do
divisibility rules.

A number is divisible by

- 2 if the ones digit is divisible by 2 .
- 3 if the sum of the digits is divisible by 3
- 5 if the ones digit is 0 or 5 .
- 6 if the number is divisible by 2 and 3 .
- 9 if the sum of the digits is divisible by 9 .
- 10 if the ones digit is zero.

EXAMPLE
Determine whether 2,346 is divisible by 2,3,5,6,9, or 10
2: The ones digit is 6 which is divisible by 2 .
So 2,346 is divisible by 2 .
3: The sum of the digits $(2+3+4+6=15)$ is divisible by 3 .
So 2,346 is divisible by 3 .
5: The ones digit is not 0 or 5
5o 2,346 is not divisible by 5 .
6: The number is divisible by 2 and 3.
So 2,346 is divisible by 6 .
9: The sum of the digits $(2+3+4+6=15)$ is not divisible by 9 .
So 2,346 is not divisible by 9 .
10: The ones digit is not 0 .
So 2,346 is not divisible by 10 .
2,346 is divisible by 2,3 , and 6 .

EXERCISES

Use the divisibility rules to determine whether the first number is divisible by the second number.

1. $3,465,870 ; 5$ yes 2. $5,653,121 ; 3$ no
2. $34,456,433 ; 9$ no
3. 6,432; 10 no

SKILL WARM UP

Divisibility Rules

Mario owns a florist shop. Today Mario bought 198 carnations to sell in his shop. He plans to run a special on the carnations and sell them in equal bundles. He wants the bundles to have no more than 10 flowers. If he does not want any carnations left over, how many should he put in each bundle?

You need to find what number or numbers divide into 198 without a remainder. To do this, you will need to use divisibility rules.

The ones digit is 8 which is divisible by 2 , so 198 is divisible by 2 .

The sum of the digits $(1+9+8=18)$ is divisible by 3 , so 198 is divisible by 3 .
The ones digit is not a 0 or a 5 , so 198 is not divisible by 5 .

Since 198 is divisible by 2 and by 3 , it is also divisible by 6 .
The sum of the digits $(1+9+8=18)$ is
divisible by 9 , so 198 is divisible by 9 .
The ones digit is not a 0 , so 198 is not divisible by 10 .

Mario can sell the carnations as bundles of $2,3,6$, or 9 .

Student Workbook, p. 24

5. 42,$981 ; 2$ no	6. 73,$125 ; 3$ yes
7. 3,$469 ; 6$ no	8. 3,$522 ; 6$ yes
Determine whether each number is divisible by $\mathbf{2 , 3 , 5 , 6 , 9 , \text { or } 1 0 .}$	
9. 660 2, 3, 5, 6, 10	10. 5,025 3,5
11. 5,091 3	12. 3562
13. 240 2, 3, 5, 6, 10	14. 657 3, 9
15. 8,760 2, 3, 5, 6, 10	16. 3,408 2, 3, 6
17. $4,605 \quad 3,5$	18. 7,800 2, 3, 5, 6, 10
19. 8,640 2, 3, 5, 6, 9, 10	20. 432 2, 3, 6, 9
21. $1,700,380 \quad 2,5,10$	22. 4,937,728 2

APPLICATIONS

23. Ms. Vescelius wants to divide her class into cooperative learning groups. If there are 28 students in the class and she wants all the groups to have the same number of students, how many students should she put in each group? 2, 4, 7, or 14 students
24. The Kennedy High School band has 117 members. The band director is planning rectangular formations for the band. What formations could he make with all the band members? 3 by 39, 9 by 13
25. Fisher Mountain Bike Company wants to produce between 1,009 and 1,030 mountain bicycles per month. Since the demand for the bicycles is great everywhere, they want to ship equal numbers to each of their 6 stores. Find the possible number of bicycles Fisher should ship. $\mathbf{1 , 0 1 4}, 1020$, or 1,026 bicycles
26. Name the greatest 4 -digit number that is divisible by 2,3 , and 5 . 9,990

SKILL
 13

 TEACHER NOTES
Multiples

OBJECTIVE: Find multiples of numbers. (Strand: Number and Operation)

USING THE TRANSPARENCY: Write the numbers $4,8,12,16,20,24,28,32$, and 36 on the chalkboard. Have students describe how these numbers are related and how they would extend the sequence.

USING THE STUDENT WORKBOOK: Have students work in pairs. Have one student write two multiples of a number and the second student state the number of which they are multiples. Then have students reverse roles.

EXTENSION: Have students roll two dice to create a two digit number. Then identify multiples of that number.

Student Workbook, p. 25

13
Name
Multiples
B
paid $8 \&$ in sales tax. He decided to make a table of the amount of sales tax
charged on whole-dollar purchases.
EXAMPLE Can you help him make the table?
The amount of sales tax charged on whole-dollar purchases can be found using multiples of 8 . A multiple of a number is the product of that number and any whole number.

Amount of Purchase	Amount of Sales Tax
\$1	84
\$2	164
\$3	24¢
\$4	324
\$5	40¢
\$6	$48 ¢$
\$7	56¢
\$8	64¢
\$9	$72 ¢$
\$10	$80 ¢$

[^1]Transparency, Skill 13
13

WARM UP

Multiples
Some doctors encourage their adult patients to follow the rule below to calculate their ideal weight.

100 pounds for the first 5 feet in height
+5 pounds for every inch over 5 feet ideal weight
According to this rule, what are the ideal weights for adults from 5 feet tall to 5 feet 9 inches tall?
The answers can be found using multiples of 5 .

Height	Weight over 100 lb (multiples of 5)	Ideal Weight
5^{\prime}	0	100
$5^{\prime} 1^{\prime \prime}$	5	105
$5^{\prime} 2^{\prime \prime}$	10	110
$5^{\prime} 3^{\prime \prime}$	15	115
$5^{\prime} 4^{\prime \prime}$	20	120
$5^{\prime} 5^{\prime \prime}$	25	125
$5^{\prime} 6^{\prime \prime}$	30	130
$5^{\prime} 7^{\prime \prime}$	35	135
$5^{\prime} 8^{\prime \prime}$	40	140
$5^{\prime} 9^{\prime \prime}$	45	145

Course 2 Interenention

Student Workbook, p. 26

Determine whether the first number is a multiple of the second number.
10. $56 ; 7$ yes 11. $42 ; 14$ yes 12. $81 ; 18$ no
13. $45 ; 11$ no 14. $100 ; 20$ yes 15. $72 ; 36$ yes
16. $95 ; 19$ yes 17. $225 ; 25$ yes 18. $110 ; 21$ no

APPLICATIONS
Kyle is planning a trip. He plans to drive 55 miles per hour. Use this information to answer Exercises 19 and 20.
19. How far will Kyle travel in
a. $\mathbf{1}$ hour? $\mathbf{5 5}$ miles
b. 2 hours? $\mathbf{1 1 0}$ miles
c. 3 hours? $\mathbf{1 6 5}$ miles
d. $\mathbf{4}$ hours? $\mathbf{2 2 0}$ miles
e. 5 hours? 275 miles
f. 6 hours? $\mathbf{3 3 0}$ miles
20. Suppose after Kyle's trip he determines that he actually averaged 60 miles per hour. How could you use your answers to Exercise 19 to determine the distance at this rate? Add successive multiples of 5 to each answer.
21. Tia is laying a pattern of tiles in rows. One row has tiles that are 4 inches long, and the next row has tiles that are 5 inches long. In how many inches will the ends of the two rows be even and the pattern start to repeat? 20 inches

Greatest Common Factor

OBJECTIVE: Find the greatest common factor of two or more numbers. (Strand: Number and Operation)

USING THE TRANSPARENCY: Write the numbers 32 and 48 on the chalkboard. Have students state how they would find the greatest common factor of these two numbers. Discuss different strategies.

USING THE STUDENT WORKBOOK: Have students work in pairs. Have one student find the common factors of a set of numbers and the other student find the greatest common factor. Then have the students reverse roles.

EXTENSION: Have students pick two numbers. Then have the students use a Venn diagram to list the factors of each number. Then have students use the diagram to find the greatest common factor.

Student Workbook, p. 27

Name
Greatest Common Factor
The greaeses common factor (GC) of woo or more numbers is ste great est number that is a factor of each number. One way to find the greatest common factor is to list the factors of each number and then choose the greatest common factors.

EXAMPLE

Find the GCF of 36 and 48
factors of 36: $\quad \mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{6}, 9,12,18,36$ factors of 48: $\quad \mathbf{1}, 2,3,4,6,8,12,16,24,48$
common factors: $\quad 1,2,3,4,6,12$
The GCF of 36 and 48 is 12
$A_{\text {nother way to find the GCF is to use the prime factorization of each }}$ number. Then identify all common prime factors and find their product.

EXAMPLE
Find the GCF of 144 and 180.

GlencoelMcGraw-Hill Course 2 Intervention

Transparency, Skill 14

14 SARI UP

Greatest Common Factor
Find the greatest common factor (GCF) of 24, 36, and 42
There are two methods that can be used
Method 1: List the factors of each number. Determine the common factors. Find the greatest of these common factors.
factors of 24: $\quad 1,2,3,4,6,8,12,24$
factors of 36: $\quad 1,2,3,4,6,9,12,18,36$
factors of 42: $\quad 1,2,3,6,7,14,21,42$
common factors: 1, 2, 3, 6
The GCF of 24,36 , and 42 is 6 .
Method 2: Use a factor tree to find the prime factorization of each number.
Determine the common prime factors. Find the product of the common factors.

common prime factors: 2,3
The GCF of 24,36 , and 42 is 2×3, or 6 .
Course 2 Intevention

Student Workbook, p. 28

EXAMPLES Find the GCF for each set of numbers.

1. $18,24 \mathbf{6}$	2. $64,40 \mathbf{8}$	3. $60,75 \mathbf{1 5}$
4. $28,52 \mathbf{4}$	5. $54,72 \mathbf{1 8}$	6. $48,72 \mathbf{2 4}$
7. $63,81 \mathbf{9}$	8. $84,144 \mathbf{1 2}$	9. $72,170 \mathbf{2}$
10. $96,216 \mathbf{2 4}$	11. $225,500 \mathbf{2 5}$	12. $121,231 \mathbf{1 1}$
13. $240,320 \mathbf{8 0}$	14. $350,140 \mathbf{7 0}$	15. $162,243 \mathbf{8 1}$
16. $256,640 \mathbf{1 2 8}$	17. 9, $18,12 \mathbf{3}$	18. $30,45,15 \mathbf{1 5}$
19. $81,27,108 \mathbf{2 7}$	20. $16,20,36 \mathbf{4}$	21. $98,168,196 \mathbf{1 4}$

APPLICATIONS

22. Sharanda is tiling the wall behind her bathtub. The area to be tiled measures 48 inches by 60 inches. What is the largest square tile that Sharanda can use and not have to cut any tiles? 12 in. by 12 in.
23. Mr. Mitchell is a florist. He received a shipment of 120 carnations, 168 daisies, and 96 lilies. How many mixed bouquets can he make if there are the same number of each type of flower in each bouquet, and there are no flowers left over? 24
24. Students at Washington Middle School collected 126 cans of fruit, 336 cans of soup, and 210 cans of vegetables for a food drive. The students are making care packages with at least one of each type of canned good. If the students divide each type of canned good evenly among the care packages, what is the greatest number of care packages if there are no canned goods remaining? 42

OBJECTIVE: Find the least common multiple of two or more numbers. (Strand: Number and Operation)

USING THE TRANSPARENCY: Watch for students who confuse the GCF with the LCM. Prevent this by distinguishing between factors and multiples. Stress that multiples are found by multiplying, factors by dividing.

USING THE STUDENT WORKBOOK: Many students will choose to list multiples when finding the LCM. Charts may be helpful for students to keep track of the multiples.

EXTENSION: Have students find the LCM and GCF for two numbers. Then have them find the product of the two numbers as well as the product of their GCF and LCM. Ask students what they notice. Ask them to investigate further using other pairs of numbers.

Transparency, Skill 15

15 WARM UP

Least Common Multiple
When you multiply a number by the whole numbers $1,2,3,4$, and so on, you get multiples of the number. The least common multiple (LCM) of two or more numbers is the least of the common positive multiples of the numbers.

Find the least common multiple of 16 and 24.
There are two methods that can be used to find the least common multiple.
Method 1: List several multiples of each number.
Determine the common multiples.
Choose the least common multiple.
positive multiples of 16 : $16,32,48,64,80,96$, positive multiples of $24: 24,48,72,96,120,144$,

The LCM of 16 and 24 is 48.
Method 2: Write the prime factorization of each number.
Circle all pairs of common prime factors.
Find the product of the common factors and any other factors.

The LCM of 16 and 24 is 48 . any other factors.

Course 2 Intervention

Student Workbook, p. 30

Find prime factors of each number. Circle all sets of common factors. Multiply the common factors and any other factors.

EXERCISES

Find the LCM of each set of numbers by listing the multiples of each number.

1. 3,412 2. $10,25 \mathbf{5 0}$ 3. $18,24,48144$

Find the LCM of each set of numbers by writing the prime factorization.
4. $35,49 \mathbf{2 4 5}$ 5. $27,36 \mathbf{1 0 8}$ 6. $10,12,15 \mathbf{6 0}$

The LCM of 9, 15, and 21 is 315 . Date

Least Common Multiple
A multiple of a number is the product of that number and any whole number. The least nonzero multiple of two or more numbers is the least common multiple (LCM) of the numbers.

EXAMPLE

Find the least common multiple of 6 and 8.
positive multiples of 6 : $\quad 6,12,18,24,30,36,42$ positive multiples of 8 : $\quad 8,16,24,32,40,48,56$, The LCM of 6 and 8 is 24 .

Prime factorization can also be used to find the LCM.
EXAMPLE
Find the least common multiple of 9,15 , and 21

Glencoe/McGraw-Hill Course 2 Intervention

SKILL

TEACHER NOTES

Powers and Exponents

OBJECTIVE: Simplify expressions involving positive and negative exponents. (Strand: Number and Operation)

USING THE TRANSPARENCY: Have students work in small groups to examine the pattern developed in the power table. Share results with the class to establish the correct rule.

USING THE STUDENT WORKBOOK: Have students create a new power table using 4 as the base.

EXTENSION: Have students research where both positive and negative exponents are used in real life settings.

Transparency, Skill 16

SKILL WARM UP

Powers and Exponents
An expression like $2 \times 2 \times 2 \times 2 \times 2 \times 2$ can be written as a power. A power has two parts, a base and an exponent. An exponent is a shorter way of writing repeated multiplication.

The expression $2 \times 2 \times 2 \times 2 \times 2 \times 2$ can be written as 2^{6}.

The base is the number $\rightarrow 3^{6} \leftarrow$ The exponent tell how that is multiplied. many times the base is used as a factor.

Examine the table at the right to determine a pattern to assist you in developing a rule for computing with negative exponents.
$a^{-n}=\frac{1}{a^{n}}$, for $a \neq 0$ and any integer n
For example, $3^{-3}=\frac{1}{3^{3}}$ or $\frac{1}{27}$.

Power	Value
3^{4}	81
3^{3}	27
3^{2}	9
3^{1}	3
3^{0}	1
3^{-1}	$\frac{1}{3}$
3^{-2}	$\frac{1}{9}$

Student Workbook, p. 32

Write each fraction as an expression using a negative exponent other than $\mathbf{- 1}$.

| 29. $\frac{1}{4^{-5}} 4^{5}$ | 30. $\frac{1}{3^{8}}$ | 3^{-8} | 31. $\frac{1}{7^{3}} 7^{-3}$ | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 32. $\frac{1}{64} \mathbf{2}^{-6}$ | 33. $\frac{1}{27}$ | 3^{-3} | 34. $\frac{1}{1,000}$ | 10^{-3} |

Evaluate each expression if $a=-2$ and $b=3$.
$\begin{array}{llllllll}\text { 35. } 5^{a} \frac{1}{25} & \text { 36. } b^{-4} \frac{1}{81} & \text { 37. } a^{-3} & -\frac{1}{8} \\ \text { 38. }(-3)^{-b} & -\frac{1}{27} & \text { 39. } & a b^{-2} & -\frac{2}{9} & \text { 40. }(a b)^{-2} & \frac{\mathbf{1}}{\mathbf{3 6}}\end{array}$

APPLICATIONS

41. The area of a square is found by multiplying the length of a side by itself. If a square swimming pool has a side of length 45 feet, write an expression for the area of the swimming pool using exponent 45^{2} square feet
42. A molecule of a particular chemical compound weighs one millionth of a gram. Express this weight using a negative exponen 10^{-6} gram
43. A needle has a width measuring 2^{-5} inch. Express this measurement in standard form.
$\frac{1}{32}$ inch
Glencoe/McGraw-Hill Course 2 Intervention

Prime Factorization

OBJECTIVE: Find the prime factorization of a composite number. (Strand: Number and Operation)

USING THE TRANSPARENCY: Write 2, 5, 15, 24, 29, 32, and 39 on the chalkboard. Have students identify the prime and composite numbers. Discuss their differences.

USING THE STUDENT WORKBOOK: Have students work in small groups. Have one student begin a factor tree for an exercise by writing the number and the first row. Have each successive student add a row.

EXTENSION: Have students use blocks or tiles to form rectangles for various numbers. Have students examine numbers for which they can form only one rectangle and have them describe their findings.

Transparency, Skill 17

17

WARM UP

Prime Factorization
A whole number greater than 1 with exactly two factors, 1 and itself, is called a prime number.
A whole number greater than 1 with more than two factors is called a composite number.

The numbers 0 and 1 are neither prime nor composite.
A composite number can be written as the product of prime numbers. This product is called the prime factorization of the number.
Find the prime factorization of 600 .

Since 2 , 3 , and 5 are prime numbers, then $2 \times 2 \times 2 \times 3 \times 5 \times 5$, or $2^{3} \times 3 \times 5^{2}$, is the prime factorization of 600 .

Student Workbook, p. 34

Find the prime factorization of each number

1. ${ }_{2}^{18} \times 3^{2}$	2. $2^{24} \times 3$		$\begin{aligned} & 27 \\ & \mathbf{3}^{3} \end{aligned}$
4. $\begin{array}{r}32 \\ \mathbf{2}^{5}\end{array}$	5. $\quad 38 \times 19$	6.	$3^{45} \times 5$
7. ${ }_{\mathbf{2}^{2}}^{68} \times \mathbf{1 7}$	8. 75 3×5^{2}	9.	
$\text { 10. } \begin{aligned} & 115 \\ & 5 \times 23 \end{aligned}$	11. ${ }_{\mathbf{2}^{2}}^{132} \times \mathbf{3} \times \mathbf{1 1}$	12.	$\mathbf{2}^{444} \times \mathbf{3}^{2}$

$E_{\text {very composite number can be written as the product of prime numbers. This product is }}$ called the prime factorization of the number. One way to find the prime factorization of a number is to use a factor tree.

EXAMPLE
Find the prime factorization of 72.

The prime factorization of 72 is $2 \times 2 \times 2 \times 3 \times 3$, or $2^{3} \times 3^{2}$.
EXERCISES

Find the prime factorization of each number

```
```

13. 165
```
```

13. 165
14. }\mp@subsup{\mathbf{2}}{}{\mathbf{2}}\times\mp@subsup{\mathbf{7}}{}{\mathbf{2}
15. }\mp@subsup{\mathbf{2}}{}{\mathbf{2}}\times\mp@subsup{\mathbf{7}}{}{\mathbf{2}
16. }\mp@subsup{\mathbf{3}}{}{225}\times\mp@subsup{5}{}{2
17. }\mp@subsup{\mathbf{3}}{}{225}\times\mp@subsup{5}{}{2
18. }\mp@subsup{2}{}{360}\times\mp@subsup{3}{}{2}\times
19. }\mp@subsup{2}{}{360}\times\mp@subsup{3}{}{2}\times
17. 400
17. 400
20. }\mp@subsup{\mathbf{276}}{\mathbf{6}}{2}\times\mp@subsup{\mathbf{3}}{}{\mathbf{2}
21. }\mp@subsup{\mathbf{276}}{\mathbf{6}}{2}\times\mp@subsup{\mathbf{3}}{}{\mathbf{2}
22. }\begin{array}{ll}{888}
{\mp@subsup{\mathbf{2}}{}{\mathbf{3}}\times\mathbf{3}\times\mathbf{37}}\&{\mathrm{ 20. }}
{\mathbf{2}\times\mathbf{4}\times\mathbf{4}\times\mathbf{3}\times\mp@subsup{\mathbf{7}}{}{2}}\&{\mathrm{ 21. }}
{\mp@subsup{\mathbf{2}}{}{2}\times340}
{2}
23. }\begin{array}{ll}{888}
{\mp@subsup{\mathbf{2}}{}{\mathbf{3}}\times\mathbf{3}\times\mathbf{37}}\&{\mathrm{ 20. }}
{\mathbf{2}\times\mathbf{4}\times\mathbf{4}\times\mathbf{3}\times\mp@subsup{\mathbf{7}}{}{2}}\&{\mathrm{ 21. }}
{\mp@subsup{\mathbf{2}}{}{2}\times340}
{2}
APPLICATIONS A new rectangular picnic area is being built
APPLICATIONS A new rectangular picnic area is being built
at Springfield City Park.
at Springfield City Park.
24. If the picnic area is to cover an area of }260\mathrm{ square yards, what
25. If the picnic area is to cover an area of }260\mathrm{ square yards, what
are the whole number dimensions that are possible for the
are the whole number dimensions that are possible for the
picnic area?
picnic area?
1\times260,2 < 130,4 < 65,5 < 52,10 < 26,
1\times260,2 < 130,4 < 65,5 < 52,10 < 26,
13\times20
13\times20
26. Suppose the park manager decides to build the picnic area
27. Suppose the park manager decides to build the picnic area
H
H
to cover an area of }300\mathrm{ square yards. What are the whole
to cover an area of }300\mathrm{ square yards. What are the whole
1\times300,2\times150,3\times100,4\times75,5\times60,
1\times300,2\times150,3\times100,4\times75,5\times60,
6\times50,10\times30,12\times25,15\times20
6\times50,10\times30,12\times25,15\times20
28. If the original picnic area covered }180\mathrm{ square yards and the new
29. If the original picnic area covered }180\mathrm{ square yards and the new
picnic area is to cover twice as much area, what are the whole
picnic area is to cover twice as much area, what are the whole
picnic area is to cover twice as much area, what are the whole
picnic area is to cover twice as much area, what are the whole
1 < 360,2 < 180,3 < 120,4 < 90,5 < 72,
1 < 360,2 < 180,3 < 120,4 < 90,5 < 72,
6 < 60,8 < 45,9\times40,10\times36,12 < 30,
6 < 60,8 < 45,9\times40,10\times36,12 < 30,
15 < 24,18\times20
```
    15 < 24,18\times20
```

23. Suppose the park manager decides to build the picnic are $t o$ cover an area of 300 square yards. What are the whole $\times 300,2 \times 150,3 \times 100,4 \times 75,5 \times 60$ $\times 50,10 \times 30,12 \times 25,15 \times 20$
24. If the original picnic area covered 180 square yards and the new number dimensions that are possible for the new picnic area? $\times 40,10 \times 36,12 \times 30$ $15 \times 24,18 \times 20$
```

\section*{SKILL} TEACHER NOTES

\section*{Multiplying by Powers of Ten}

OBJECTIVE: Multiply by powers of ten. (Strand: Number and Operation)

USING THE TRANSPARENCY: Show by using a pattern that moving the decimal point one place to the right increases the number by a factor of 10. Therefore, you move the decimal point to the right when using mental math to multiply by a power of 10 .

USING THE STUDENT WORKBOOK: Have students work with partners to make a simple cross-number puzzle with clues that involve multiplying decimals and powers of 10. Answers should be in standard form.

EXTENSION: Challenge students to work with partners to devise a mental math strategy for multiplying a decimal by multiples of powers of 10 , such as \(40,500,5,000\), and so on. Have them share their results with others.

Student Workbook, p. 35

Name Multiplying by Powers of Ten
\(T_{\text {he }}\)
the number.

\section*{Powers of Ten}
\(10^{\circ} 1\)
\(10^{1} \quad 10\)
\(\begin{array}{ll}10^{2} & 100\end{array}\)
\(10^{3} \quad 1,000\)
\(\begin{array}{ll}10^{4} & 10,000 \\ 10^{5} & 100,000\end{array}\)
\(10^{5} \quad 100,000\)
To multiply by a power of ten, move the decimal point to the right the number of places shown by the exponent or the number of zeros. Annex
zeros if necessary.
\begin{tabular}{|c|c|c|}
\hline EXAMPLES & Find each product. & \\
\hline & \begin{tabular}{l}
\[
\begin{aligned}
& 0.08 \times 10^{4} \\
& 0.0800
\end{aligned}=800
\] \\
The product is 800 .
\[
\begin{aligned}
& 6.25 \times 1,000 \\
& 6.250=6,250
\end{aligned}
\] \\
The product is 6,250 .
\end{tabular} & \begin{tabular}{l}
Move the decimal point 4 places to the right. \\
Move the decimal point 3 places to the right.
\end{tabular} \\
\hline \multicolumn{3}{|l|}{EXERCISES Choose the correct product.} \\
\hline 1. \(2.48 \times 100 ; 0\) & 0.0248 or 2482. & \[
\begin{aligned}
& 0.9 \times 10^{0} ; 9 \text { or } 0.9 \\
& \mathbf{0 . 9}
\end{aligned}
\] \\
\hline 3. \(0.039 \times 10^{2}\); 3.9 & 3.9 or 39
\[
4 .
\] & \[
\begin{aligned}
& 1.5 \times 10^{4} ; 150,000 \text { or } 15,000 \\
& \mathbf{1 5 , 0 0 0}
\end{aligned}
\] \\
\hline \multicolumn{3}{|l|}{Multiply} \\
\hline 5. \(15.24 \times 10\) & 6. \(0.702 \times 100\) 70.2 & \[
\begin{aligned}
& \text { 7. } 5.149 \times 1,000 \\
& \mathbf{5 , 1 4 9}
\end{aligned}
\] \\
\hline \multicolumn{2}{|r|}{Glencoe/MCGraw-Hill} & 35 Course 2 Intervention \\
\hline
\end{tabular}

Transparency, Skill 18


Student Workbook, p. 36

23. What is the length of the Amazon River if it can be
represented by \(3.9 \times 10^{3}\) miles long? How much longe is it than the Wood River which is \(5.7 \times 10^{2}\) ?
3,900 miles; 3,330 miles longer
24. The United States spends \(37.3 \times 10^{9}\) dollars on research
and development in the military. Germany spends
\(1.4 \times 10^{9}\) dollars on research and development in the military
How much money do these two countries spend altogether? \$38,700,000,000
25. The diameter of Neptune is about \(4.95 \times 10^{4}\) kilometers. The diameter of Venus is about \(1.21 \times 10^{4}\) kilometers. About how much greater is Neptune's diameter?
about \(\mathbf{3 7 , 4 0 0} \mathbf{~ k m}\)

\section*{Dividing by Powers of Ten}

OBJECTIVE: Divide by powers of ten. (Strand: Number and Operation)

USING THE TRANSPARENCY: Review powers of ten. Ask students what happens to a whole number when it is multiplied by a power of ten. Then multiply 4.2 by a power of ten. Then have them consider what might happen to the decimal point if they divide 4.2 by a power of ten.

USING THE STUDENT WORKBOOK: Have students experiment with division of decimals by powers of ten by using their calculators. Ask students questions such as: How many places will the decimal point move when you divide by 100 ?

EXTENSION: Ask students whether a pattern emerges when numbers are divided by decimal powers of 10 , such as \(0.1,0.01\), and 0.001 .

Student Workbook, p. 37


Name Date

Dividing by Powers of Ten
\(T_{\text {he exponent in a power of ten is the same as the number of zeros in }}\)
the number.
\[
\begin{array}{ll}
\text { Powers of Ten } \\
10^{\circ} & 1 \\
10^{1} & 10 \\
10^{2} & 100 \\
10^{3} & 1,000 \\
10^{4} & 10,000 \\
10^{5} & 100
\end{array}
\]

To divide by a power of ten, move the decimal point to the left the number of places shown by the exponent or the number of zeros.

EXAMPLES Find each quotient.
\(8 \div 10^{4}=0.0008\) The quotient is 0.0008 . \(62.5 \div 1,000=0.0625\) Move the decimal point 4 places to the left. Move the decimal point 3 places to the left. The quotient is 0.0625 .

EXERCISES Choose the correct quotient.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 1. & \[
\begin{aligned}
& 2.48 \div 100 ; \\
& \mathbf{0 . 0 2 4 8}
\end{aligned}
\] & & & & & \[
\begin{aligned}
& 0.9 \div 10^{\circ} ; ~ \\
& 0.9
\end{aligned}
\] & \[
0^{\circ} ; 9 \text { o }
\] & \[
\text { or } 0.9
\] \\
\hline 3. & \[
\begin{aligned}
& 0.39 \div 10^{2} ; \\
& \mathbf{0 . 0 0 3 9}
\end{aligned}
\] & & & & 4. & \[
\begin{aligned}
& 1.5 \div 10^{4} ; \\
& \mathbf{0 . 0 0 0 1 5}
\end{aligned}
\] & \[
\frac{0^{4} ; 0.0}{15}
\] & .00015 or 15,000 \\
\hline \multicolumn{9}{|l|}{Divide.} \\
\hline \multicolumn{2}{|l|}{5. \(15.24 \div 10\)} & \multicolumn{2}{|l|}{6. 0.} & \multicolumn{2}{|l|}{\[
0.702 \div 100
\]} & & & \[
\begin{aligned}
& 514.9 \div 1,000 \\
& \mathbf{0 . 5 1 4 9}
\end{aligned}
\] \\
\hline
\end{tabular}

Transparency, Skill 19
sKILL WARM UP
Dividing by Powers of Ten
Order the following expressions from least to greatest:
\[
7.34 \div 1,000 \quad 76 \div 10 \quad 56.78 \div 100
\]

Dividing by a power of 10 moves the decimal point to the left the same number of places as the number of zeros.

First, you need to divide each expression.
\begin{tabular}{clll}
\(7.34 \div 1,000\) & Move the decimal to the left 3 places. & 0.00734 \\
\(76 \div 10\) & Move the decimal to the left 1 place. & 7.6 \\
\(56.78 \div 100\) & Move the decimal to the left 2 places. & 0.5678
\end{tabular}

Now, order the three values from least to greatest.
\[
\begin{array}{lll}
0.00734 & 0.5678 & 7.6
\end{array}
\]

Finish filling in the chart below.
\begin{tabular}{|c|c|l|}
\hline \begin{tabular}{c} 
division \\
expression
\end{tabular} & \begin{tabular}{c} 
number of moves \\
to the left
\end{tabular} & answer \\
\hline \(3.35 \div 10\) & 1 & 0.335 \\
\(3.35 \div 100\) & 2 & 0.0335 \\
\(3.35 \div 1,000\) & 3 & 0.00335 \\
\(3.35 \div 10,000\) & 4 & 0.000335 \\
\(245.7 \div 10\) & 1 & 24.57 \\
\(245.7 \div 100\) & 2 & 2.457 \\
\(245.7 \div 1,000\) & 3 & 0.2457 \\
\(245.7 \div 10,000\) & 4 & 0.02457 \\
\hline
\end{tabular}

Student Workbook, p. 38
\begin{tabular}{|c|c|c|c|c|c|}
\hline 8. & \[
\begin{aligned}
& 5.2 \div 100 \\
& \mathbf{0 . 0 5 2}
\end{aligned}
\] & & \[
\begin{aligned}
& 2.587 \div 10^{0} \\
& \mathbf{2 . 5 8 7}
\end{aligned}
\] & 10. & \[
\begin{aligned}
& 267.4 \div 100 \\
& \mathbf{2 . 6 7 4}
\end{aligned}
\] \\
\hline 11. & \[
\begin{aligned}
& 68 \div 10^{2} \\
& \mathbf{0 . 6 8}
\end{aligned}
\] & 12. & \[
\begin{aligned}
& 9.57 \div 10^{4} \\
& \mathbf{0 . 0 0 0 9 5 7}
\end{aligned}
\] & 13. & \[
\begin{aligned}
& 6,245 \div 10^{5} \\
& \mathbf{0 . 0 6 2 4 5}
\end{aligned}
\] \\
\hline \multicolumn{6}{|l|}{Solve each equation.} \\
\hline 14. & \[
\begin{aligned}
& d=92 \div 100 \\
& 0.92
\end{aligned}
\] & 15. & \[
\begin{aligned}
& 12.43 \div 10^{3}=h \\
& \mathbf{0 . 0 1 2 4 3}
\end{aligned}
\] & 16. & \[
\begin{aligned}
& h=36.8 \div 10 \\
& \mathbf{0 . 0 0 0 0 3 6 8}
\end{aligned}
\] \\
\hline 17. & \[
\begin{aligned}
& a=0.004 \div 10^{2} \\
& \mathbf{0 . 0 0 0 0 4}
\end{aligned}
\] & 18. & \[
\begin{aligned}
& 2,358 \div 1,000=j \\
& \mathbf{2 . 3 5 8}
\end{aligned}
\] & 19. & \[
\begin{aligned}
& 1.89 \div 10^{0}=4 \\
& 1.89
\end{aligned}
\] \\
\hline 20. & \[
\begin{aligned}
& d=76.9 \div 10,000 \\
& \mathbf{0 . 0 0 7 6 9}
\end{aligned}
\] & 21. & \[
\begin{aligned}
& 8,714 \div 10^{2}=k \\
& \mathbf{8 7 . 1 4}
\end{aligned}
\] & 22. & \[
\begin{aligned}
& v=589 \div 10^{1} \\
& \mathbf{5 8 . 9}
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{APPLICATIONS}
23. Mr. Fraley bought 1,000 postage stamps for \(\$ 290\) for use in his office. How much did each stamp cost?
24. Mary donated 100 cans of soup to the local food pantry. It cost her \(\$ 23\) to buy the soup. How much did each can of soup cost?
\(\mathbf{\$ 0 . 2 3}\)
25. George has \(\$ 245.60\) that he wants to split evenly with his 10 nieces and nephews. How much money will each one receive? \$24.56
26. The planet Saturn is an average distance of about \(887,000,000\) miles from the sun. If a space ship could travel that distance in 10,000 hours, how fast would it be going? 88,700 mph

OBJECTIVE: Compare and order integers. (Strand: Number and Operation)

USING THE TRANSPARENCY: Starting at the left, list the numbers appearing on the number line. Point out that the numbers increase from left to right.

USING THE STUDENT WORKBOOK: Draw a number line on the chalkboard and locate the points -5 and 3 on it. Lead students to write the expression negative 5 is less than 3. Similarly, write 3 is greater than negative 5 .

Be sure students understand the meaning of the symbols < and >. Have students substitute the symbols for the words in the expressions above.

EXTENSION: Have students use the Internet to find a set of data that contains both positive and negative integers.

Student Workbook, p. 39

\section*{20 \\ Integers}
 negative numbers. The set of numbers that includes positive and negative numbers, and zero negaive numbers.
are called integers.
EXAMPLE
Emily recorded the temperature at noon for a week. The temperatures she recorded were \(9^{\circ} \mathrm{F}, 8^{\circ} \mathrm{F},-6^{\circ} \mathrm{F}\), \(-3^{\circ} \mathrm{F},-1^{\circ}\), \(2^{\circ}\) F, and \(1^{\circ} \mathrm{F}\). What was the lowest and highest temperature recorded?
To answer the question, locate the temperatures on a number line.


On a number line, values increase as you move to the right.
Since -6 is furthest to the left, \(-6^{\circ} \mathrm{F}\) is the coldest tem perature. 9 is the farthest number to the right, so \(9^{\circ} \mathrm{F}\) is the highest temperature.

The absolute value of a number is the positive number of units a
number is from zero on a number line.

\section*{EXAMPLE}

\section*{Refl to the table.} Which city's population changed the most?
Find the absolute value of each number
\(|+22,457|=22,457\)
\(-84,860 \mid=84,860\)
\(|+78,560|=78,560\)
\(-76,704 \mid=76,704\)
\(+49,974 \mid=49,974\)
\(-68,027 \mid=68,027\)
\(-68,027 \mid=68,027\)
Since the absolute value of \(-84,860\) is the greatest, Baltimore, Maryland had the greatest population change.
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|l|}{ Population Change, 1990-2000 } \\
\hline Atlanta, GA & \(+22,457\) \\
\hline Baltimore, MD & \(-84,860\) \\
\hline Columbus, OH & \(+\mathbf{7 8 , 5 6 0}\) \\
\hline Detroit, MI & \(-\mathbf{7 6 , 7 0 4}\) \\
\hline Indianapolis, IN & \(+49,974\) \\
\hline Philadelphia, PA & \(-68,027\) \\
\hline
\end{tabular}

Glencoe/McGraw-Hill Course 2 Intervention

\section*{Transparency, Skill 20}

\section*{sknt warm up}

\section*{Integers}

Nicole is keeping track of golfers' scores during her school's golf tournament. The final scores of the top ten finishers are listed below.
\(\begin{array}{llllllllll}+1 & -5 & -8 & +5 & -2 & -4 & +3 & -1 & 0 & +2\end{array}\)

Nicole wants to put these scores in a chart, in order from least to greatest. Can you help her?

One way to order integers is to use a number line
\(\underset{-10-9}{-1+8-7-6-5-4-3-2-1} 1\)

On a number line, values increase as you move from the left to the right.

So, the scores in order from least to greatest are
\(-8,-5,-4,-2,-1,0,1,2,3,5\).

Glencoe/McGraw-Hill Course 2 Intervention

\section*{Student Workbook, p. 40}
```

EXERCISES Fill in each blank with <, >, or = to make a true sentence.
1. 5-_ > 2. -4-3 < 3. 0-_ -2 >
4. -6--12> 5. -35--16< 6. 19-- 22 >
7. 34__ 21> 8. 23__ 23 = 9. -45__ -52 >
Write each set of integers in order from least to greatest.
10. {45,-23,55,0,-12,-37} 11. {56,-22,34,-34,12,-12}
{-37,-23,-12,0,45,55} {-34,-22,-12,12,34,56}
12. {-450,-100,254,564,-356} (-450,-356,-100, 254,564} 13. {1,276,-3,456,-943,-237,-467}}{\mp@code{{-3,456,-943,-467,-237, 1,276}
Find the absolute value.
14. }|-3|3\mathrm{ 15. }|-5|5\mathrm{ 16. }|16|16 17. 17. |27| 27
18. |156| 156 19. }|-359| 359 20. |-821| 821 21. |1,436| 1,43
APPLICATIONS Write an integer to describe each situation.
22. Julio finished the race 3 seconds ahead of the second place
finisher. +3
23. Matthew ended his round of golf 4 under par. -4
24. Denver is called the Mile High City because its elevation is
5,280 feet above sea level. +5,280
For Exercises 25-27, refer to the table
25. Use a number line to order the temperatures from
least to greatest. -52,-50,-48,-48,-45,-42, -36

```

```

26. The record low temperature for Michigan is -51'F. Which states have higher record low temperatures? California, Illinois, Maine, Nevada, Pennsylvania, Washington

Record Low Temperatures	
California	$-45^{\circ} \mathrm{F}$
Illinois	$-36^{\circ} \mathrm{F}$
Maine	$-48^{\circ} \mathrm{F}$
Nevada	$-50^{\circ} \mathrm{F}$
New York	$-52^{\circ} \mathrm{F}$
Pennsylvania	$-42^{\circ} \mathrm{F}$
Washington	$-48^{\circ} \mathrm{F}$

27. Indiana's record low temperature is $-36^{\circ} \mathrm{F}$. Which states
in the table have lower record low temperatures?
California, Maine, Nevada, New York,
Pennsylvania, Washington
Glencoe/McGraw-Hill Course 2 Intervention
```

\section*{Adding and Subtracting} Integers

OBJECTIVE: Add and subtract integers. (Strand: Number and Operation)

USING THE TRANSPARENCY: Have each of the students pick a stock from the newspaper and have them track it for a week or two. Have them develop a table for their stock and determine whether it had a loss or gain for the time period.

USING THE STUDENT WORKBOOK: Have pairs of students find the sums of examples such as \(-3+7\). Then have them add another integer to the sum so that the new sum will be the opposite of the original sum.

EXTENSION: Have students track the high temperature for your city for a week and record the variance (positive or negative) from the normal high. Find the total variance by adding all the integers.

Student Workbook, p. 41

21 Name Date
Adding and Subtracting Integers
You can use a number line toadd inegges, Locate she firita addend
on the number line. Move right if the second addend is positive. Move left if the
second addend is negative.
EXAMPLE Find \(3+(-8)\)
Start at 3 . Since -8 is negative, move left 8 units.

Therefore, \(3+(-8)=-5\).
When you add integers, remember:
- The sum of two positive integers is positive.
- The sum of two negative integers is negative.

The sum of a positive and negative integer is:
positive if the positive integer has the greater absolute value.
negative if the negative integer has the greater absolute value.
Tos
EXAMPLE
? \(4-7=4+(-7) \quad\) To subtract 7, add -7. Find \(5-(-6)\). \(5-(-6)=5+(+6)\) To subtract -6 , add +6 .
\(=11\)

\section*{Transparency, Skill 21}

\section*{SKILI WARM UP}

Adding and Subtracting Integers
The table shows how the value of Learning Inc. stock changed each day for a week. Use this table to determine the new value of the stock at the end of each day.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ Learning Inc. Stock } \\
\hline Starting Value & +52 \\
\hline Monday & +4 \\
\hline Tuesday & -7 \\
\hline Wednesday & -3 \\
\hline Thursday & +6 \\
\hline Friday & -8 \\
\hline \multicolumn{2}{|c}{} \\
\hline
\end{tabular}

Start to end of day Monday
\(+52+4=56\) new value: +56
Monday to end of day Tuesday
\(+56-7=56+(-7)=49\)
new value: +49
Tuesday to end of day Wednesday
\(+49-3=49+(-3)=46\)
new value: +46
Wednesday to end of day Thursday
\[
+46+6=52
\]
new value: +52
Thursday to end of day Friday
\(+52-8=52+(-8)=44\) new value: +44

Student Workbook, p. 42
EXERCISES Find each sum or difference


\section*{APPLICATIONS}
25. How much more money was lost in June than in July?
\(\$ 500\)

26. How much more were the total profits for the last two months than for the first three months? \$3,200
27. From May through September, did the store have an overall loss or gain and how much? profit of \$200
28. How much did the store lose in October if the overall loss from May through October was \(\$ 500\) ? \$700

\section*{Multiplying and Dividing} Integers

OBJECTIVE: Multiply and divide integers. (Strand: Number and Operation)

USING THE TRANSPARENCY: Discuss the rules for multiplying and dividing integers.

USING THE STUDENT WORKBOOK: Have students work in groups and write several integer division problems. Have the groups exchange papers and rewrite each of the division problems as multiplication problems.

EXTENSION: Have students work in pairs. One student should write an answer to a multiplication or division problem and the other student writes one possible problem to give the answer.

Transparency, Skill 22
\({ }^{\text {SkILI }}\) WARM UP

\section*{Multiplying and Dividing Integers}

Erin wrote 5 checks for \(\$ 35\) each. What was the change in her checking account balance after writing these checks?

Let the integer -35 represent a check amount. To find the total change in her account after writing the checks, multiply -35 by 5 .
\[
-35 \times 5=-175
\]

The total change in her account was \(-\$ 175\).

Dylan recorded nighttime temperatures each hour for a science report. During a four-hour period, the temperature dropped \(16^{\circ} \mathrm{F}\). If the temperature dropped at the same rate over the four-hour period, what was the temperature change each hour?

Let -16 represent the temperature change. To find the change in temperature each hour, divide -16 by 4 .
\[
-16 \div 4=-4
\]

The change in temperature each hour was \(-4^{\circ} \mathrm{F}\).

\section*{Student Workbook, p. 43}


Name
Multiplying and Dividing Integers
\(\mathrm{W}_{\text {ben }}\) multippining or dixiding inegeres
If two integers have the same sign, their product or quotient is positive.
If two integers have different signs, their product or quotient is negative.
EXAMPLE
Ive each equation
\(a=8 \times(-4) \quad\) One factor is positive and the other is negative.
\(a=-32 \quad\) The product is negative.
The solution is -32 .
\(b=-3 \times(-12) \quad\) Both factors are negative.
\(b=36 \quad\) The product is positive
The solution is 36 .
\(c=-63 \div(-7) \quad\) Both factors are negative
\(c=9 \quad\) The quotient is positive.
The solution is 9 .
\(d=-52 \div 4 \quad\) The factors have different signs.
\(d=-13 \quad\) The quotient is negative
The solution is -13 .
EXERCISES Tell whether the product or quotient is positive or negative. Then find the product or quotient.
\(\begin{array}{ll}\text { 1. } 8 \times 9 \text { positive; } 72 & \text { 2. } 4 \times(-5) \text { negative; }-20\end{array}\)
3. \(-81 \div(-9)\) positive; 9 4. \(-16 \div 4\) negative; -4
5. \(-5 \times 7\) negative; -35 6. \(27 \div 3\) positive; 9
7. \(56 \div(-8)\) negative; \(-7 \quad 8 .-3 \times(-6)\) positive; 18
9. \(-42 \div 7\) negative; -6 10. \(6 \times 8\) positive; 48

Student Workbook, p. 44
Student Workbook, p. 4
31. Suppose water is added to the tank at a rate of 2 gallons a minute. How long will it take to drain the tank?
60 min
```

```
Solve each equation.
```

Solve each equation.
11. a = -16\times4 -64 12. }b=120\div20\quad
11. a = -16\times4 -64 12. }b=120\div20\quad
13. c}=-240\div(-4) 60 14. d=-64\div8 -8

```
13. c}=-240\div(-4) 60 14. d=-64\div8 -8 
```



```
17. g=-80\div(-16) 5 18. }h=14\times3650
```

```
17. g=-80\div(-16) 5 18. }h=14\times3650
```



```
21. m=240\div(-8) -30 22. n= -315\div9 -35
```

21. m=240\div(-8) -30 22. n= -315\div9 -35
22. p=14\times12 168 24. q=18\times0 0
23. p=14\times12 168 24. q=18\times0 0
24. r=285\div(-15) -19 26. }s=-33\times(-9)29
25. r=285\div(-15) -19 26. }s=-33\times(-9)29
APPLICATIONS A full 60-gallon water storage tank drains at a
APPLICATIONS A full 60-gallon water storage tank drains at a
rate of 3 gallons per minute.
rate of 3 gallons per minute.
27. How much water is in the tank after 4 minutes?
27. How much water is in the tank after 4 minutes?
48 gal
48 gal
26. How much water is in the tank after 8 minutes?
27. How much water is in the tank after 8 minutes?
36 gal
36 gal
28. How long does it take to drain }15\mathrm{ gallons of water?
29. How long does it take to drain }15\mathrm{ gallons of water?
5min
5min
30. How long does it take to drain the entire tank?
30. How long does it take to drain the entire tank?
20 min
```
    20 min
```

 Glencoe/MCGraw-Hill Course 2 Interventiln
 OBJECTIVE: Convert metric units of measure and determine reasonableness of measurements. (Strand: Measurement)

USING THE TRANSPARENCY: Students may be less familiar with metric units than customary units of measure. Spend some time discussing each unit of measure.

USING THE STUDENT WORKBOOK: Remind students how to multiply and divide by 10, 100 , and 1,000 . Discuss why changing among metric units is easier than changing among customary units.

EXTENSION: Ask students to find the meaning of the prefixes giga- and nano-. Ask students how many meters are in a gigameter.

Student Workbook, p. 45

Transparency, Skill 23

${ }_{23}{ }^{\text {SkII }}$ WARM UP

Metric Units of Measure
The millimeter, centimeter, meter, and kilometer are units of length.

The milligram, gram, and kilogram are units of mass.

One milligram (mg) is about the mass of a grain of salt.

Glencoe/MCGraw-Hill Course 2 Intervention

Student Workbook, p. 46

```
EXERCISES Complete.
```



```
APPLICATIONS Choose the best estimate.
\begin{tabular}{|c|c|c|c|}
\hline 19. length of a race & 5 cm & 5 m & 5 km \\
\hline 20. wingspan of an eagle & 2.4 cm & 2.4 m & 2.4 km \\
\hline 21. length of a computer disk & 90 mm & 90 cm & 90 m \\
\hline 22. capacity of can of soft drink & ( 355 mL & 355 L & 355 kL \\
\hline 23. capacity of a bathtub & 80 mL & 80L & 80 kL \\
\hline 24. amount of vanilla in a cookie recipe & 3 mL & 3 L & 3 kL \\
\hline 25. mass of a nickel & 5 mg & 5 g & 5 kg \\
\hline 26. mass of an adult human & 60 mg & 60 g & 60 kg \\
\hline 27. mass of an apple & 0.2 mg & 0.2 g & 0.2 kg \\
\hline
\end{tabular}
28. The average shower uses 19 liters of water per minute. If you take a five-minute shower each day, how many kiloliters of water do you use in a 30 -day month? \(\mathbf{2 . 8 5} \mathbf{~ k L}\)
29. Soft drinks are sold in 2 liter containers. How many milliliters of soft drink are in one of these containers? \(\mathbf{2 , 0 0 0} \mathbf{~ m L}\)
30. The mass of a collie is 33,000 grams, and the mass of a basset hound is 26 kilograms. Which dog is bigger? collie
```

OBJECTIVE: Translate numbers in scientific notation to standard form and numbers in standard form to scientific notation. (Strand: Number and Operation)

USING THE TRANSPARENCY: Have students guess at the proper ordering of the numbers before the numbers are converted to standard form. Use the size of the factor and the size of the exponent as a guide.

USING THE STUDENT WORKBOOK: Ask students to identify the differences between numbers written in scientific notation which involve positive and negative exponents.

EXTENSION: Have students write distances from your school to four other cities in both scientific notation and standard form.

Transparency, Skill 24

21 muw

Scientific Notation

Juan and his family plan to take a hike as part of a weekend camping trip. Juan found the table below on the Internet. It identifies the different hiking trails in the park and gives their lengths from start to finish. Help Juan and his family order the trails from shortest to longest by expressing each of the distances in standard form.

Trail Name	Length
Sunshine Trail	$2.35 \times 10^{4} \mathrm{feet}$
Lookout Point Trail	$6.18 \times 10^{3} \mathrm{feet}$
Canyon Trail	$4.6 \times 10^{4} \mathrm{feet}$

The trail lengths are shown in scientific notation. Scientific notation is used when dealing with very large or very small numbers where it can be difficult to keep track of the place value.
A number is expressed in scientific notation when it is written as the product of a factor and a power of 10 . The factor must be greater than or equal to 1 and less than 10.
To write a number in scientific notation, place the decimal point after the first nonzero digit. Then find the power of 10
Sunshine Trail: $2.35 \times 10^{4}=2.35 \times 10,000 \quad 10^{4}=10,000$
$=23,500$ feet Move the decimal point 4 places to the right.
$10^{3}=1,000$
Move the decimal point 3 places to the right. $10^{4}=10,000$ Move the decimal point 4 places to the right.
From shortest to longest, the trails are Lookout Point Trail, Sunshine Trail, and Canyon Trail.

Student Workbook, p. 48

Express each number in scientific notation.
$\begin{array}{llll}\text { 11. } 7,500,000 & \mathbf{7 . 5} \times \mathbf{1 0}^{6} & \text { 12. } 291,000 & 2.91 \times \mathbf{1 0}^{5}\end{array}$
$\begin{array}{llll}\text { 13. } 0.00037 & \mathbf{3 . 7} \times \mathbf{1 0}^{-4} & \text { 14. } & 12,600 \\ \mathbf{1 . 2 6} \times \mathbf{1 0}^{4}\end{array}$
$\begin{array}{llll}15 . & 0.0000002 & 2.0 \times \mathbf{1 0}^{-7} & \text { 16. } 0.004 \quad 4.0 \times \mathbf{1 0}^{-\mathbf{3}}\end{array}$
$\begin{array}{lllll}\text { 17. } & 60,000,000 & 6.0 \times 10^{7} & \text { 18. } 40,700,000 & 4.07 \times 10^{7}\end{array}$
$\begin{array}{lllll}\text { 19. } 0.00081 & \mathbf{8 . 1} \times \mathbf{1 0}^{-4} & \text { 20. } & 12,500 & \mathbf{1 . 2 5} \times \mathbf{1 0}^{4}\end{array}$
Choose the greater number in each pair
21. $3.8 \times 10^{3}, 1.7 \times 10^{5} \quad \mathbf{1 . 7} \times \mathbf{1 0}^{5} \quad$ 22. $0.0015,2.3 \times 10^{-4} \quad \mathbf{0 . 0 0 1 5}$
23. $60,000,000,6.0 \times 10^{6} \mathbf{6 0 , 0 0 0}, 00024.4 .75 \times 10^{-3}, 8.9 \times 10^{-6} 4.75 \times \mathbf{1 0}^{-3}$
25. $0.00145,1.2 \times 10^{-3} \mathbf{0 . 0 0 1 4 5} \quad 26.7 .01 \times 10^{3}, 7,000 \quad \mathbf{7 . 0 1} \times \mathbf{1 0}^{3}$

APPLICATIONS

27. The distance from Earth to the Sun is 1.55×10^{8} kilometers. Express this distance in standard form. 155,000,000 km
28. In 2001, the population of Asia was approximately $3,641,000,000$. Express this number in scientific notation. $3.641 \times \mathbf{1 0}^{9}$
29. A large swimming pool under construction at the Greenview Heights Recreation Center will hold 240,000 gallons of water Express this volume in scientific notation. 2.4×10^{5}
30. A scientist is comparing two chemical compounds in her laboratory. Compound A has a mass of 6.1×10^{-7} gram, and compound B has a mass of $3.6 \times 10^{-6} \mathrm{gram}$. Which of the two compounds is heavier?
Compound B

EXERCISES Express each number in standard form

1.	$7.24 \times 10^{\mathbf{3}}$	$\mathbf{7 , 2 4 0}$	2.	$1.09 \times 10^{-5} \quad \mathbf{0 . 0 0 0 0 1 0 9}$
3.	9.87×10^{-7}	$\mathbf{0 . 0 0 0 0 0 0 0 9 8 7}$	4.	$5.8 \times 10^{6} \quad \mathbf{5 , 8 0 0 , 0 0 0}$
5.	3.006×10^{-2}	$\mathbf{3 0 0 . 6}$	6.	$4.999 \times 10^{-4} \quad \mathbf{0 . 0 0 0 4 9 9 9}$
7. 2.875×10^{-5}	$\mathbf{0 . 0 0 0 0 2 8 7 5}$	8.	$6.3 \times 10^{4} \quad \mathbf{6 3 , 0 0 0}$	
9. 4.003×10^{6}	$\mathbf{4 , 0 0 3 , 0 0 0}$	10.	1.28×10^{-2}	$\mathbf{0 . 0 1 2 8}$

$3.006 \times 10^{2} 300.6 \quad$ 6. $4.999 \times 10^{-4} \quad 0.0004999$
9. $4.003 \times 10^{6} \quad 4,003,000 \quad$ 10. $1.28 \times 10^{-2} \quad 0.0128$
$\mathrm{A}_{\text {number is expressed in scientific notation when it is written as the }}$ product of a factor and a power of ten. The factor must be greater than or equal to 1 and less than 10 .

EXAMPLE Express each number in standard form.
$8.26 \times 10^{5}=8.26 \times 100,000$ = 826,000
$3.71 \times 10^{-4}=3.71 \times 0.0001$
$=0.000371$ $10^{5}=100,000$ Move the decim to the right. $10^{-4}=0.0001$
Move the decimal point 4 places to the left.
Express each number in scientific notation.
$68,000,000=6.8 \times 10,000,000 \quad$ The decimal point moves 7 places.
$=6.8 \times 10^{7}$
The exponent is positive
The decimal point moves 5 places.
The exponent is negative.

SKILL

TEACHER NOTES

Surface Area of Rectangular

 Prisms and CylindersOBJECTIVE: Find the surface area of rectangular prisms and cylinders. (Strand: Measurement)

USING THE TRANSPARENCY: Give students various boxes. Have the students work in groups to find the surface area of the boxes.
USING THE STUDENT WORKBOOK: Cut up an oatmeal box to show that the curved surface is actually a rectangle with a length of $2 \pi r$.

EXTENSION: Have students find rectangular prisms with the smallest surface area and greatest volume.

Transparency, Skill 25

SKILL WARM UP

Surface Area of Rectangular Prisms and Cylinders
Ms. Diaz is designing the outside of the cereal box at the right. What is the total area that she needs to design?

To answer this question, you need to find the sum of the areas of the six surfaces of the box. This sum is called the surface area.

$$
\begin{array}{ll}
\text { front: } & 7.5 \times 12=90 \\
\text { back: } & 7.5 \times 12=90 \\
\text { top: } & 7.5 \times 2.5=18.75 \\
\text { bottom: } & 7.5 \times 2.5=18.75 \\
\text { right side: } & 12 \times 2.5=30 \\
\text { left side: } & 12 \times 2.5=30
\end{array}
$$

The surface area is $90+90+18.75+18.75+30+30$ or 277.5 square inches. Ms. Diaz is designing an area of 277.5 square inches.

Student Workbook, p. 49

Student Workbook, p. 50

APPLICATIONS

10. A box company is making rectangular boxes that are 10 centimeters by 8 centimeters by 5 centimeters. How many of these boxes can the company make using 200,000 square centimeters of cardboard? 588 boxes
11. The two boxes have about the same volume. Which box takes less material to manufacture? the cylinder

12. A wheel of cheese is sealed in a wax covering. The wheel of cheese is in the shape of a cylinder that has a diameter of 25 centimeters and a height of 20 centimeters. What is the surface area of the cheese that needs to be covered in wax. about $2,552.5 \mathbf{~ c m}^{2}$

SKILL

TEACHER NOTES

Circumference and Area of Circles

OBJECTIVE: Find the area and circumference of circles. (Strand: Measurement)

USING THE TRANSPARENCY: Ask students to draw circles on grid paper using a compass. Have them estimate the area of the circles by counting squares. Compare the estimates to the areas found using the formula.

USING THE STUDENT WORKBOOK: Discuss the parts of a circle. Be sure students understand the relationship between radius and diameter.

EXTENSION: Ask students to find the radius of a circle that has an area of 78.54 square meters.

Transparency, Skill 26

Tim maxur

Circumference and Area of Circles

The large circular tent used by a circus is 166 feet in diameter. Eighty people are needed to erect the tent. It takes 2 to 5 minutes to erect the tent after the tent master starts the process.

What is the distance around the tent?
$c=\pi d$
$C=\pi \times 166$
$C \approx 521.5$ Use a calculator.
The distance around the tent is about 521.5 feet.

What is the area covered by the tent?

The radius is half of 166 or 83 feet.
$A=\pi r^{2}$
$A=\pi \times 83^{2}$
$A \approx 21,642.4$ Use a calculator.
The tent covers about 21,642.4 square feet of ground.

Student Workbook, p. 51

Student Workbook, p. 52

$100.5 \mathrm{~mm} ; \mathbf{8 0 4 . 2} \mathbf{~ m m}{ }^{2} \quad 3.1 \mathbf{y d} ; \mathbf{0 . 8}$ yd 2

APPLICATIONS

10. The approximate diameter of Earth is 3,960 miles. What is the distance around the equator? about $12,440.7 \mathrm{mi}$
11. A circular garden has a diameter of 28 feet. The garden is to be covered with peat moss. If each bag of peat moss covers 160 square feet, how many bags of peat moss will be needed? 4 bags
12. What is the area of a pizza with a diameter of 14 inches? about 153.9 in 2
13. The stage of a theater is a semicircle. If the radius of the stage is 32 feet, what is the area of the stage? about $1,608.5 \mathbf{f t}^{\mathbf{2}}$
14. A Ferris wheel has a diameter of 212 feet. How far will a passenger travel in one revolution of the wheel? about 666.0 ft
15. A water sprinkler produces a spray that goes out 25 feet. If it sprays the water in a circular pattern, what is the area of the lawn that it waters?
16. The diameter of a bicycle wheel is 26 inches. How many feet will the bicycle travel if the wheel turns 20 times? about 136.1 ft
17. The Roman Pantheon is 142 feet in diameter. What is the distance around the Pantheon? about 446.1 ft
18. The diameter of a dime is 17.9 millimeters. What is the area of one side of the coin? about $251.6 \mathrm{~mm}^{2}$

GlencoeiMCGraw-Hill Course 2 Intervention

TEACHER NOTES

Volume of Rectangular Prisms and Cylinders

OBJECTIVE: Find the volume of rectangular prisms and cylinders. (Strand: Measurement)

USING THE TRANSPARENCY: Have students measure your classroom and determine the volume of the room.

USING THE STUDENT WORKBOOK: Give students rectangular boxes and cylindrical cans. Have the students work in groups to find the volume of the objects.

EXTENSION: Provide different size containers and have students order them from least to greatest volume.

Transparency, Skill 27

27 WaRM up
Volume of Rectangular Prisms and Cylinders
A diagram of a four-wall handball court is shown.

What is the volume of a room used to play four-wall handball?

Volume is the amount of space that a threedimensional figure contains. The volume of a prism or a cylinder can be found by multiplying the area of the base times the height.

$$
V=B h
$$

In this formula, B represents the area of the base, and h represents the height.

The base of a handball court is a rectangle that
is 40 feet by 20 feet.

$$
B=40 \times 20 \text { or } 800
$$

The height of the handball court is 20 feet.

$$
\begin{aligned}
& V=B h \\
& V=800 \times 20 \\
& V=16,000
\end{aligned}
$$

The volume of a room used to play four-wall handball is 16,000 cubic feet. Glencoe/MCGraw-Hill Course 2 Intervention

Student Workbook, p. 53

Student Workbook, p. 54

APPLICATIONS

13. Mariah is making cylindrical candles. The candles she plans to make have a diameter of 3 inches and a height of 8 inches. If she has 200 cubic inches of wax, how many candles can Mariah make. $\mathbf{3}$ candles
14. A fish tank is shown at the right
a. What is the volume of the tank? $243,000 \mathrm{~cm}^{3}$
b. If the tank is filled to the height of 50 centimeters, what is the volume of the water in the tank? $202,500 \mathbf{c m}^{3}$

15. A square cake pan is 8 inches long on each side. It is 2 inches deep. A round cake pan has a diameter of 8 inches. It is 2 inches deep.
a. Which pan can hold more cake batter? the square cake pan
b. How much greater is the volume of the pan that holds more batter? about $27.5 \mathrm{in}^{3}$
16. How many cubic inches are in a cube that is 1 foot on each side? $1,728 \mathrm{in}^{3}$

Glencoe/MCGraw-Hill Course 2 Intervention

Nets and Solids

OBJECTIVE: Draw nets for rectangular prisms and top, side, and front views of other solids. (Strand: Measurement)

USING THE TRANSPARENCY: Supply graph paper to help the students draw a more accurate net.

USING THE STUDENT WORKBOOK: Ask students to use a ruler and graph paper to assist in their drawing.

EXTENSION: Have students bring in objects from home that could be used to draw nets and top, side, and front views.

Transparency, Skill 28

skIIL WARM UP

Nets and Solids

A net is the shape that is formed by "unfolding" a three-dimensional figure. A net shows all the faces that make up the surface area of the figure.

Draw a net for a rectangular prism that has length 6 units, width 2 units, and height 3 units.

The net will be made up of three sets of congruent shapes:

1. the top and bottom of the prismrectangles 6 units by 2 units
2. the two sides of the prismrectangles 2 units by 3 units

3. the front and back of the prismrectangles 6 units by 3 units

Student Workbook, p. 56

Make a perspective drawing of each figure by using the top, side and front views as shown.

APPLICATIONS

7. Javier finds a container of oatmeal that is in the shape of a cylinder. Draw a top, a side, and a front view of the container.
8. Victoria has borrowed a block from her little sister's building block collection. The top, side, and front building block collection. The top, side, and fro
views of the block are given. Draw the block.

OBJECTIVE: Investigate and draw threedimensional figures. (Strand: Geometry)

USING THE TRANSPARENCY: Discuss the difference between prisms and pyramids. Ask students how prisms and cylinders are related and how they differ. Ask students how pyramids and cones are similar and how they are different.

USING THE STUDENT WORKBOOK: Have students study a model of a rectangular prism. Have students identify the faces, bases, edges, and vertices.

EXTENSION: Have students draw different Venn diagrams to classify three-dimensional figures.

Transparency, Skill 29

skIt Warm up
 29

Three-Dimensional Figures

Two types of three-dimensional figures, or solids, are prisms and pyramids. These three-dimensional figures have flat surfaces. Prisms and pyramids are named by their bases.

The flat surfaces that form the figures are called faces. The faces intersect to form edges. The edges intersect to form vertices.

Some solids have curved surfaces.
What items in your home or classroom are in the shape of a rectangular prism?

Cereal boxes, shoe boxes, and paperback books are examples of rectangular prisms.

What items in your home or classroom
are in the shape of a cylinder?

Soup cans, soda cans, and oatmeal boxes are examples of cylinders.

Course 2 Intervention

Student Workbook, p. 58

SKILL
 30

TEACHER NOTES

Weight and Mass

OBJECTIVE: To convert between different units of measure within the same system. (Strand: Measurement)

USING THE TRANSPARENCY: Have students discuss products they purchase by weight or that show the products' weight. This may include bags of potatoes, grains, fresh fish, vehicles and so on.

USING THE STUDENT WORKBOOK: Have students discuss in small groups strategies they can use to remember how to convert between units.

EXTENSION: Have students make a list of five objects and exchange with another student. The second student should determine which units (both customary and metric) would be most appropriate to use in weighing the object.

Student Workbook, p. 59

Transparency, Skill 30

$$
\begin{aligned}
& \text { SKILL WARM UP } \\
& \text { Weight and Mass } \\
& \text { Lee is driving a delivery truck and comes to a bridge that says } \\
& \text { "Maximum Weight 4 Tons." When he left the warehouse, the } \\
& \text { weight of the truck was } 6,800 \text { pounds. } \\
& \text { Can Lee continue in this direction for his delivery? He has the } \\
& \text { following conversion chart to use in situations like this. } \\
& \begin{array}{|l|c|c|c|}
\hline & \text { ounces } & \text { pounds } & \text { tons } \\
\hline 1 \text { ounce } & 1 \text { ounce } & \frac{1}{16} \text { pound } & \frac{1}{32,000} \text { ton } \\
\hline 1 \text { pound } & 16 \text { ounces } & 1 \text { pound } & \frac{1}{2,000} \text { ton } \\
\hline 1 \text { ton } & 32,000 \text { ounces } & 2,000 \text { pounds } & 1 \text { ton } \\
\hline
\end{array}
\end{aligned}
$$

Lee can either convert both measurements to tons or both to pounds. To convert from tons to pounds, multiply by 2,000 . So, $4 \times 2,000=8,000$ pounds. Lee can also divide 6,800 by 2,000 . So, $6,800 \div 2,000=3.4$.

Since Lee is below 8,000 pounds and under 4 tons, the bridge is safe to use.

Student Workbook, p. 60

```
EXERCISES
3. 24 ounces = 1\frac{\mathbf{1}}{\mathbf{2}}}\mathrm{ pounds
4. 4,000 pounds =64,000}\mathrm{ ounces =}\frac{\mathbf{2}}{\mathbf{1}}\mathrm{ tons
5. }80\mathrm{ ounces = 5 pounds = }\overline{400}\mathrm{ tons
6. 1\frac{1}{2}}\mathrm{ tons = 3,000 pounds = 48,000
7. 10 pounds = 160 ounces=
8. }\frac{1}{4}\mathrm{ ton = 50 pounds = 8,000}\mathrm{ ounces
```


APPLICATIONS

9. Which is heavier, 1.5 kilograms or 23,000 milligrams? $\mathbf{1 . 5}$ kilograms
10. The mass of a medium-sized mouse is about 20 grams. The mass of a medium-sized cat is about 6 kilograms. How many mice would balance one cat on a scale? $\mathbf{3 0 0}$
11. The weight of a penny is 2.5 grams. The weight of a liter of water is 1 kilogram (not including the container). If a 1 -liter bottle of water costs $\$ 2.00$, and you paid for it in pennies, would the pennies weigh more than the water? No; the pennies would weigh $\mathbf{5 0 0}$ grams, the water would weigh 1,000 grams
12. Which is heavier, $2 \frac{1}{4}$ pounds or 40 ounces? $\mathbf{4 0}$ ounces
13. Tony wants to buy 5 pounds of rice, but the store only sells rice in 10 -ounce packages. How many packages does he need? 8 packages
14. A box of crackers weighs 12 ounces. A crate holds 37.5 pounds of crackers. How many boxes are in a crate? $\mathbf{5 0}$ boxes

OBJECTIVE: Solve problems by solving simpler problems, or using logical reasoning. (Strand: Problem Solving)

USING THE TRANSPARENCY: Ask students to find the area of the floor of a room that is not rectangular. Students should make the measurements they need to find the area and do the calculations. Ask students to tell what simpler problems they solved to find the area.

USING THE STUDENT WORKBOOK: Show the class a photo of a large number of people. Ask the students how they would use the solve-a-simpler-problem strategy to determine the number of people in the photo.

EXTENSION: Ask students to find the number of diagonals there are in a convex polygon with 40 sides by solving simpler problems.

Student Workbook, p. 61

Transparency, Skill 31

${ }^{\text {SKIII }}$ Warm Up

Simplify and Use Logical Reasoning
Genaro wants to put carpet in his den. In the center of the room is a tile hearth for his stove. He does not want to carpet that area. How much carpet does he need?

You can solve this problem by solving two simpler problems. First find the total area of the
 den. Then find the area of the hearth. Subtract to find the area that will be carpeted.

Find the area of the den

$$
24 \times 8=432
$$

The area of the den is 432 square feet.
Find the area of the hearth.

$$
6 \times 6=36
$$

The area of the hearth is 36 square feet.
Find the area that will be carpeted.
$432-36=396$
Genaro needs 396 square feet of carpet.

Student Workbook, p. 62

EXERCISES Solve

1. Find the sum of the whole numbers from 1 to $400.8 \mathbf{8 0 , 2 0 0}$
2. Find the sum of the even numbers from 2 to 100. 2,550
3. There are three boards each a different odd number of feet long. If the boards are placed end to end, the total length is 9 feet. What are the lengths of the boards? $\mathbf{1 ~ f t , ~} \mathbf{3} \mathbf{f t}$, and $\mathbf{5} \mathbf{f t}$
4. A total of 492 digits are used to print all the page numbers of a book beginning with page 1 . How many pages are in the book? 200 pages
5. Anna, Iris, and Oki each have a pet. The pets are a fish, cat, and a bird. Anna is allergic to cats. Oki's pet has 2 legs. Whose pet is the fish? Anna

APPLICATIONS

6. Connie, Kristina, and Roberta are the pitcher, catcher, and shortstop for a softball team, but not necessarily in that order. Kristina is not the catcher. Roberta and Kristina share a locker with the shortstop. Who plays each position? Connie: shortstop; Kristina: pitcher; Roberta: catcher
7. Mr. Lee wants to carpet the room shown at the right. How much carpet will he need? $\mathbf{3 9 2} \mathbf{f t}^{2}$
8. Doug, Louann, and Sandy have lockers next to each other. Louann rides the bus with the person whose locker is at the right. Doug's locker is not next to Luann's locker. Who has the locker at the left? Louann
9. A rectangular field is fenced on two adjacent sides by a
 brick wall. The field is 63 yards long with an area of 1,323 square yards. How much fencing is needed on the two sides of the field? $\mathbf{8 4} \mathbf{~ y d}$
10. A vending machine sells items that cost 80α. It only accepts quarters, dimes, and nickels. If it only accepts exact change, how many different combinations of coins must the machine be programmed to accept? 20 combinations

TEACHER NOTES

Counting Outcomes and Tree Diagrams

OBJECTIVE: Use different counting methods. (Strand: Data Analysis and Probability)

USING THE TRANSPARENCY: Ask students to predict how many different shapes they would have if they drew squares and triangles in red, black, green, and yellow. Have them make a tree diagram to check their prediction.

USING THE STUDENT WORKBOOK: Point out to students that multiplication is a time-saving method for finding the number of possible outcomes. Help students to see that the Fundamental Counting Principle can be applied to more than two events.

EXTENSION: Ask students to describe a circumstance under which they would rather use a tree diagram than the Fundamental Counting Principle. Then have them describe a situation when using a tree diagram would not be practical.
Student Workbook, p. 63

Name Date
Counting Outcomes and Tree Diagrams
$\mathrm{A}_{\mathrm{n} \text { organized list can help you determine the number of possible outcomes for a situation. }}$ One type of organized list is a tree diagram.
EXAMPLE The lunch special at Morgan's Diner is a choice of a turkey, ham, or veggie sandwich, salad, or fruit plate, and either pie or cake. If you wish to order the lunch special, how many different choices do you have?
To answer this question, make a tree diagram.

The Fundamental Counting Principle states that if an event M can occur m ways and it is followed by an event N that can occur n ways, then the event M followed by event N can occur $m \times n$ ways.
EXAMPLE

> Use the Fundamental Counting Principle.

There are 2 possible outcomes when tossing a coin, heads or tails. outcomes for quarter $1 \times$ outcomes for quarter $2=$ possible outcomes $\begin{array}{ccc}2 & \times & 2 \\ \text { There are } & 4 & \text { possible outcomes if } 2 \\ 2 & \text { quarters are tossed. }\end{array}$

Transparency, Skill 32

32

WARM UP
 Counting Outcomes and Tree Diagrams

Theo is buying a new sweatshirt to use at track practice. He has a choice of crew neck or hooded. The sweatshirts come in black, gray, blue, and red. How many different sweatshirts are there from which Theo can choose?
One way to solve this is to make a list. crew neck, black hooded, black crew neck, gray hooded, gray crew neck, blue hooded, blue crew neck, red hooded, red
There are 8 different sweatshirts.
Another way to solve this problem is to make a tree diagram.

According to the tree diagram, there are
 8 different sweatshirts available.

Another way to solve this problem is to use the Fundamental Counting Principle.

```
Fundamental Counting Principle
If an event M can occur in \(m\) ways and it is followed by event N that can occur in \(n\) ways, then the event M followed by event N can occur in \(m \times n\) ways.
```

choices for type \times choices for colors $=$ possible sweatshirts
$2 \times 4 \quad 4 \quad 8$
In each solution, the number of sweatshirts from which to choose is 8 .

Glencoe/McGraw-Hill Course 2 Intervention

Student Workbook, p. 64

Use the Fundamental Counting Principle to find the number of outcomes for each situation.
3. 5 types of juice come in 3 different sized containers.
$5 \times 3=15$
15 outcomes
5. Baseball hats come in 2 styles
and 3 sizes for each of 12 teams
$2 \times 3 \times 12=72$
72 outcomes

APPLICATIONS
7. Mrs. Jenkins' history test has 10 questions. Seven of the questions are multiple-choice with four answer choices. Two of the questions are true-false. How many possible sets of answers are there for the test? 65,536 sets of answers
8. Ryan is buying a new bicycle. He can choose from a mountain bike, a stunt bike, or a BMX bike. Each of the bikes comes in
6 colors. The bikes offer a choice of 2 types of tires and 3 types of seats. How many different bicycles can Ryan select? 108 bicycles
9. Lonan is choosing a new password for his email account. The
password must contain eight characters. The first two characters of
his password must be letters and the last 6 digits must be any digit 0-9.
How many possible passwords can Lonan create? 676,000,000 passwords

Glencoe/MCGraw-Hill Course 2 Intervention

Glencoe/MCGraw-Hill Course 2 Intervention

Permutations

OBJECTIVE: Find the number of permutations of objects. (Strand: Data Analysis and Probability)

USING THE TRANSPARENCY: Choose three students. Tell them that they are standing in line at a movie theater. Have them arrange themselves in as many different orders as possible. Then ask them how they could determine the number of ways 3 out of 7 people could stand in line.

USING THE STUDENT WORKBOOK: Show students the sports section of a newspaper. For whichever sport is in season, have students name teams in a league. Ask students to find how many arrangements of first and second place are possible.

EXTENSION: Ask students to write a problem that has $P(15,3)$ as the answer. Ask them to evaluate $P(15,3)$.

Student Workbook, p. 65

Name
Permutations
$\mathrm{A}_{\mathrm{n} \text { arrangement or listing in which order is important is called a permutation. } P(n, r) \text { stands }}$ for the number of permutations of n things taken r at a time.

EXAMPLE
There are 6 runners in a race. How many permutations of first, second, and third place are possible?
There are 6 choices for first place, then 5 choices for second place, and finally 4 choices for third place. Find $P(6,3)$
$P(6,3)=6 \times 5 \times 4$
$=120$
The number of permutations is 120 .
The
The expression $6 \times 5 \times 4 \times 3 \times 2 \times 1$ can be written as 61 . It is read six factorial. In general, $n!$ is the product of whole numbers starting at n and counting backward to 1 . To find the number of permutations involving all members of a group, $P(n, n)$, find $n!$.

EXAMPLE
There are 6 runners in a race.
In how many ways can they finish the race?
There are 6 choices for first, 5 choices for second, and so on
$P(6,6)=6 \times 5 \times 4 \times 3 \times 2 \times 1=720$
There are 720 ways in which the runners can finish the race
EXERCISES

| Find the value of each expression. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1. $P(5,2) \mathbf{2 0}$ 2. $P(8,3) \mathbf{3 3 6}$ 3. $P(4,3) \mathbf{2 4}$ 4. $P(7,4) 840$
 5. $P(10,2) \mathbf{9 0}$ 6. $P(4,4) \mathbf{2 4}$ 7. $P(6,1) \mathbf{6}$ 8. $P(9,5) \mathbf{1 5 , 1 2 0}$
 9. $4!\mathbf{2 4}$ 10. $5!\mathbf{1 2 0}$ 11. $8!\mathbf{4 0 , 3 2 0}$ 12. $10!\mathbf{3 , 6 2 8 , 8 0 0}$
 13. $\frac{6!}{3!} \mathbf{1 2 0}$ 14. $\frac{5!}{4!} \mathbf{5}$ 15. $\frac{6!}{2!} \mathbf{3 6 0}$ 16. $\frac{8!}{5!} \mathbf{3 3 6}$ |

1. $P(5,2) \mathbf{2 0}$ 2. $P(8,3) \mathbf{3 3 6}$ 3. $P(4,3) \mathbf{2 4} \quad$ 4. $P(7,4) \mathbf{8 4 0}$
2. $P(10,2) 90$ 6. $P(4,4) 24$ 7. $P(6,1) 6$ 8. $P(9,5) \mathbf{1 5 , 1 2 0}$
$\begin{array}{lllll}\text { 13. } \frac{6!}{3!} 120 & \text { 14. } \frac{5!}{4!} \mathbf{5} & \text { 15. } \frac{6!}{2!} \mathbf{3 6 0} & \text { 16. } \frac{8!}{5!} 336\end{array}$

Transparency, Skill 33

SKILL WARM UP
 33

Permutations

Several countries of the world have flags that consist of three different-colored vertical stripes. Study the flags at the right. How many flags such as these could be made using the colors black, blue, green, orange, red, white, and yellow? Remember that each flag must have three vertical stripes and each stripe on the flag must be a different color.

In this case, order is important. An arrangement or listing in which order is important is called a permutation.

There are a total of 7 colors. Therefore, there are 7 choices for the color of the first stripe. Once the first color has been chosen, there are 6 remaining colors for the middle stripe. There are 5 possible colors for the last stripe.

$$
7 \times 6 \times 5=210
$$

There are 210 possible flags that can be made.

Student Workbook, p. 66

APPLICATIONS

17. How many ways can a winner and a runner-up be chosen from 8 show dogs at a dog show? 56 ways
18. In how many ways can 5 horses in a race cross the finish line? $\mathbf{1 2 0}$ ways
19. In how many ways can a president, vice-president, secretary, and treasurer be chosen from a club with 12 members? $\mathbf{1 1 , 8 8 0}$ ways
20. A shelf has a history book, a novel, a biography, a dictionary, a cookbook, and a home-repair book. In how many ways can 4 of these books be rearranged on another shelf? $\mathbf{3 6 0}$ ways
21. In how many ways can 8 people be seated at a counter that has 8 stools in a row? 40,320 ways
22. Eight trained parrots fly onto the stage but find there are only 5 perches. How many different ways can the parrots land on the perches if only one parrot is on each perch? 6,720 ways
23. Seven students are running for class president. In how many different orders can the candidates make their campaign speeches? 5,040 orders
24. In how many different ways can a coach name the first three batters in a nine-batter softball lineup? 504 ways
25. How many different flags consisting of 4 different-colored vertical stripes can be made up from blue, green, red, black, and white? 120 flags
26. In how many ways can the gold, silver, and bronze medals be awarded to 10 swimmers? $\mathbf{7 2 0}$ ways

SKILL

TEACHER NOTES

Probability

OBJECTIVE: Find the probability of simple events and compound (independent and dependent) events. (Strand: Data Analysis and Probability)

USING THE TRANSPARENCY: Have groups of students use a deck of cards to help them find simple probabilities such as $P(2), P$ (heart), and P (even numbered card). Then have students discuss what happens to the number of cards when two cards are drawn and the first is not returned to the deck.

USING THE STUDENT WORKBOOK: Supply groups of students with spinners. Ask the students to determine the probability of spinning a certain number. Then, have them spin the spinner twice to determine the probability of a certain number combination or sum.

EXTENSION: Have students analyze the probabilities included in a specific card or board game.

Student Workbook, p. 67

Name Date

Probability
The probability of an event is the ratio of the number of ways an event can occur to the number of possible outcomes. The probability of one event occurring is called a simple probability.
EXAMPLE The spinner has ten equally likely outcomes. Find the probability of spinning a number less than 7.
Numbers less than 7 are 1, 2, 3, 4, 5, and 6. There are 10 possible outcomes.
probability of a number less than $7=\frac{6}{10}$ or $\frac{3}{5}$
The probability of spinning a number less than 7 is $\frac{3}{5}$

A compound event consists of two or more simple events. Independent events occur when the outcome of one event does not affect the outcome of another event. If the outcome of the outcome of one event does not affect the outcome of another event. If the outcome

EXAMPLES Tiles numbered 1 through 25 are placed in a box. Two tiles are selected at random. Find each probability.
drawing an even number, replacing the tile, and then randomly drawing a multiple of 3
The events are independent since the outcome of one drawing does not affect the other.
$P($ even number $)=\frac{12}{25} \quad P($ multiple of 3$)=\frac{8}{25}$
$P($ even number, multiple of 3$)=\frac{12}{25} \cdot \frac{8}{25}$ or $\frac{96}{625}$
drawing a number greater than 10 , and then drawing a number less than 10 without replacing the first tile
The events are dependent since there is one less tile from which to choose on the second draw.
$P(n>10)=\frac{15}{25}$ or $\frac{3}{5} \quad P(n<10)=\frac{9}{24}$ or $\frac{3}{8}$
$\mathrm{P}(n>10, n<10)=\frac{3}{5} \cdot \frac{3}{8}$ or $\frac{9}{40}$

Transparency, Skill 34

skILL WARM UP

Probability
A standard deck of playing cards contains 52 cards. The cards are divided into suits: clubs (black), hearts (red), spades (black), and diamonds (red). Each suit has cards numbered 2 through 10 , a jack (J), queen (Q), king (K), and ace (A).
If a card is randomly selected from the deck, what is the probability that it will be a diamond?
The probability of a simple event is the ratio of the number of ways the event can occur to the number of possible outcomes. $P($ diamond $)=\frac{13}{52} \leftarrow$ number of diamonds
$=\frac{13}{52} \leftarrow$ number of cards
$=\frac{1}{4} \quad$ The probability of randomly selecting a diamond is $\frac{1}{4}$.
A compound event consists of two or more simple events. In independent events, the outcome of one event does not affect the outcome of another event. If the outcome of one event affects the outcome of another event, they are dependent events.
Two cards are randomly drawn from a deck. Find each probability. 1 drawing an ace, replacing the 2 drawing two jacks without card, then drawing a club
The events are independent since the outcome of one does not affect the other.
$P($ ace $)=\frac{4}{52}$ or $\frac{1}{13}$
$P($ club $)=\frac{13}{52}$ or $\frac{1}{4}$
$P($ ace then club $)=\frac{1}{13} \cdot \frac{1}{4}=\frac{1}{52}$ $2 \begin{aligned} & \text { drawing two jacks witho } \\ & \text { replacing the first card }\end{aligned}$
The events are dependent since there is one less card from which to choose on the second draw.
$P($ jack $)=\frac{4}{52}$ or $\frac{1}{13}$
$P($ jack $)=\frac{3}{51}$ or $\frac{1}{17}$
$P($ two jacks $)=\frac{1}{13} \cdot \frac{1}{17}=\frac{1}{221}$

Student Workbook, p. 68
 and 8 orange marbles. Find each probability.

```
5. }P(\mathrm{ red) }\frac{\mathbf{2}}{5
6. P(blue or yellow)}\frac{\mathbf{3}}{10
7. P(not orange)}\frac{11}{15}\mathrm{ 8. }P\mathrm{ (yellow then blue, with replacement)}\frac{1}{50
    9. P(green then red
    without replacement)}\frac{\mathbf{2}}{\mathbf{145}
    10. P(yellow, yellow, orange,
```

The spinner shown is equally likely to stop on each of the sections. The spinner is spun twice. Find each probability. 11. P (multiple of 2 , multiple of 3) $\frac{5}{32}$
13. P (product is even) $\frac{\mathbf{1}}{\mathbf{2}}$
12. $P(n>10, n>12) \frac{3}{32}$

A number cube is rolled and the spinner is spun.
Find each probability.
15. $P(6$ and $B) \frac{1}{48}$
17. $P\left(n>3\right.$ and A, B, or C) $\frac{1}{4}$
16. $P\left(\right.$ odd number and E) $\frac{1}{12}$
18. $P\left(\mathrm{n}<3\right.$ and vowel) $\frac{\mathbf{5}}{\mathbf{3 6}}$

APPLICATIONS Brianna, Mai-Lin, and Camila are playing a board game in which two number cubes ar tossed to determine how far a player's game piece is to move.
19. Brianna needs to move her piece 9 spaces to return
it to base. What is the probability that she will roll 9 ? $\frac{\mathbf{1}}{\mathbf{9}}$
20. If Mai-Lin rolls doubles, then she gets to roll again. What is the probability that Mai-Lin will get to roll twice on her next turn? $\frac{\mathbf{1}}{\mathbf{6}}$

Theoretical and Experimental

 ProbabilityOBJECTIVE: Determine theoretical and experimental probabilities. (Strand: Data Analysis and Probability)

USING THE TRANSPARENCY: Have students discuss the meaning of theoretical probability and experimental probability.

USING THE STUDENT WORKBOOK: Have students work in small groups. Have each group choose one of the experiments mentioned in the Exercises and conduct a similar experiment.

EXTENSION: Have students design and carry out an experiment to solve the following problem: A coach for the school softball team mixed up the hats of 6 players, and then handed them out to the players at random. Find the probability that at least one player gets her own hat.

Student Workbook, p. 69

Name Date \qquad
Theoretical and Experimental Probability

the event can occur to the number of possible outcomes.
The experimental probability of an event is the ratio of the number of
successful trials to the number of trials.
EXAMPLE
Sean wants to determine the probability of getting a sum of 7 when rolling two number cubes. The sample space, or all possible outcomes, for rolling two number cubes is shown below.

1,1	1,2	1,3	1,4	1,5	1,6
2,1	2,2	2,3	2,4	2,5	2,6
3,1	3,2	3,3	3,4	3,5	3,6
4,1	4,2	4,3	4,4	4,5	4,6
5,1	5,2	5,3	5,4	5,5	5,6
6,1	6,2	6,3	6,4	6,5	6,6

What is the theoretical probability of rolling a sum of 7? What is the experimental probability of rolling a sum of 7 if Sean rolls the number cubes 20 times and records 4 sums of 7 ?

There are 6 sums of 7 shown in the sample space above. So, the theoretical probability of rolling a sum of 7 is $\frac{6}{36}$ or $\frac{1}{6}$. Since Sean rolled 4 sums of 7 on 20 rolls, the experimental probability is $\frac{4}{20}$ or $\frac{1}{5}$.

EXERCISES
Find the theoretical probability of each of the following.

1. getting tails if you toss a coin $\frac{\mathbf{1}}{\mathbf{2}}$
2. getting a 6 if you roll a number cube $\frac{\mathbf{1}}{\mathbf{6}}$
3. getting a sum of 2 if you roll two number cubes $\frac{\mathbf{1}}{\mathbf{3 6}}$

Transparency, Skill 35

${ }^{\text {SKILI }}$ WARM UP

Theoretical and

 Experimental ProbabilityTrevor wants to determine the probability of getting heads when a coin is tossed. He decides to find both the theoretical and experimental probabilities.

The theoretical probability of getting heads, represented by $P(H)$, is the ratio of the number of ways to toss heads to the number of possible outcomes.

$P(H)=\frac{1}{2}$

To find the experimental probability of getting heads, Trevor tosses the coin 50 times and records the number of times it lands with heads facing up. He records 28 heads.

The experimental probability of getting heads is the ratio of the number of successful trials to the number of trials.

$$
\frac{28}{50}=\frac{14}{25}
$$

Another experiment may result in a different experimental probability.

Student Workbook, p. 70

4. getting a sum less than 6 if you roll two number cubes $\frac{\mathbf{5}}{18}$
5. Amanda rolled one number cube 30 times and got 8 sixes.
a. What is her experimental probability of getting a six? $\frac{\mathbf{4}}{15}$
b. What is her experimental probability of not getting a six? $\frac{\mathbf{1 1}}{\mathbf{1 5}}$
6. Ramón rolled two number cubes 36 times and got 3 sums of 11 .
a. What is his experimental probability of getting a sum of 11 ? $\frac{\mathbf{1}}{\mathbf{1 2}}$
b. What is his experimental probability of not getting a sum of 11 ? $\frac{\mathbf{1 1}}{\mathbf{1 2}}$

APPLICATIONS While playing a board game, Akira rolled a pair of number cubes 48 times and got doubles 10 times.
7. What was his experimental probability of rolling doubles? $\frac{5}{24}$
8. How does his experimental probability compare to the How does his experimental probability com the experimental probability is slightly greater.
9. How do you think the experimental probability compares to the theoretical probability in most experiments? The experimental probability should be close to the theoretical probability.
10. Do you think the experimental probability is ever equal to the theoretical probability? Explain?
Sample answer: Yes, especially if many trials are used.

TEACHER NOTES

Using Statistics to Make Predictions

OBJECTIVE: Use best-fit lines to make predictions based on data collected. (Strand: Data Analysis and Probability)

USING THE TRANSPARENCY: Review the concepts of slope, y-intercept, and slopeintercept form with students.

USING THE STUDENT WORKBOOK: Remind students that answers given are sample answers and may differ from their answers because of use of differing ordered pairs.

EXTENSION: Have students survey other students of varying ages and gather data on age and height. Use this data to predict the height for a 16-year-old.

Transparency, Skill 36

skit warm up

Using Statistics to Make Predictions
A best-fit line is a line that is very close to most of the data points.

Use the information from the graph to write an equation in slope-intercept form for the best-fit line and then predict the number of ice cream cones sold in a day when the high
 temperature for the day is $92^{\circ} \mathrm{F}$.
Step 1 First, select two points on the line and find the slope. Use $(50,40)$ and $(80,175)$.
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad$ Definition of slope

$$
=\frac{175-140}{80-50} \quad x_{1}=50, y_{1}=40, x_{2}=80, y_{2}=175
$$

$=4.5$
Simplify.
Step 2 Find the y-intercept.

$$
\begin{aligned}
y & =m x+b \\
175 & =4.5(80)
\end{aligned}
$$

$175=4.5(80) \quad$ Slope-intercept form
$-185=\mathrm{b} \quad$ Simplify.
Step 3 Write the equation. $y=m x+b$

Slope-intercept form
$y=4.5 x-185$

$$
m=4.5, b=-185
$$

Step 4 Predict the number of cones sold on a day where the high temperature is $92^{\circ} \mathrm{F}$.

$$
\begin{aligned}
y & =4.5(92)-185 & & x=92 \\
& =229 & & \text { Simplify } .
\end{aligned}
$$

A prediction for the number of ice cream cones sold on a day when the high temperature is $92^{\circ} \mathrm{F}$ is 229 cones.

Glencoem.MGraw.+मill Course 2 Ineverention

Student Workbook, p. 71

36

Name Date

Using Statistics to Make Predictions
$W_{\text {hen reallife data are collected in a statistical experiment, the points graphed usually do }}$ not form a straight line. They may, however, approximate a linear relationship. A best-fit line can be used to show such a relationship. A best-fit line is a line that is very close to most of the data points.

EXAMPLE Use the best-fit line to pre

Draw a line so that the points are as close as possible to the line. Extend the line so that you can find the y value for an x value of 2007. The y value for 2007 is about 225,000 .
So, the annual attendance at Fun Times Amusement Park in 2007 is 225,000 people.

$Y_{\text {ou can also write an equation of a best-fit line. }}$
EXAMPLE
Use the information from the example above. Write an equation in slope-intercept form for the best-fit line and then predict the annual attendance in 2008.

Step 1 First, select two points on the line and find the slope Choose (2001, 50,000) and (2003, 100,000)
$m=\frac{y_{2}-y_{1}}{x_{2}-x}$ $=\underline{100,000-50,000}$ 2003-2001 $=25,000$
Step 2 Find the y-intercept. $y=m x+b$
$50,000=25,000(2001)+b$ $-49,975,000=b$
$x_{1}=2001, y_{1}=50,000$
$x_{2}=2003, y_{2}=100,000$ Simplify.

Slope-intercept form $y=50,000, m=25,000, x=2001$ Simplify. (Continued on the next page.)

Student Workbook, p. 72

Mean, Median, and Mode

OBJECTIVE: Find the mean, median, and mode of a set of data. (Strand: Data Analysis and Probability)

USING THE TRANSPARENCY: Write the numbers $1,2,3$, and 3 on the chalkboard. Have students describe how they would find the mean, median, and mode of the data.

USING THE STUDENT WORKBOOK: Write a set of data on $3^{\prime \prime} \times 5^{\prime \prime}$ cards with one number on each card. Have pairs of students arrange the cards in order from least to greatest. Have them find the mean, median, and mode.

EXTENSION: Have students use newspapers and magazines to find real-world examples of mean, median, and mode. Have them discuss reasons as to why the mean, median, or mode was chosen to represent the specific data.

Student Workbook, p. 73

Name Date

Mean, Median, and Mode
$Y_{\text {ou can analyze a set of data by using three measures of central tendency: mean, median, }}$ and mode.

```
EXAMPLE
            Tim Duncan, 2003's Most Valuable Player in the National
            Basketball Association, helped the San Antonio Spurs win the NBA
            Championship. In winning the six games of the series,Duncan scored
            32, 19, 21, 23, 29, and 21 points. Find the mean, median, and mode
            32, 19, 21, 23, 29,and 21 points. Find the mean, median, and mode
            of his scores.
            Mean: }\quad\frac{32+19+21+23+29+21}{6}\approx24.16
            The mean is about }24\mathrm{ points.
    Median: 19, 21, 21, 23, 29, 32
            21\uparrow+23
            The median is 22 points.
    Mode: The mode is }21\mathrm{ since it is the number
            that appears the most times.
```

EXERCISES

```
        Ind the mean, median, and mode for each
        set of data
    1. 2, 3, 7, 8, 10, 3, 1, 7, 5 mean = 5.1; median = 5; mode = 3
    2. 17, 18, 20, 13, 23,37, 20, 16 mean = 20.5; median = 19; mode = 20
    3. 4.8, 6.4, 7.2, 4.5, 2.3, 6.0,3.5 mean = 5.0; median = 4.8; mode = none
```



```
    5. 40,42,41,43,41,40,40,42,43 mean = 41.3; median = 41; mode = 40
    6. $7.50,$7.00,$8.50,$7.50,$4.50,$6.50,$8.00,$6.00,$4.50
        mean = $6.67; median = $7.00; mode = $4.50 and $7.50
```


Transparency, Skill 37

skill warmup

Mean, Median, and Mode
The table at the right shows Jeff Gordon's finishing positions in the NASCAR Championship. What was his average position for the years listed?

You can analyze this set of data by using three measures of central tendency: mean, median, and mode.

Finishing Position			
Year	Position	Year	Position
1993	14	1999	6
1994	8	2000	9
1995	1	2001	1
1996	2	2002	4
1997	1	2003	4
1998	1		

To find the mean, find the sum of the numbers. Then divide by the number of items.
$\frac{14+8+1+2+1+1+6+9+1+4+4}{11} \approx 4.6$

To find the median, arrange the numbers in order from least to greatest, and then find the middle number.
\uparrow
median
To find the mode, find the number that appears most often. In this case, the mode is 1 since it appears the most times.

Student Workbook, p. 74

```
7. 1.78, 1.45, 1.33, 1.72, 1.94, 1.73, 1.14
    mean = 1.58; median = 1.72; mode = none
8. 3, -3, 1, 4, 5, 0, -4, -1, 2, -1
    mean = 0.6; median = 0.5; mode = -1
    9. }90%,98%,96%,85%,91%,90%,88%,87%,88%,90
        mean = 90.3%; median = 90%; mode = 90%
10. 5.8 cm, 8.9 cm, 8.8 cm, 8.6 cm, 8.8 cm, 8.8 cm, 8.9 cm
    mean = 8.4 cm; median = 8.8 cm; mode = 8.8 cm
11. $50,000, $37,500, $43,900, $76,900, $46,000, $48,580
    mean = $50,480; median = $47,290; mode = none
12. 29.1 }\mp@subsup{}{}{\circ}\textrm{F},33.\mp@subsup{9}{}{\circ}\textrm{F},38.\mp@subsup{2}{}{\circ}\textrm{F},46.\mp@subsup{5}{}{\circ}\textrm{F},55.\mp@subsup{4}{}{\circ}\textrm{F},62.\mp@subsup{0}{}{\circ}\textrm{F},63.\mp@subsup{6}{}{\circ}\textrm{F},62.\mp@subsup{3}{}{\circ}\textrm{F},56.\mp@subsup{1}{}{\circ}\textrm{F},47.2\mp@subsup{}{}{\circ}\textrm{F},37.\mp@subsup{3}{}{\circ}\textrm{F}
    32.0}\mp@subsup{}{}{\circ}\textrm{F}\quad\mathrm{ mean =47.0}\mp@subsup{}{}{\circ}\textrm{F};\mathrm{ median =46.9}\mp@subsup{}{}{\circ}\textrm{F};\mathrm{ mode = none
APPLICATIONS
The data at the right shows the
    ages of U.S. Presidents from
    1900-2004 at the time of their
    inaugurations. Use this data to
    answer Exercises 13-16.
        58
        51}5
        43
        69 64 46 54
13. What is the mode of the data? 51 years old
14. What is the mean of the data? 54.7 years old
15. What is the median of the data? 55 years old
16. If the age of each President was }1\mathrm{ year older, would it change
    a. the mean? Why or why not?
        Yes, the mean would now be 55.7 years old because all the
        numbers increased but were still divided by }19
    b. the median? Why or why not?
        Yes, the median would now be 56 years old because the
        center values increased by one
    c. the mode? Why or why not?
        yes, the mode would be 52 years old because
        the most common ages would increase by one
```


SKILL

TEACHER NOTES

OBJECTIVE: Organize data in a frequency table. (Strand: Data Analysis and Probability)

USING THE TRANSPARENCY: Ask students to identify the title and the column headings of the frequency table. Discuss why it is important to have these on a table.

USING THE STUDENT WORKBOOK: Ask students why intervals were used to organize the information in the example. Discuss why they think that intervals of $\$ 10,000$ were used. Ask students what other intervals might be used.

EXTENSION: Have students conduct a survey of their classmates and organize the information in a frequency table.

Student Workbook, p. 75

38

Name Date

Frequency Tables
$T_{\text {here are four frequency values that can be considered. }}$
absolute frequency: the frequency for an individual interval
relative frequency: the ratio of an interval's absolute frequency to the total number of elements cumulative frequency: the sum of the absolute frequency of an interval and all previous absolute frequencies
relative cumulative frequency: the ratio of an interval's cumulative frequency to the total number of element
EXAMPLE
The base prices of new cars from one manufacturer are listed below
$\begin{array}{lllllll}\$ 24,625 & \$ 16,200 & \$ 22,225 & \$ 40,450 & \$ 35,050 & \$ 33,565 & \$ 44,535\end{array}$ $\begin{array}{llllll}\$ 22,075 & \$ 24,370 & \$ 20,465 & \$ 9,995 & \$ 21,560 & \$ 25,330\end{array}$ $\begin{array}{lllllll}\$ 28,105 & \$ 21,630 & \$ 22,145 & \$ 41,995 & \$ 28,905 & \$ 30,655 & \$ 10,700\end{array}$ $\begin{array}{llll}\$ 18,995 & \$ 20,060 & \$ 37,900 & \$ 22,080\end{array}$

Organize this information in a frequency table. Determine the absolute frequencies, relative frequencies, cumulative frequencies and relative cumulative frequencies for the data. Then find the range of the data.
Use intervals of 10,000 to organize the data

New Car Prices						
Interval	Tally	Absolute Frequency	Relative Frequency	Cumulative Frequency	Relative Cumulative Frequency	
$\$ 0-\$ 9,999$	1	1	$\frac{1}{25}=0.04$	1	$\frac{1}{25}=0.04$	
$\$ 10,000-\$ 19,999$	III	3	$\frac{3}{25}=0.12$	4	$\frac{4}{25}=0.16$	
$\$ 20,000-\$ 29,999$	HH\| HHIIIII	14	$\frac{14}{25}=0.56$	18	$\frac{18}{25}=0.72$	
$\$ 30,000-\$ 39,999$	IIII	4	$\frac{4}{25}=0.16$	22	$\frac{22}{25}=0.88$	
$\$ 40,000-\$ 49,999$	III	3	$\frac{3}{25}=0.12$	25	$\frac{25}{25}=1.00$	
To determine the range, find the difference between the highest price and lowest price. $\$ 44,535-\$ 9,995=\$ 34,540$						
Glencoe/MCGraw-Hill						

Transparency, Skill 38

SKILL WARM UP

Frequency Tables

Mr. Washington asked the students in his class how many hours they used a computer on Sunday. The results are listed below.

2	5	6	3	6	0	6	4	6	5	3	1	2
2	5	5	8	2	1	3	9	4	3	3	0	

Make a frequency table to organize this information.

Mr. Washington's Class Sunday Computer Usage					
Number of Hours	Tally	Frequency	Relative Frequency	Cumulative Frequency	Relative Cumulative Frequency
0	II	2	$\frac{2}{25}=00.8$	2	$\frac{2}{25}=0.08$
1	II	2	$\frac{2}{25}=0.08$	4	$\frac{4}{25}=0.16$
2	IIIII	4	$\frac{4}{25}=0.16$	8	$\frac{8}{25}=0.32$
3	ITH	5	$\frac{5}{25}=0.20$	13	$\frac{13}{25}=0.52$
4	II	2	$\frac{2}{25}=0.08$	15	$\frac{15}{25}=0.60$
5	IIIII	4	$\frac{4}{25}=0.16$	19	$\frac{19}{25}=0.76$
6	IIIII	4	$\frac{4}{25}=0.16$	23	$\frac{23}{25}=0.92$
7		0	$\frac{0}{25}=0.00$	23	$\frac{23}{25}=0.92$
8	I	1	$\frac{1}{25}=0.04$	24	$\frac{24}{25}=0.96$
9	I	1	$\frac{1}{25}=0.04$	25	$\frac{25}{25}=1.00$

Student Workbook, p. 76

absolute frequencies, relative frequencies, cumulative frequencies, and relative cumulative frequencies for the data.						
1. Test scores of students in a classroom. $94,81,85,59,83,73,75,96,72,87,77,88,90,65,71,82,86,89,68,96$						
Score	Tally	Absolute Frequency	Relative Frequency	Cumulative Frequency	Relative Cumulative Frequency	
50-59		1	$\frac{1}{20}=0.05$	1	$\frac{1}{20}=0.05$	
50-59	II	2	$\frac{2}{20}=0.10$	3	$\frac{2}{20}=0.15$	
50-59	HI	5	$\frac{5}{20}=0.25$	8	$\frac{8}{20}=0.40$	
50-59	H1 III	8	$\frac{8}{20}=0.45$	16	$\frac{16}{20}=0.80$	
50-59	\|II		4	$\frac{4}{20}=0.20$	20	$\frac{20}{20}=1.00$

APPLICATIONS
requency table to determine the absolute frequencies, relative frequencies, cumulative frequencies, and relative cumulative frequencies for the data.
2. World Series champions from 1990-2003.

1990 Cincinnati Reds 1991 Minnesota Twins 1992 Toronto Blue Jays 1993 Toronto Blue Jays 1994 Not Held 1996 New York Yankees 1997 Florida Marlins 1999 New York Yankees 2000 New York Yankees 2001 Arizona Diamondback 2002 Anaheim Angels 2003 Florida Marlins

SKILL

 TEACHER NOTESCircle Graphs
OBJECTIVE: Construct circle graphs. (Strand: Data Analysis and Probability)

USING THE TRANSPARENCY: Discuss the steps used in preparing a circle graph as the example is discussed. Survey the class according to telephone exchanges and express results in a circle graph.

USING THE STUDENT WORKBOOK: Have students find circle graphs in magazines and newspapers. Tell the students to pick a circle graph that gives the percent for each section. Have them use the percents to find the number of degrees of each section and then check the angles in the drawing with a protractor.

EXTENSION: Ask students what information a circle graph does not provide that another type of graph might provide.

Student Workbook, p. 77

Transparency, Skill 39

SKILL WARM UP

Circle Graphs
The areas of the oceans are listed in the chart below.

Ocean	Pacific	Atlantic	Indian	Arctic
Area in millions of square miles	63.8	31.8	28.4	5.4

A circle graph shows how the whole is divided into parts. Make a circle graph to show what part of all the oceans is represented by each of the oceans.

First find the total area of the oceans.

$$
63.8+31.8+28.4+5.4=129.4
$$

Then find the ratio that compares the area of each of the oceans to the total area. Use a calculator. Round to the nearest hundred.

$$
\begin{array}{lll}
\text { Pacific: } \frac{63.8}{129.4} \approx 0.49 & \text { Atlantic: } & \frac{31.8}{129.4} \approx 0.25 \\
\text { Indian: } & \frac{28.4}{129.4} \approx 0.22 & \text { Arctic: }
\end{array} \frac{5.4}{129.4} \approx 0.04
$$

To find the number of degrees for each section of the graph, multiply each ratio by 360°. Round to the nearest degree.

Student Workbook, p. 78

APPLICATIONS Make a circle graph to show the data in each chart.
3.

Area of Continents	
Continent	Area in Millions of Square Miles
Europe	3.8
Asia	17.4
North America	9.4
South America	6.9
Africa	11.7
Oceania and Australia	3.3
Antarctica	5.4

4.

Africa
Oceania and
Antarctica

5.

6. Make a circle graph showing how you spent your time last Saturday. See students' work.

Glencoe/McGraw-Hill Course 2 Intervention

Stem-and-Leaf Plots

OBJECTIVE: Construct stem-and-leaf plots. (Strand: Data Analysis and Probability)

USING THE TRANSPARENCY: Ask students to name a number between 10 and 50 . List their responses and ask the following questions.

- How could these numbers be organized based on the digits they have in common?
- How could you arrange the numbers to make organizing them easier?

USING THE STUDENT WORKBOOK: Point out to students that a stem-and-leaf plot is most useful for displaying data within a reasonably narrow range of stem values. Ask for examples of such data.

EXTENSION: Have students compare a stem-and-leaf plot with a line plot. Ask them to describe what they have in common and explain how they are different.

Student Workbook, p. 79

Name \longrightarrow Date
Stem-and-Leaf Plots
$\mathrm{A}_{\text {stem-and-leaf plot is one way to organize a list of numbers. The stems represent the }}$ greatest place value in the numbers. The leaves represent the next place value.
EXAMPLE
The fourteen states with the most representatives in the House of Representatives are listed below. Make a stem-and-leaf plot for this data.

State	Representatives	State	Representatives
California	52	New Jersey	13
Florida	23	New York	31
Georgia	11	North Carolina	12
Illinois	20	Ohio	19
Indiana	10	Pennsylvania	21
Massachusetts	10	Texas	30
Michigan	16	Virginia	11

The stem will be the tens place and the leaves will be the ones place.

1	00112369

2	013
3	01
4	
5	

1|0 means 10 representatives.

EXERCISES Make a stem-and-leaf plot for each set of data

1. $56,65,57,69,58,55$, $52,55,66,60,53,63$	2. $230,350,260,370,240,380$, 290, 270, 220, 350, 300, 280
$5 \mid 2355678$	$2 \mid 2346789$
603569	305578
5\| 2 means 52	$2 \mid 2$ means 220

Transparency, Skill 40

SKILL
40

WARM UP

Stem-and-Leaf Plots
The projected populations of ten major world cities for the year 2015 are listed at the right. Make a stem-and-leaf plot for this data.

A stem-and-leaf plot can be used to organize data. The greatest place value of the numbers is used to form the stem. The next greatest place value is used to form the leaves.

City	Projected Population 2015
Bombay	$26,000,000$
Calcutta	$17,000,000$
Dhaka	$21,000,000$
Jakarta	$17,000,000$
Karachi	$19,000,000$
Lagos mill	$23,000,000$
Mexico City	$19,000,000$
New York	$17,000,000$
Sao Paulo	$20,000,000$
Tokyo	$26,000,000$

In this case, the stem will be the ten millions place value, and the leaves will be the millions place value. List the stem digits on the left and the leaf digits on the right. Include a statement that tells others what the numbers represent.

```
1 1777799
2)01366
```

1| 7 means $17,000,000$ people.

Glencoe/MCGraw-Hill Course 2 Intervention

Student Workbook, p. 80

```
3. 4.5, 6.8,5.2, 5.9, 5.1,
. 1,900, 2,000, 2,600, 3,000,
    4.5, 6.8, 5.2, 5.9, 5.1,
        2,500, 1,800, 2,200, 2,700
    4|045 1/6789
    l:lll
    6 |0789 3
    4|0 means 4.0 1|6 means 1,600
APPLICATIONS Each number below represents the age
    of workers at Fred's Fast Food.
    205221 394058274836205126
    453049225950333528435520
    Use this data to answer Exercises 5-10.
    5. Make a stem-and-leaf plot of the data.
    2|0012678
    3 03569
    4
    2|0 means 20 years old.
6. How many people work at Fred's Fast Food?
    24 people
7. What is the difference in the ages between the oldest and
    youngest workers at Fred's?
    39 years
8. What is the most common age for a worker?
    20 years old
9. Which age group is most widely represented?
    the twenties
10. How many workers are older than }35\mathrm{ years?
        13 workers
11. Measure the length of your classmates' shoes in centimeters. Record the numbers and make a stem-and-leaf plot See students' work.
12. What is the most common length of your classmates' shoes? Answers will vary.
```


Misleading Graphs

OBJECTIVE: Investigate misleading graphs. (Strand: Data Analysis and Probability)

USING THE TRANSPARENCY: Have students make a list of things to check to determine whether a graph is presenting statistics in a misleading way.

USING THE STUDENT WORKBOOK: Ask students to explain how someone in advertising could use a misleading graph to sell a product. Have students look through magazines and newspapers for examples of graphs. Ask them to determine whether they were designed to support a particular point of view.

EXTENSION: Have students keep track of the closing price of several stocks for a couple of weeks. Have students make a misleading graph for the change in the stock value.

Student Workbook, p. 81

Transparency, Skill 41

SKIL WARM UP

Misleading Graphs

The manager of the Uptown Store proudly shows his sales staff the graph below. Is this graph misleading in any way?

The Downtown Store sold about 300 soccer balls and the Uptown Store sold about 500 soccer balls. The Uptown Store sold less than twice the number sold by the Downtown Store. Yet, the soccer ball representing the
 sales at the Uptown Store is
about three times as big as the soccer ball representing the Downtown Store. The graph is misleading to the casual observer who may think that the sales at the Uptown Store were three times greater than the sales at the Downtown Store.

The graph at the left is not complete. It does not give the units of measure on the vertical axis. It does not have a graph title and it does not indicate the number of people surveyed. Such a graph could be used to mislead people into thinking something that is not true.

Student Workbook, p. 82

APPLICATIONS Use the graphs at the right to answer the right to answ
Exercises 4-11. information on sales? yes
5. Find the ratio of Hilly's sales to Valley's sales. about 3 to 1

6. In Graph A, the Hilly van is about 2.5 centimeters high by 6 centimeters long. What is its approximate area
$15 \mathrm{~cm}^{2}$
7. In Graph A, the Valley van is about 0.75 centimeters high and 2 centimeters long. What is its approximate area?
$1.5 \mathrm{~cm}^{2}$

8. In Graph B, both vans are about 0.75 centimeter high. The Hilly van is about 6 centimeters long. What is its approximate area? $4.5 \mathrm{~cm}^{2}$
9. In Graph B, the Valley van is about 2 centimeters long. What is its approximate area? 1.5 cm2
10. Compute the following ratios.

Graph A: $\frac{\text { Area of Hilly }}{\text { Area of Valley }} \quad \mathbf{1 0}$
Graph B: $\frac{\text { Area of Hilly }}{\text { Area of Valley }} \frac{\mathbf{3}}{\mathbf{1}}$
11. Compare the results of Exercises 5 and 10 . Which graph is
misleading? Explain your answe
A; The actual number of vans sold by Hilly is $\mathbf{3}$ times greater but Graph A appears to show the sales as 10 times greater.

Glencoe/MCGraw-Hill Course 2 Intervention

SKILL

TEACHER NOTES

OBJECTIVE: Solve problems by visualizing information using diagrams, graphs, or making models. (Source: Problem Solving)

USING THE TRANSPARENCY: Have students find graphs in magazines and newspapers. Discuss how the graphs help people to understand the data represented in the graphs.

USING THE STUDENT WORKBOOK: Supply groups of students with cubes so they can model the second example.

EXTENSION: Interior designers often make models or diagrams of a room to show various ways of arranging furniture. Have students pick a room and make a model or diagram to show at least two different room arrangements.

Student Workbook, p. 83

Name Date \qquad
Visualizing Information
Three possible ways to visualize information to solve problems are listed below.

- Draw a Diagram - Use a Graph - Make a Model

EXERCISES
On the first day, Derrick e-mailed a joke to 3 of his friends. On the second day, each of these friends e-mailed 3 other people. On the third day, each of the people who read the joke on the second day e-mailed 3 more people. By the end of the third day, how many people read the joke?

To solve the problem, draw a diagram.

Count the number of X s in Day 1, Day 2, and Day 3. By the end of the third day 39 people read the joke. Note that the first person e-mailed the joke, but did not read it, during the three days.

EXAMPLE How many bes are stacked in the corner Make a model using cubes and count the number of cubes.

If you modeled the problem correctly, there should be 35 boxes | | |
| :---: | :---: |
| | 83 |
| | |

Transparency, Skill 42

SKIL WARM UP
 42

Visualizing Information

The zoo gift shop sells souvenir T-shirts. Last week, the shop sold 50 red T-shirts, 150 white T-shirts, 25 blue T-shirts, and 125 gray T-shirts. The manager wants to use this information to make decisions about displaying and ordering T-shirts. To help her make the decision, she makes a circle graph.

A total of $50+150+25+125$ or 350 T-shirts were sold last week.
red $\quad \frac{50}{350} \approx 14 \%$
white $\quad \frac{150}{350} \approx 43 \%$
blue $\quad \frac{25}{350} \approx 7 \%$
gray $\quad \frac{125}{350} \approx 36 \%$

What color should take up the most space in the display?

Since white is represented by the greatest section of the graph, white T-shirts should take up the most space in the display.

Should the most popular color take up half of the display?

Since the greatest section of the graph is less than half the circle, the most popular color (white) should not take up half of the display.

Glencoe/McGraw-Hill Course 2 Intervention

Student Workbook, p. 84

EXERCISES Solve

1. How many different shapes of rectangular prisms can be
formed using exactly 18 cubes? 4 shapes
2. Six points are marked around a circle. How many straight lines must you draw to connect every point with every other point? 15 lines
3. A cube with edges 4 inches long is painted on all six sides.

Then, the cube is cut into smaller cubes with edges 1 inch long
as shown at the right.
a. How many of the smaller cubes are painted on only ne side? 24 cubes
b. How many of the smaller cubes are painted on
exactly two sides? 24 cubes
c. How many of the smaller cubes have no sides painted? 8 cubes

APPLICATIONS

4. Coach Robinson is the tennis coach. He wants to schedule a round-robin tournament where every player plays every other player in singles tennis. If there are 8 members on the team, how many matches should the coach schedule? $\mathbf{2 8}$ matches
5. The graph shows the population growth of Anchorage, Alaska.
a. During what 10 -year period did Anchorage show the greatest growth in population? 1970 to 1980 b. What would you estimate the population will be in
2010? Sample answer: $\mathbf{3 0 0 , 0 0 0}$
6. Halfway through her plane flight from New York City to Orlando, Emma fell asleep. When she awoke, she still had to travel half the distance she traveled when asleep. For what fraction of the flight was Emma asleep?

7. Emilio wants to make a pyramid-shaped display of soccer balls for his sporting goods store. How many boxes of soccer balls will he need to make a display like the one at the right? 55 boxes

Compare and Order Rational Numbers

OBJECTIVE: Compare and order rational numbers on a number line. (Strand: Number \& Operations)

USING THE TRANSPARENCY: Have students discuss times when they have needed to convert between fractions and decimals. Examples could include reading street signs (often fractions) and comparing it to the odometer reading (decimals).

USING THE STUDENT WORKBOOK: Have students discuss which strategy in the examples they often use and which they should practice using more.

EXTENSION: Create a set of index cards that shows decimals and fractions. Have a student deal three cards to another student. That student then orders the numbers.

Transparency, Skill 43

$\stackrel{\text { SKILL }}{43}$

WARM UP

Compare and Order Rational Numbers
Miguel has gone to the market for his mother. She gives him the following shopping list.
0.5 pounds of chicken
$\frac{3}{4}$ cup of almonds
$1 \frac{1}{4}$ pounds of tomatoes
When he gets to the store he finds that some of the items are not given in fractions or decimals. He needs to make sure he purchases enough of each item for dinner. For example, when he puts tomatoes on the scale, the weight is given in decimals.
The bag of tomatoes he has on the scale reads 1.15. Does he have enough for his mom's shopping list?
Convert $1 \frac{1}{4}$ to a decimal.

$$
\begin{gathered}
1+\frac{1}{4} \\
1+0.25 \\
1.25
\end{gathered}
$$

Since the scale reads 1.15, Miguel needs to add at least one more tomato so he has over 1.25 pounds.

You can use this strategy and others to compare and order rational numbers.

Student Workbook, p. 86

Approximate Irrational Numbers

OBJECTIVE: To approximate irrational numbers. (Strand: Number \& Operations)

USING THE TRANSPARENCY: Have students discuss instances where they may need to approximate an irrational number.

USING THE STUDENT WORKBOOK: Have students discuss how they know their approximation is getting closer to the irrational number.

EXTENSION: Create a set of index cards with irrational numbers. Place students in pairs and see who can use the fewest number of steps to find the best approximation of the number.

Student Workbook, p. 87

Name Date

Approximate Irrational Numbers

EXAMPLE

 two digits to the right of the decimal pointFind the two perfect squares that are closest to 13
$3^{2}=9$
Since $9<13<16, \sqrt{13}$ must be greater than $\sqrt{9}$ and less
than $\sqrt{16}$. So, $3<\sqrt{13}<4$.
Approximate. Since 13 is a little closer to 16 than to 9 , so you could start with 3.7 as your first estimate.

Test your estimate
$(3.7)^{2}=13.69$
Revise your estimate. 3.7 was close, but greater than 13. What about 3.6?
$(3.6)^{2}=12.96$
3.6 is a very good estimate, but it only has one digit to the right of the decimal point. So you need to refine your answer again.
3.6 was only a tiny bit less than 13 , so you could try 3.61 as your next estimate.
$(3.61)^{2}=13.03$
3.61 is just a little closer than 3.60 , so your final estimate is 3.61 .

Transparency, Skill 44

44 WARM UP

Approximate Irrational Numbers
Jason and Matthew are helping fence off a section of their yards for a garden. Both are fencing off a section across the corner of a fence, forming the hypotenuse of a triangle. Jason calculates he will need $\sqrt{41}$ feet of fence to form this hypotenuse. Matthew calculates he needs 6.2 feet.

Does Jason need more or less fencing than Matthew?
Since 6^{2} is 36 and 7^{2} is $49, \sqrt{41}$ falls between these two values.
Jason makes a first estimate of 6.5.
6.5^{2} is 42.25 , greater than 41 .
He then tries 6.3 and gets 39.69 , which is less than 41 .
Trying 6.4, he gets 40.96 , which is really close to 41 .
So, Jason needs 6.4 feet of fencing, which is greater than 6.2. He needs more fencing than Matthew.

```
EXERCISES
            Estimate each irrational number. Write your answers with two digits
            to the right of the decimal point.
1. \sqrt{}{7}2.65
2. \sqrt{}{115}}\mathbf{10.72
3. }\sqrt{}{30}5.4
4. }\sqrt{}{3}1.7
5. }\sqrt{}{90}9.4
6. }\sqrt{}{65}\mathbf{8.06
7. }\sqrt{}{21}4.5
8. }\sqrt{}{83
9. }\sqrt{}{42
10. \sqrt{}{175}}13.2
APPLICATIONS In each exercise below, place all of the numbers in their
    approximate locations on the number line
11. \sqrt{}{45, 6.01, \sqrt{}{8}},\frac{47}{10},\sqrt{}{81},\sqrt{}{27},\sqrt{}{50},\pi,\frac{10}{3}
    <
12. \sqrt{}{34},5\frac{5}{8},\sqrt{}{30},\sqrt{}{28},5.23,\sqrt{}{25},5\frac{3}{4},\sqrt{}{26}
    (\sqrt{}{25}}\sqrt{\sqrt{}{26}}{[5.23}\sqrt{}{\sqrt{2}{28}}\sqrt{}{30
    5.0
    Glencoe/MCGraw-Hill Course 2 Intervention
```


SKILL
 45

TEACHER NOTES

OBJECTIVE: Find and estimate square roots of numbers. (Strand: Algebra)

USING THE TRANSPARENCY: Write the numbers $4,9,16,25$, and 36 on the chalkboard. Have the students discuss what these numbers have in common. Then have them describe how they would find the square root of each number.

USING THE STUDENT WORKBOOK: Have students work in pairs. Have one student state a number that is not a perfect square. Have the other student find the best approximate square root.

EXTENSION: Have students work in pairs. One student rolls three number cubes and forms a three-digit number. The other student finds the square root of that number.

Student Workbook, p. 89

```
45
Name
Square Roots
```



```
\(T\) Thus, hes square rooo of 4 would \(b\) e witen \(\sqrt{b}\).
```

EXAMPLE	Find the square root of each number.		
36 Since $6^{2}=36, \sqrt{36}=6$.			
$\mathbf{N}_{\text {umbers }}$ like $4,9,25$, and 49 are called perfect squares because their square whole numbers.			
You can find an estimate for numbers that are not perfect squares.			
EXAMPLE	Estimate $\sqrt{95}$ to the nearest whole number.		
	The closest perfe The closest perfe $\begin{aligned} 81 & <95 \\ \sqrt{81} & <\sqrt{95} \\ \sqrt{9^{2}} & <\sqrt{95} \\ 9 & <\sqrt{95} \end{aligned}$ So, $\sqrt{95}$ is betwe 100 than to 81 , the for $\sqrt{95}$ is 10 .	square less than square greater th 100 $\sqrt{100}$ $\sqrt{10^{2}}$ 10 9 and 10 . Since best whole num	is 81 . 95 is 10 is closer estimate
EXERCISES	Find each square root.		
1. $\sqrt{25} 5$	2. $\sqrt{49} 7$	3. $\sqrt{16} 4$	4. $\sqrt{19}$
5. $\sqrt{256} 16$	6. $\sqrt{121} 11$	7. $\sqrt{225} 15$	8. $\sqrt{48}$
9. $\sqrt{529} 23$	10. $\sqrt{144} 12$	11. $\sqrt{576} 24$	12. $\sqrt{90}$

Transparency, Skill 45

skil warn up

Square Roots
A weather radar system can cover a circular region of 11,500 square miles. What is the range of the radar?

Use the formula for the area of a circle, $A=\pi r^{2}$, to find the radius of the circle, which is the range of the radar.

$$
a=\pi r^{2}
$$

$11,500 \approx 3.14 \times r^{2} \quad$ Use 3.14 for π.
$\frac{11,500}{3.14} \approx \frac{3.14 \times 4 r^{2}}{3.14} \quad$ Divide each side by 3.14.
$3,662 \approx r^{2} \quad$ Simplify.
$\sqrt{3,662} \approx \sqrt{r^{2}} \quad$ Take the square root of each side.

3,662 is approximately 3,600 , and $3,600=60^{2}$.
$60 \approx r$
The range of the weather radar is about 60 miles.

Course 2 Intervention

Student Workbook, p. 90
$\left.\begin{array}{lllllllllll}\text { 13. } & \sqrt{39} & 6 & 14 . & \sqrt{106} & 10 & 15 . & \sqrt{71} & 8 & 16 . & \sqrt{30} \\ \mathbf{5}\end{array}\right)$

APPLICATIONS The area of the floor of a square room is
324 square feet. Use this information to answer Exercises 29-31.
29. What is the length of each side of the floor? $\mathbf{1 8}$ feet
30. If a square carpet with an area of 144 square feet is placed in the center of the room, what is the width of the floor that is uncovered on each side of the carpet? $\mathbf{3}$ feet
31. How many 9-inch square tiles would be required to cover the entire floor? $\mathbf{5 7 6}$ tiles
32. The area of a square is 1,225 square centimeters. What is the perimeter of the square? 140 centimeters
33. A bag of Super Green Lawn Fertilizer covers 9,500 square feet. What is the largest square lawn that can be fertilized using one bag of fertilizer? Round to the nearest foot. $\mathbf{9 7}$ feet by $\mathbf{9 7}$ feet
34. Trees in orchards are often planted evenly spaced apart in square plots. How many rows of trees are in a plot that contains 1,024 trees? $\mathbf{3 2}$ rows
35. A square playground has an area of 750 square meters. Approximately how much fencing would be required to enclose the playground? about 108 meters

OBJECTIVE: Use the Pythagorean Theorem to find the length of a side of a right triangle. (Strand: Geometry)

USING THE TRANSPARENCY: Have students estimate the answer before completing the problem.

USING THE STUDENT WORKBOOK: Make certain that students are comfortable using their calculators to find both squares and square roots of numbers correctly.

EXTENSION: Have students work in pairs. One student should draw a triangle and label the two sides. The second student should find the hypotenuse.

Student Workbook, p. 91

Name Date \qquad
The Pythagorean Theorem
In a right triangle, the sides that form a right angle are called legs. The side opposite the right angle is the hypotenuse.

The Pythagorean Theorem describes the relationship between the lengths of the legs and the hypotenuse. This theorem is true for any right triangle.
The Pythagorean Theorem states that if a triangle is a right triangle, then the square of the length of the hypotenuse is equal to the sum of the squares of the lengths of the legs.
 lengths of the legs and c represents the length of the hypotenuse.

If you know the lengths of two sides of a right triangle, you can use the Pythagorean Theorem to find the length of the third side. This is called solving a right triangle.

EXAMPLE triangle. $c^{2}=a^{2}+b^{2} \quad$ Pythagorean Theorem

$c^{2}=6^{2}+8^{2} \quad$ Replace a with 6 and b with 8 .
$c^{2}=36+64 \quad$ Evaluate 6^{2} and 8^{2}.
$\mathrm{c}^{2}=100 \quad$ Add 36 and 64 .
$\sqrt{\mathrm{c}^{2}}=\sqrt{100} \quad$ Take the square root of each side.
$c=10 \quad$ Simplify.

The length of the hypotenuse is 10 meters.

Transparency, Skill 46

46

WARM UP

The Pythagorean Theorem

Kamara needs to repair a broken shutter on the outside of her house. The shutter is hanging 18 feet above the ground. Kamara places a 20 -foot ladder against the side of her house with the foot of the ladder placed 6 feet from the base of the house. Will the top of the ladder be high enough to reach the broken shutter?

The diagram shows that this situation involves a right triangle. The distance from the foot of the ladder to the base of the house is one of the legs of the right triangle and the length of the ladder is the hypotenuse. We need to find how high the ladder will reach, which is the length of the missing leg.
To solve the problem, use the Pythagorean Theorem.

c^{2}	$=a^{2}+b^{2}$		Pythagorean Theorem
20^{2}	$=6^{2}+b^{2}$		Replace c with 20 and a with 6.
400	$=36+b^{2}$		Evaluate 20^{2} and 6^{2}.
$400-36$	$=36+b^{2}-36$		Subtract 36 from each side.
364	$=b^{2}$		Simplify.
$\sqrt{364}$	$=\sqrt{b^{2}}$		Take the square root of each side.
19.1	$\approx b$		Round to the nearest tenth.

So, the top of the ladder reaches 19.1 feet up the house. This is high enough to reach the broken shutter, which is 18 feet off the ground.

Student Workbook, p. 92

SKILL

TEACHER NOTES

47

Triangles and Quadrilaterals

OBJECTIVE: Classify triangles and quadrilaterals. (Strand: Geometry)

USING THE TRANSPARENCY: Have groups of students cut out three different triangles and place them with the triangles of other group members. Then have the groups exchange triangles and sort them first by angle measures, then by sides.

USING THE STUDENT WORKBOOK: Draw different quadrilaterals on note cards. Have one student pick a card without showing it to the class. Have students describe the quadrilateral and another student draw it on the chalkboard.

EXTENSION: Have the students create Venn diagrams showing the relationship of various quadrilaterals.

Transparency, Skill 47

skit warm up

Triangles and Quadrilaterals

acute	obtuse
All three angles Ore angle is an obtuse angle.	One angle is right angle.

Triangles may also be classified by the lengths of their sides.

Student Workbook, p. 94

Ratio and Proportion

OBJECTIVE: Write and solve ratios and proportions. (Strand: Algebra)

USING THE TRANSPARENCY: Show students different ways to set up a proportion that would still yield the correct answer.

USING THE STUDENT WORKBOOK: Have students work in groups to create pairs of ratios that are proportions.

EXTENSION: Work as a class to make a list of real-life situations that require working with proportions.

Transparency, Skill 48

sKILL WARM UP

Ratio and Proportion

A proportion is an equation that states that two ratios are equal. In a proportion, the cross products are equal.

If one term of a proportion is not known, you can use cross products to find the term. This is called solving the proportion.

In a recent marketing research survey taken by the Better Flavor Ice Cream Company, five-eighths of the 512 people surveyed chose chocolate chip as their favorite ice cream flavor. Write and solve a proportion to find the number of people who selected chocolate chip as their favorite ice cream flavor.

Let p represent the number of people who selected chocolate chip as their favorite flavor of ice cream.

Write a proportion.

$\frac{5}{8}=\frac{p}{512}$
$5(512)=8(p)$ Cross multiply.
$2,560=8 p \quad$ Multiply.
$\frac{2,560}{8}=\frac{8 p}{8} \quad$ Divide each side by 8 .
$320=p$
320 people selected chocolate chip as their favorite flavor of ice cream.

Student Workbook, p. 95

Name \qquad Date \qquad
Ratio and Proportion

EXAMPLE In a class of 25 students there are 12 girls and 13 are boys. Write the relationship of the number of girls to the number of boys as a ratio.
The ratio of girls to boys can be written as 12 to $13,12: 13$, or $\frac{12}{13}$.
$\mathrm{A}_{\text {proportion is a statement that two ratios are equal. In symbols, this can be }}$ shown by $\frac{a}{b}=\frac{c}{d}$. The cross products of a proportion, $a d$ and $b c$, are equal.
EXAMPLE
Determine if the ratios $\frac{3}{5}$ and $\frac{12}{20}$ form a proportion. Find the cross products of $\frac{3}{5}=\frac{12}{20}$

$$
\begin{array}{cl}
\frac{3}{5}=\frac{12}{20} & \text { Write the proportion. } \\
3(20) \stackrel{? 5(12)}{=} & \text { Cross multiply. } \\
60=60 & \text { Simplify. }
\end{array}
$$

So, $\frac{3}{5}$ and $\frac{12}{20}$ form a proportion.

If one term of a proportion is not known, you can use the cross products to set up an equation to solve for the unknown term. This is called solving the proportion.
EXAMPLE
Solve the proportion $\frac{8}{12}=\frac{x}{15}$.
$\frac{8}{12}=\frac{x}{15} \quad$ Write the proportion. $8(15)=12(x) \quad$ Cross multiply. $120=12(x)$ $\frac{120}{12}=\frac{12(x)}{12}$ $10=x$

Student Workbook, p. 96

```
EXERCISES Express each ratio as a fraction in simplest form
1. 12 pennies to }18\mathrm{ coins }\frac{2}{3}<2\mathrm{ 2. 15 bananas out of }25\mathrm{ fruits }\frac{3}{5
3. }32\mathrm{ footballs to 40 basketballs}\frac{4}{5}<4.6\mathrm{ cups to }14\mathrm{ pints }\frac{3}{7
5. 8 clarinets out of 15 instruments }\frac{8}{15}<\mathrm{ 6. 16 tulips out of 24 flowers }\frac{2}{3
7. 12 novels out of 27 books }\frac{4}{9}<\mathrm{ 8. 9 poodles to }12\mathrm{ beagles }\frac{3}{4
Solve each proportion.
9. }\frac{a}{12}=\frac{3}{9}4\quad10.\frac{8}{b}=\frac{12}{21}14 11. \frac{24}{36}=\frac{c}{15}1
12. }\frac{27}{6}=\frac{18}{d}\quad
    13. }\frac{7}{8}=\frac{e}{56}4
        14. }\frac{27}{36}=\frac{6}{f}
```


APPLICATIONS

```
15. If 8 gallons of gasoline cost \(\$ 11.20\), how much would 10 gallons cost? \(\$ 14.00\)
16. A recipe for punch calls for 4 cups of lemonade for every 6 quarts of fruit juice. How many quarts of fruit juice should Elizabeth use if she has already added 10 cups of lemonade? 15 quarts
17. On a map, the scale is 1 inch equals 160 miles. What is the actual distance if the map distance is \(3 \frac{1}{2}\) inches? \(\mathbf{5 6 0}\) miles
18. One bag of jelly beans contains 14 red jelly beans. How many red jelly beans would be found in 4 bags of jelly beans? 56 red jelly beans
```


SKILL

TEACHER NOTES

49

OBJECTIVE: Solve problems using proportional reasoning. (Strand: Algebra)

USING THE TRANSPARENCY: Emphasize the importance of setting up the proportions correctly. The pattern established in the first ratio must be used in the second ratio.

USING THE STUDENT WORKBOOK: Provide grocery advertisements to groups of students. Have each group make up two problems using proportions. Have the groups exchange problems. Then have the students solve the problems.

EXTENSION: Have students plan a party for your class. Then create proportions to expand the party shopping list to include more students or more classes.

Student Workbook, p. 97

Name
Proportional Reasoning

EXAMPLE
How many oranges can Daniel buy for $\$ 3.30$? $\frac{\text { oranges }}{\operatorname{cost}(())} \rightarrow \frac{6}{99}=\frac{x}{330} \leftleftarrows \frac{\text { oranges }}{\operatorname{cost}(\mathcal{)}}$ Write a proportion. (6) $(330)=99(x) \quad$ Cross multiply. $1,980=99 x \quad$ Simplify $\frac{1,980}{99}=\frac{99 x}{99} \quad$ Divide each side by 99.
$20=x$
Simplify.
Daniel can buy 20 oranges.
EXERCISES Write a proportion to solve each problem. Then solve.

1. 32 ounces of juice are required to make 2 gallons of punch. 6 gallons of punch require n ounces of juice. $\frac{32}{2}=\frac{n}{6} ; 96$ ounces
2. 29 students for every teacher. 348 students for t teachers. $\frac{\mathbf{2 9}}{\mathbf{1}}=\frac{\mathbf{3 4 8}}{\boldsymbol{t}} ; \mathbf{1 2}$ teachers
3. 374 miles driven using 22 gallons of gasoline. 1,122 miles driven using g gallons of gasoline. $\frac{\mathbf{3 7 4}}{\mathbf{2 2}}=\frac{\mathbf{1 , 1 2 2}}{\mathbf{g}} ; \mathbf{6 6}$ gallons
4. 21 bolts connect 3 panels.
b bolts connect 8 panels. $\frac{\mathbf{2 1}}{\mathbf{3}}=\frac{\boldsymbol{b}}{\mathbf{8}} ; \mathbf{5 6}$ bolts
5. 32 pages for 2 sections of newspaper p pages for 5 sections of newspaper. $\frac{\mathbf{3 2}}{\mathbf{2}}=\frac{\boldsymbol{p}}{\mathbf{5}} ; \mathbf{8 0}$ pages
6. $\$ 2.49$ for 3 bottles of water. $\$ 8.30$ for w bottles of water. $\frac{\mathbf{2 . 4 9}}{\mathbf{3}}=\frac{\mathbf{8 . 3 0}}{\mathbf{w}} ; \mathbf{1 0}$ bottles

Transparency, Skill 49

SKILL WARM UP

Proportional Reasoning

D'andre wants to buy a new car. He studies the information about the car he wants before he makes the purchase. He is particularly interested in the miles per gallon the car is expected to get. He usually drives about 130 miles in the city each week. How many gallons of gasoline will D'andre need each week?

You can solve this problem by using a proportion.

miles gallons	$\begin{aligned} & \rightarrow \quad \frac{26}{1}=\frac{130}{g} \underset{\leftrightarrows}{\leftarrow} \\ & (26)(g)=(1)(130) \end{aligned}$	$\begin{gathered} \text { miles } \\ \text { gallons } \end{gathered}$	Write a proportion. Cross multiply.
	$26 \mathrm{~g}=130$		Simplify.
	$\frac{26 g}{26}=\frac{130}{26}$		Divide each side by 26.
	$g=5$		Simplify.

D'andre will need 5 gallons of gasoline each week to travel in the city.

Student Workbook, p. 98

7. 3 girls for every 2 boys. $\mathbf{3 2}$. 261 girls and b boys. $\frac{\mathbf{2 6 7}}{\mathbf{2}} ; \mathbf{1 7 4}$ boys
8. 8 packages in 2 cases. p packages in 7 cases. $\quad \frac{\mathbf{8}}{\mathbf{2}}=\frac{\boldsymbol{p}}{\mathbf{7}} ; \mathbf{2 8}$ packages
9. $\$ 11.50$ earned in one hour. d earned in 6.5 hours. $\frac{\mathbf{1 1 . 5 0}}{\mathbf{1}}=\frac{d}{\mathbf{6 . 5}} ; \$ \mathbf{7 4 . 7 5}$
10.

$\mathbf{1 . 5}$ inches represents 10 feet.
5 inches represents x feet. $\frac{1.5}{10}=\frac{5}{x} ; 33 \frac{1}{3} \mathrm{ft}$
11. $\mathbf{1 8}$ candy bars in 3 boxes.
$\mathbf{9 0 0}$ candy bars in x boxes. $\frac{\mathbf{1 8}}{\mathbf{3}}=\frac{\mathbf{9 0 0}}{\boldsymbol{x}} ; \mathbf{1 5 0}$ boxes
12. $\frac{1}{2}$ gallon of paint covers 112 square feet.
n gallons of paint covers 560 square feet. $\frac{\frac{1}{2}}{\mathbf{1 1 2}}=\frac{\boldsymbol{n}}{\mathbf{5 6 0}} ; \mathbf{2} \frac{\mathbf{1}}{\mathbf{2}}$
gallons

APPLICATIONS
often express their crop yield in bushels per acre. The table at the right shows Mr. Decker's average yields. Use this data to answer Exercises 13-16.

13. How many bushels of corn should Mr. Decker harvest from 80 acres? $\mathbf{7 , 8 4 0}$ bushels (Bushels per acre) \begin{tabular}{|l|l|}
\hline Corn \& 98

\hline \&

\hline

\hline Soybeans \& 48

\hline \&

\hline
\end{tabular}

How many bushels of wheat should Mr. Decker expect from 105 acres? 4,725 bushels
15. If Mr. Decker plants soybeans on 90 acres, how many bushels can he expect to harvest? 4,320 bushels
16. Ms. Holleran harvested 3,815 bushels of corn from 35 acres. Is
this yield more or less than Mr. Decker's yield? more
17. Ms. Galvez paid $\$ 150$ for 600 square feet of roofing. If she needs 240 square feet more, what is the extra cost? $\$ 60$
18. A picture measuring 25 centimeters long is enlarged on a copying machine to 30 centimeters long. If the width of the original picture is 15 centimeters, what is the width of the enlarged copy? 18 cm

SKILL

TEACHER NOTES
Ratios and Rates
OBJECTIVE: Understand the concepts of ratio, rate, and work to find unit rates. (Strand: Algebra)

USING THE TRANSPARENCY: Discuss other real-life situations where it would be useful to find the best buy.

USING THE STUDENT WORKBOOK: Review the rules of rounding for unit rate problems that require rounding to the nearest tenth.

EXTENSION: Have students use the distance they travel from home to school each day and the time that trip takes to find a unit rate.

Transparency, Skill 50

SkIL WARM UP

Ratios and Rates

A ratio is a comparison of two numbers by division. A ratio made up of two measurements having different kinds of units is called a rate. When a rate is simplified so that it has a denominator of 1 , it is called a unit rate.

Jordan is researching the best way to purchase the brand of laundry detergent she prefers. The detergent comes in three different size bottles and Jordan wants to determine which is the least expensive way to buy the detergent. Use the information

Laundry Detergent	
Size	Price
32 ounces	$\$ 3.79$
64 ounces	$\$ 5.29$
128 ounces	$\$ 11.09$

In order to find the best buy, we need to find the unit cost (cost per ounce) for each of the three different size bottles of laundry detergent. Round to the nearest hundredth, if necessary.

For the 32 -ounce size bottle: $\frac{\$ 3.79}{32 \text { ounces }}=\$ 0.12$ per ounce
For the 64 -ounce size bottle: $\frac{\$ 5.29}{64 \text { ounces }}=\$ 0.08$ per ounce
For the 128 -ounce size bottle: $\frac{\$ 11.09}{128 \text { ounces }}=\$ 0.09$ per ounce
So, the best buy for Jordan is the 64-ounce size bottle of laundry detergent.

Cousse 2 Ineverention

Student Workbook, p. 100

```
Express each ratio as a unit rate. Round to the nearest tenth,
if necessary
    7. $10 for 5 loaves of bread 8. }64\mathrm{ feet in }16\mathrm{ seconds
        $2 per loaf ref bread 8. 4 4 feet per secon
    9. }132\mathrm{ miles on }6\mathrm{ gallons 10. $32 for }5\mathrm{ books
        22 miles per gallon }\quad\mathrm{ 10. $32 for 5 books
11. }140\mathrm{ meters in }48\mathrm{ seconds
    2.9 meters per second
        12. 1,400 miles in 4 days
        350 miles per day
    3. $66 for 4 shirts
    $16.50 per shirt
    14. }350\mathrm{ words in }8\mathrm{ minutes
    43.8 words per minute
APPLICATIONS
Express each ratio as a unit rate. Round to the nearest tenth, if necessary.
\[
\$ 2 \text { per loaf } \quad 4 \text { feet per second }
\]
9. 132 miles on 6 gallons 22 miles per gallon \(\$ 6.40\) per book
11. 140 meters in 48 seconds
12. 1,400 miles in 4 days \(\mathbf{3 5 0}\) miles per day
13. \(\$ 66\) for 4 shirts
\(\mathbf{\$ 1 6 . 5 0}\) per shirt 43.8 words per minute
```


APPLICATIONS

15. The table below shows the size, in ounces, and the cost of several brands of apple juice. Find the unit cost to determine which brand is the best buy. Sweeties: 12 per ounce; Sunshine: 11¢ per ounce; Peter's: $8 \subset$ per ounce; Peter's Apple Juice has the best buy.

Brand	Size (ounces)	Cost
Sweeties Apple Juice	16	$\$ 1.89$
Sunshine Apple Juice	32	$\$ 3.49$
Peter's Apple Juice	64	$\$ 5.09$

16. A runner training for a marathon ran 18 miles in 150 minutes Find the length of time it takes the runner to cover 1 mile. Round to the nearest tenth. 8.3 minutes per mile
17. Alyssa spent $\$ 780$ on 40 square yards of carpeting for her family room. Find the cost per square yard for the carpet Alyssa selected. \$19.50 per square yard
18. During a winter snow storm, a total of 14 inches of snow fell over a period of 8 hours. Find the rate of snowfall per hour. Round to the nearest tenth. $\mathbf{1 . 8}$ inches per hour

$$
\text { Glencoe/McGraw-Hill Course } 2 \text { Intervention }
$$

Express each ratio as a fraction in simplest form.
$\begin{array}{lll}\text { 1. } 6 \text { strawberries out of } 14 \text { pieces of fruit } & \frac{3}{7} & \text { 2. } 15 \text { girls to } 18 \text { boys } \frac{5}{6}\end{array}$
3. 12 blue marbles to 18 green marbles $\frac{\mathbf{2}}{\mathbf{3}} \quad$ 4. 21 red blocks out of 96 blocks $\frac{7}{32}$
5. 14 ounces to 35 pounds $\frac{\mathbf{2}}{\mathbf{5}} \quad$ 6. 15 puppies to 60 kittens $\frac{\mathbf{1}}{\mathbf{4}}$

EXERCISES

Student Workbook, p. 99

50

 DateRatios and Rates
$\mathrm{A}_{\text {ratio is a comparison of two numbers by division. A ratio can be written in several different }}$ ways. If there are 5 roses in a bouquet of 12 flowers, then the ratio of roses to total number of flowers in the bouquet can be written as 5 to $12,5: 12$, or $\frac{5}{12}$.

Express the ratio 8 dimes out of 28 coins as a
fraction in simplest form.
$\frac{8}{28}=\frac{2}{7}$
The ratio of dimes to coins is 2 to 7 . This means that fo
every 7 coins, 2 of them are dimes.
$\mathrm{A}_{\text {rate is a ratio of two measurements having different kinds of units, such as } \$ 25 \text { for } 2}$ dozen. When a rate is simplified so that it has a denominator of 1 , it is called a unit rate

EXAMPLE

Express the ratio 252 miles in 4 hours as a
unit rate.
$\frac{252 \text { miles }}{4 \text { hours }}=\frac{63 \text { miles }}{1 \text { hour }}$
The unit rate is 63 miles per hou

SKILL

TEACHER NOTES

Organizing Information

OBJECTIVE: Solve problems by organizing information in a list, table, or matrix. (Strand: Problem Solving)

USING THE TRANSPARENCY: Have students make a table that can be used to solve the problem. Have each student mark his or her own table after reading each bulleted item.

USING THE STUDENT WORKBOOK: Ask students how they know that all of the possible orders Omar can go to the locations are listed.

EXTENSION: Have students write a problem that can be solved by making a table and eliminating the possibilities.

Transparency, Skill 51

SKIL WARM UP

Organizing Information

Amber, Bryan, Adam, and Antonio formed a band. The band has a lead guitar player, a rhythm guitar player, a keyboard player, and a drummer. Bryan does not play the drums. Adam and the keyboard player are brothers. Bryan and the lead guitar player are neighbors. Adam wants to learn to play the drums. What instrument does each person play?
Solve this problem by using a table.

- Write no to show Bryan does not play the drums.
- Since Adam and the keyboard player are brothers, write no to show Adam does not play the keyboard.
- Since Antonio must be Adam's brother, write yes to show Antonio plays the keyboard.
- Write no in each empty space of the row and column with the yes. - Since Bryan and the lead guitar player are neighbors, write no to show Bryan does not play the lead guitar.
- Bryan must play the rhythm guitar. Write yes in the appropriate square and complete the column with no.
- Since Adam wants to learn to play the drums, write no to show Adam does not play the drums.
- Adam must play the lead guitar and Amber must play the drums. Complete the table.

	Lead Guitar	Rhythm Guitar	Keyboard	Drum
Amber	no	no	no	yes
Bryan	no	yes	no	no
Adam	yes	no	no	no
Antonio	no	no	yes	no

Amber plays the drums, Bryan plays the rhythm guitar, Adam plays the lead guitar, and Antonio plays the keyboard.

EXERCISES Solve

1. How many different four-digit numbers can be formed using each of the digits $1,2,3$, and 4 once? 24 numbers
2. How many different two-digit numbers can be formed using 1 , 2, 3, 4, and 5 if the digits can be used more than once? 25 numbers
3. How many ways can you give a clerk $65 ¢$ using quarters, dimes and/or nickels? 14 ways

APPLICATIONS

4. Rebecca, Lisa, and Courtney each have one pet. The pets are a dog, a cat, and a parrot. Courtney is allergic to cats. Rebecca's pet has two legs. Whose pet is the dog? Courtney
5. Mr. Ramos is starting a college fund for his daughter. He starts out with $\$ 700$. Each month he adds $\$ 80$ to the fund. How much money will he have in a year? $\$ \mathbf{1 , 6 6 0}$
6. The Centerville Civic Association is selling pizzas. They can add pepperoni, green peppers, and/or mushrooms to their basic cheese pizzas. How many different kinds of pizzas can they sell? 8 pizzas
7. Kyle, Gabrielle, Spencer, and Stephanie each play a sport. The sports are basketball, gymnastics, soccer, and tennis. No one's sport starts with the same letter as his or her name. Gabrielle and the soccer player live next door to each other. Stephanie practices on the balance beam each day. Gabrielle does not own a racket. Which student plays each sport? basketball: Gabrielle,gymnastics: Stephanie, soccer: Kyle, tennis: Spencer
8. A deli sells 5 different soft drinks in 3 different sizes. How many options does a customer have to buy a soft drink? 15 options
9. In the World Series, two teams play each other until one team wins 4 games.
a. What is the greatest number of games needed to determine a winner? 7 games
b. What is the least number of games needed to determine a winner? $\mathbf{4}$ games

SKILL

TEACHER NOTES

Slope of a Line

OBJECTIVE: Determine the slope of a line. (Strand: Algebra)

USING THE TRANSPARENCY: Draw the graphs of the lines $y=\frac{1}{4} x, y=\frac{1}{2} x, y=2 x$, and $y=4 x$ on a coordinate grid on the chalkboard. Have students find the slopes.

USING THE STUDENT WORKBOOK: Give students a list of slopes to choose from for each graph in Exercises 1-3. Have them choose the correct slope.

EXTENSION: Have pairs of students use a length of yarn to model slope. Have one student hold one end of the yarn to his or her forehead while the other student tapes the other end to a spot on the floor. Have each pair measure the rise and run and calculate the slope of the string.

Transparency, Skill 52

Student Workbook, p. 104

EXERCISES Find the slope of each line.

Find the slope of the line that passes through each pair of points.
4. $A(-2,-1), B(3,9) 2 \quad$ 5. $C(0,-2), D(3,-3)-\frac{1}{3} \quad$ 6. $E(-5,20), F(-8,32)-4$
7. $G(-10,2), H(10,8) \frac{\mathbf{3}}{\mathbf{1 0}}$ 8. $J(2,-1), K(6,-11)-\frac{5}{2} \quad$ 9. $M(-3,-14) N(-9,-30) \frac{8}{3}$

APPLICATIONS
Paula works as a sales
representative for a computer store She earns a base pay of $\$ 1,000$ each month. She also earns a commission based on her sales. The graph the right shows her possible monthly earnings. Use the graph to answer Exercises 10-13.
10. What is the slope of the line? $\frac{1}{5}$
11. What information is given by the slope of the line? The rate of commission Paula earns is $\mathbf{1 5}$ or $\mathbf{2 0 \%}$ of her sales.
12. a. If Paula's base pay changed to $\$ 1,100$, would it change the graph? Why or why not? Yes, the entire graph would move up 100 units.
b. would it change the slope? Why or why not? No, the rate of commission would not change.
13. If Paula's rate of commission changed to 25%, would it change the graph? Why or why not? Yes, the slope would
be $\frac{1}{4}$.

Glencoe/McGraw-Hill Course 2 Intervention

OBJECTIVE: Graph functions from function tables. (Strand: Algebra)

USING THE TRANSPARENCY: Draw two graphs on the chalkboard. One graph should be a function, and the other should not be a function. Have students describe the graphs and explain why one graph is a function and the other is not a function.

USING THE STUDENT WORKBOOK: Have students work in pairs. Have one student draw and label the axes and the other student draw the graph. Then have students reverse roles.

EXTENSION: Have students work in pairs. Have one student draw a graph of a function and the other student suggest data that the graph could possibly show.

Student Workbook, p. 105

Transparency, Skill 53
53 Skirn up
Graphing Functions
The function table shows the average temperature at elevations above sea level. Graph the function.

Elevation Above Sea Level (ft)	Temperature (${ }^{\circ} \mathrm{F}$)
0	59.0
1,000	55.4
2,000	51.8
3,000	48.2
4,000	44.6
5,000	41.0
6,000	37.4
7,000	33.8
8,000	30.2
9,000	26.6
10,000	23.0

To graph the function, first label the axes and graph the points named by the data. Then connect the points to complete the graph of the function. The completed graph is shown below.

बIencoemMGraw- +iil
Cousse 2 Ineverention

Student Workbook, p. 106

APPLICATIONS
The function table at the right shows the height of a golf ball above the ground after it is hit from ground level. Use the data to answer Exercises 3-6.
3. Graph the function

Time (\mathbf{s})	Height (m)
0	0
0.25	4.0
0.5	7.5
0.75	10.25
1.0	12.5
1.25	14.0
1.5	15.0
1.75	15.25
2.0	15.0
2.25	14.0
2.5	12.5

4. If the pattern continues, how high above the ground would you expect the golf ball to be after 3.25 seconds? 40 meters
5. Where does the change in the function occur? Why do you think this change occurs? The change occurs after 1.75 seconds. At this time the ball is at its maximum height.
6. How long will it take for the ball to hit the ground? 3.5 seconds

Graphing Linear Equations

OBJECTIVE: Graph linear equations. (Strand: Algebra)

USING THE TRANSPARENCY: Have students write an equation with two variables. Then have them make a function table with at least four values for their equation and graph the equation on a coordinate plane.

USING THE STUDENT WORKBOOK: Have students name all the steps involved in graphing an equation with two variables.

EXTENSION: Have students identify a situation in their daily lives to model with an equation (taxi fare, cost of dinner for their family, or cost to go to a movie with friends). Have students write an equation, create a table, and draw the graph.

Transparency, Skill 54

skILL WARMUP
 54

Graphing Linear Equations

To determine how much profit a business makes, the owner must consider the relationship between sales and expenses. A graph can be a useful tool to show this relationship.

Nathan's Flower Shop marks up each flower arrangement \$5.00. The shop's daily operating expenses are $\$ 100.00$. Write an equation that relates the profit to the number of flower arrangements sold. Then graph the relationship.

Let x represent the number of flower arrangements sold in a day and y represent the profit.

$$
y=5 x-100
$$

To graph the equation, make a function table for the equation and graph the ordered pairs from the table.

\boldsymbol{x}	$5 x-100$	\boldsymbol{y}	(x, y)
0	$5(0)-100$	-100	$(0,-100)$
10	$5(10)-100$	-50	$(10,-50)$
20	$5(20)-100$	0	$(20,0)$
30	$5(30)-100$	50	$(30,50)$

Notice that the points are in a straight line. Draw the line. This line represents the equation $y=5 x-100$.

Student Workbook, p. 108

Graph each equation.
3. $y=-2 x$

6. $y=\frac{1}{2} x-5$
$\begin{array}{ll}\text { 7. } y=-\frac{2}{3} x+2 & \text { 8. } y=\frac{4}{3} x+1\end{array}$

APPLICATIONS

9. A snow storm at Pine Tree Ski Resort deposited $\frac{1}{2}$ foot of snow per hour on top of a 3 -foot snow base. Let x represent the number of hours and y represent the total amount of snow. Write an equation to represent the total amount of snow. Graph the equation. $\boldsymbol{y}=\frac{\mathbf{1}}{\mathbf{2}} \boldsymbol{x}+\mathbf{3}$

10. Alaqua averages 40 miles per hour when she drives from Los Angeles to San Francisco. Let x represent the number of hours and y represent the distance traveled. Write an equation to represent the distance traveled. Graph the equation. $y=40 x$

Glencoe/McGraw-Hill Course 2 Intervention

Solve Equations in Two Variables

OBJECTIVE: Find solutions of a linear equation in two variables. (Strand: Algebra)

USING THE TRANSPARENCY: Have students use the same equation to find the amount of yarn needed for a much larger amount of scarves, such as 100,200 , etc.

USING THE STUDENT WORKBOOK: Remind students to organize their work carefully using a table to avoid unnecessary mistakes.

EXTENSION: Ask students to think about what the graph might look like if they were to graph the solutions of a linear equation in two variables.

Transparency, Skill 55

SKIL WARM UP

Solve Equations in Two Variables
Andrea knits scarves to sell at the annual Holiday Craft Fair. She is trying to determine how much yarn she needs to buy. Each scarf uses 4 yards of yarn and Andrea also likes to have an extra 5 yards of yarn available in case of mistakes. The equation $y=4 x+5$ describes the number of yards of yarn Andrea needs (y) to make x scarves. Find the amount of yarn needed to make $10,12,14$, and 16 scarves. Express your answers as ordered pairs.
The equation $y=4 x+5$ is called a linear equation in two variables. Solutions of linear equations are ordered pairs that make the equation true. One way to find solutions is to make a table.

x	$y=4 x+5$	y	(x, y)
10	$y=4(10)+5$	45	$(10,45)$
12	$y=4(12)+5$	53	$(12,53)$
14	$y=4(14)+5$	61	$(14,61)$
16	$y=4(16)+5$	69	$(16,69)$

So, the solutions are $(10,45),(12,53),(14,61)$, and $(16,69)$. Andrea should buy 45 yards of yarn if she plans to make 10 scarves, 53 yards of yarn if she plans to make 12 scarves, 61 yards of yarn if she plans to make 14 scarves, and 69 yards of yarn if she plans to make 16 scarves.

Student Workbook, p. 109

Name
Solve Equations in Two Variables
$\mathrm{A}_{\text {linear equation in two variables is an equation in which the variables }}$ appear in separate terms and neither variable contains an exponent other han 1. Solutions of a linear equation in two variables are ordered pairs, (x, y) that make the equation true.

EXAMPLE
Find four solutions of $y=-3 x+2$. Write the solutions as ordered pairs.

Choose four values of x. Then substitute each
value into the equation and solve for y.

\boldsymbol{x}	$\boldsymbol{y}=-3 \boldsymbol{x}+\mathbf{2}$	\boldsymbol{y}	(x, y)
-1	$y=-3(-1)+2$	5	$(-1,5)$
0	$y=-3(0)+2$	2	$(0,2)$
1	$y=-3(1)+2$	-1	$(1,-1)$
2	$y=-3(2)+2$	-4	$(2,-4)$

Four solutions are $(-1,5),(0,2),(1,-1)$, and $(2,-4)$.

EXERCISES

Find four solutions of each equation. Write the solutions as ordered pairs.

1. $y=x-3$ Sample answer: $(0,-3),(1,-2),(2,-1),(3,0)$
2. $y=2 x$ Sample answer: $(-2,-4),(-1,-2),(0,0),(1,2)$
3. $y=5-x$ Sample answer: $(0,5),(1,4),(2,3),(3,2)$
4. $y=4 x-3$ Sample answer: $(-1,-7),(0,-3),(1,1),(2,5)$
5. $y=-2 x+4$ Sample answer: $(-2,8),(-1,6),(0,4),(1,2)$
6. $y=-x$ Sample answer: $(-2,2),(-1,1),(0,0),(1,-1)$
7. $x+y=5$ Sample answer: (0,5), (1, 4), (2, 3), (3, 2)
8. $2 x+y=9$ Sample answer: $(-2,13),(-1,11),(\mathbf{0}, 9),(1,7)$
9. $y=-4$ Sample answer: $(-1,-4),(0,-4),(1,-4),(2,-4)$
10. $x=3$ Sample answer: $(3,0),(3,1),(3,2),(3,3)$

APPLICATIONS

11. The equation $y=3 x$ describes the number of eggs (y) required to make x batches of brownies. Find the number of eggs required to make 1, 2, 3, and 4 batches of brownies. Express

1, 3), 2,6), $(\mathbf{3}, \mathbf{9},(4,12)$
12. The equation $y=3 x-1$ describes the number of employees needed at a restaurant for every 10 customers (x). Find the number of employees required for $10,20,30$, and 40 customers. Express your answers as ordered pairs.
$(1,4),(2,7),(3,10),(4,13)$
13. The equation $y=4 x+9$ describes the expenses incurred by pizza shop (y) when x pizzas are made. Find the expense for making 4, 5,, and 7 pizzas. Express your answers as ordere pairs. $(4,25),(5,29),(6,33),(7,37)$

Solve Equations Involving

 Addition and SubtractionOBJECTIVE: Solve equations involving addition and subtraction. (Strand: Algebra)

USING THE TRANSPARENCY: Have students model addition and subtraction equations with cups and counters. Ask students why the goal is to get the cup by itself on one side of the mat.

USING THE STUDENT WORKBOOK: Divide students into groups of 3 or 4 . Have one student write an equation and read it to the group. Each member must write a word problem that can be solved by solving the equation.

EXTENSION: Create a set of index cards for students to use to create equations. Then solve the equations.

Transparency, Skill 56

SKILL WARM UP

Solve Equations Involving

 Addition and SubtractionChristian is saving money to buy a new sound system that costs $\$ 389$. He has already saved $\$ 175$. Find out how much more money he must save by writing an equation and solving it.
Let m represent how much more money he must save.

Then use the equation $\$ 175+m=\$ 389$ to solve the problem.

Since 175 is added to m, you must subtract 175 from each side to solve.

$$
\begin{aligned}
175+m & =389 \\
175+m-175 & =389-175 \\
m & =214
\end{aligned}
$$

Check:

$$
175+m=389
$$

$$
175+214 \stackrel{?}{=} 389 \quad \text { Replace } m \text { with } 214 .
$$

$$
389=389 \quad \checkmark
$$

Christian needs to save $\$ 214$ to buy the sound system.

Course 2 Intervention

Student Workbook, p. 112

Glencoe/McGraw-Hill Course 2 Intervention

$$
\begin{aligned}
& \text { EXERCISES Solve each equation. Check your solution. } \\
& \text { 19. Alexis sold } 170 \text { tickets for her school play. She has } 290 \text { tickets } \\
& \text { remaining. How many tickets were available? } \mathbf{4 6 0} \text { tickets } \\
& \text { 20. Hector owns } 87 \text { CDs and DVDs. If he has } 41 \text { CDs, how many } \\
& \text { DVDs does Hector own? } 46 \text { DVDs } \\
& \text { 21. Brandon is saving to buy a new computer game that costs } \\
& \$ 49.98 \text {. He still needs to save } \$ 21.50 \text {. How much has Brandon } \\
& \text { saved so far? \$28.48 } \\
& \text { 22. There are } 34 \text { students in Ms. Kim's class. Twelve of the students } \\
& \text { wear braces. How many students do not wear braces? } \\
& 22 \text { students } \\
& \text { 23. Taylor is downloading files from the Internet. She has } \\
& \text { transferred } 8 \text { of the } 18 \text { files she has selected. How many files } \\
& \text { have yet to be transferred? } \mathbf{1 0} \text { files } \\
& \text { 24. A recipe calls for } 2 \frac{1}{2} \text { cups of flour. Terrence has } 1 \frac{1}{3} \text { cups available. } \\
& \text { How much more flour does Terrence need? } \\
& 1 \frac{1}{6} \text { cups }
\end{aligned}
$$

SKILL

TEACHER NOTES

Solve Equations Involving Multiplication and Division

OBJECTIVE: Solve equations involving multiplication and division. (Strand: Algebra)

USING THE TRANSPARENCY: Give students copies of grocery ads. Have groups of students set up equations to compare various prices to find the best unit prices. Have them solve and discuss their results.

USING THE STUDENT WORKBOOK: Have students summarize the lesson by writing two equations, one which can be solved by using multiplication and one which can be solved using division. Then have students exchange equations and write a word problem that would go with the equations.

EXTENSION: Create a set of index cards for students to use in creating equations to solve.

Student Workbook, p. 113
Name __ Date
Solve Equations Involving Multiplication and Division
 number, the two sides remain equal.
EXAMPLE
Solve $14 x=84$

$\mathrm{M}_{\text {ultiplication Property of Equality: If you multiply each side of an equation by the same }}$ number, the two sides remain equal.
EXAMPLE Solve $15=\frac{y}{7}$.

$$
\begin{aligned}
15 & =\frac{y}{7} & \\
7(15) & =7\left(\frac{y}{7}\right) & \text { Multiply each side by } 7 . \\
105 & =y & \\
15 & =\frac{y}{7} & \\
15 & \stackrel{?}{=} \frac{105}{7} & \text { Replace } y \text { with } 105 . \\
15 & =15 & \\
05 . & &
\end{aligned}
$$

Transparency, Skill 57

sKIL WARM UP
 Solve Equations Involving Multiplication and Division

Olivia went to the store to buy some soda for a party. The store offered a pack of 24 cans of soda for $\$ 5.99$, a pack of 12 cans for $\$ 3.29$, and a pack of 6 cans for $\$ 1.99$. Write and solve three equations to determine which pack has the lowest price per can of soda. Round to the nearest cent.

$$
\begin{array}{rlrl}
24 a & =5.99 & 12 b & =3.29 \\
\frac{24 a}{24} & =\frac{5.99}{24} & \frac{12 b}{12} & =\frac{3.29}{12}
\end{array}
$$

The pack of 24 cans has the lowest price per can of soda at $\$ 0.25$.
If the cost per can of another brand of soda is $\$ 0.24$ and there are 20 cans in the pack, write an equation to determine the total cost of the pack of soda.

$$
\begin{aligned}
20 & =\frac{p}{0.24} & & \text { Write the equation. } \\
(0.24)(20) & =0.24\left(\frac{p}{0.24}\right) & & \text { Multiply each side by } 0.24 . \\
4.80 & =p & & \text { Simplify. }
\end{aligned}
$$

The 20-can pack costs $\$ 4.80$.

Course 2 Intervention

Student Workbook, p. 114

EXERCISES Solve each equation. Check your solution.

1. $99=3 a \mathbf{3 3}$	2. $0.5 b=36$	3. $\frac{c}{6}=1272$
4. $4=\frac{d}{22} \mathbf{8 8}$	5. $\frac{e}{0.3}=15045$	6. $5=4 f 1.25$
7. $\frac{g}{12}=16192$	8. $1.2 h=3.6 \mathbf{3}$	9. $19=\frac{j}{0.4} 7.6$
10. $\frac{k}{14}=39702$	11. $\frac{m}{5}=16.482$	12. $8 n=9.61 .2$
13. $1.2 p=2.76 \mathbf{2 . 3}$	14. $72=\frac{q}{1.8} \mathbf{1 2 9 . 6}$	15. $9 r=72981$
16. $21 s=147 \mathbf{7}$	17. $18 t=3.6 \mathbf{0 . 2}$	18. $\frac{u}{17}=3.4 \mathbf{5 7 . 8}$

APPLICATIONS

19. City Center Parking Garage charges $\$ 0.75$ an hour for parking. How long can Andrew park in the garage if he only has $\$ 6$ for parking? 8 hours
20. Elena is 5 times older than her youngest brother. Elena is 15 years old. How old is her brother? $\mathbf{3}$ years
21. Four friends split the cost of lunch equally. If each person pays $\$ 7.50$, what is the total cost of lunch? $\mathbf{\$ 3 0 . 0 0}$
22. A bag of 20 oranges costs $\$ 6.99$. What is the cost of each orange? Round to the nearest cent. \$0.35
23. The area of a rectangle is 168 square centimeters. If the length of the rectangle is 12 centimeters, what is the measure of the width? $14 \mathbf{~ c m}$
[^2]
SKILL

TEACHER NOTES
Solve Two-Step Equations
OBJECTIVE: Solve two-step equations. (Strand: Algebra)

USING THE TRANSPARENCY: Have students write an equation for and solve the following problem: five more than half a number is 10 .

USING THE STUDENT WORKBOOK: Guide students to undo operations in reverse order of the order of operations. Point out how this is done in each of the examples.

EXTENSION: Have students work in pairs. Student one should write a two-step equation. Student two should state a situation that fits the equation, and then solve.

Transparency, Skill 58

SxIL WARM UP

Solve Two-Step Equations
In 2004, the U.S. Postal Service charged $\$ 0.37$ to send a 1 -ounce letter by first class mail. There was an additional charge of $\$ 0.23$ per ounce for any letters weighing more than 1 ounce. If Toni paid $\$ 1.29$ to send a letter to a friend, how many additional ounces, beyond the first ounce, did the letter weigh?

Write an equation to solve the problem. Let $w=$ the additional weight of the letter.
$1.29=0.37+0.23 w$

Solve the equation.

$$
1.29=0.37+0.23 w
$$

$1.29-0.37=0.37+0.23 w-0.37$ Subtract 0.37 from each side.
$0.92=0.23 w$
$\frac{0.92}{0.23}=\frac{0.23 w}{0.92} \quad$ Divide each side by 0.23 .
$4=w$
The letter weighed 4 ounces over the initial ounce.

Course 2 Ineverention

Student Workbook, p. 116

7. $\frac{g}{2}+11=16$ 10	8. $\begin{gathered} \frac{h}{0.2}+0.5=10 \\ \mathbf{1 . 9} \end{gathered}$	9. $8+5 j=53$ 9
10. $50-3 k=35$ 5	11. $\frac{m}{3}-5=2$ 21	12. $6 n+4=58$ 9
13. $\frac{p}{4}-2=0.8$ 11.2	14. $7 q-9.4=11.6$ 3	15. $\begin{gathered}4=\frac{r}{5}-16 \\ 100\end{gathered}$
16. $\begin{gathered}15+\frac{5}{8}=27 \\ 96\end{gathered}$	17. $8 t-4.6=68.2$ 9.1	18. $0.93=0.15+0.4 u$ 1.95

APPLICATIONS

19. Austin's doctor recommended that he take 4 doses of antibiotics the first day and two doses per day until all the medicine was gone. If the prescription was for 24 doses, how many days did Austin take the medicine? $\mathbf{1 1}$ days
20. A carpet store has carpet for $\$ 13.99$ per square yard and charges $\$ 50$ for installation. If a customer paid $\$ 364.78$, approximately how many square yards of carpet were purchased? about 22.5 square yards
21. To convert a temperature in degrees Celsius to degrees Fahrenheit you can use the formula $F=\frac{9}{5} C+32$.
If the outside temperature is $63^{\circ} \mathrm{F}$, what is the temperature in degrees Celsius? Round to the nearest whole degree. $17^{\circ} \mathrm{C}$
22. A wireless phone company charges $\$ 34.99$ a month for phone service. They also charge $\$ 0.48$ per minute for long distance calls. If Vanessa's bill at the end of the billing period is $\$ 64.75$, how many minutes of long distance calls did she make? 62 minutes

Solve Inequalities

OBJECTIVE: Solve and graph inequalities. (Strand: Algebra)

USING THE TRANSPARENCY: Have students write an inequality for the following problem: five more than twice a number is at least 15.

USING THE STUDENT WORKBOOK: Have students discuss the meaning of at least and at most. Have them give several examples of both types of inequalities using these phrases.

EXTENSION: Have students identify two or three items they would like to purchase. Have them write an inequality for how much money they would need to purchase these items.

Transparency, Skill 59

sKILL WARM UP

Solve Inequalities
Mr. Bauman sells new cars. He earns $\$ 400$ for each car he sells plus a salary of $\$ 20,000$ per year. How many cars does Mr. Bauman need to sell in order to earn at least $\$ 66,000$ this year?

Write an inequality to represent this problem. Let c represent the number of cars Mr. Bauman sells in a year.

$$
20,000+400 c \geq 66,000
$$

$20,000+400 c-20,000 \geq 66,000-20,000$ subtract 20,000 from each side.

$$
\begin{aligned}
& 400 c \geq 46,000 \\
& \frac{400 c}{400} \geq \frac{46,000}{400} \quad \text { Divide each side by } 400 .
\end{aligned}
$$

Mr. Bauman will need to sell 115 cars to earn at least $\$ 66,000$ in a year.

Student Workbook, p. 118

APPLICATIONS

19. Madison wants to earn at least $\$ 75$ to spend at the mall this weekend. Her father said he would pay her $\$ 15$ to mow the lawn and $\$ 5$ an hour to work on the landscaping. If Madison lawn and $\$ 5$ an hour to work on the landscaping. If Mad
mows the lawn, how many hours must she work on the landscaping to earn at least \$75? 12 hours
20. A rental car agency rents cars for $\$ 32$ per day. They also charge $\$ 0.15$ per mile driven. If you are taking a 5 -day trip and have budgeted $\$ 250$ for the rental car, what is the maximum $\mathbf{6 0 0}$ miles miles you can drive and stay within your budget? 600 miles
21. Mr. Stamos needs 1,037 valid signatures on a petition to become a candidate for the school board election. An official at the board of elections told him to expect that 15% of the signatures he collects will be invalid. What is the minimum number of signatures he should get to help ensure that he qualifies for the ballot? $\mathbf{1 , 2 2 0}$ signatures

Glencoe/McGraw-Hill Course 2 Intervention

SKILL

TEACHER NOTES

Scale Drawings

OBJECTIVE: Find the actual length from a scale drawing. (Strand: Algebra)

USING THE TRANSPARENCY: Have students find the scale on several maps. Discuss the meaning of the scale. Ask students to list some examples of scale drawings.

USING THE STUDENT WORKBOOK: Tell the students that the wingspan of a model of an airplane is 3 inches. The scale is 1 inch equals 71 feet. Ask the students to describe how to find the actual length of the wingspan.

EXTENSION: Have students find a photograph in a magazine. Have them draw a 0.25 -inch grid over the picture. Have the students copy the picture to a piece of paper with 1 -inch grids.

Transparency, Skill 60

Student Workbook, p. 120

On a blueprint of a new house, the scale is $\frac{1}{4}$ inch equals 2 feet. Find the dimensions of the rooms on the blueprint if the actual measurements of the rooms are given.

```
7. 20 feet by 16\frac{3}{4}\mathrm{ feet 8. 17 feet by 12 }\frac{3}{4}\mathrm{ feet}
    2\frac{1}{2}}\mathrm{ inches by 2 }\frac{3}{32}\mathrm{ inches 2 }\frac{1}{8}\mathrm{ inches by 1 19 inches
    9. 11\frac{1}{2}\mathrm{ feet by }10\frac{1}{4}\mathrm{ feet 10. }11\mathrm{ feet by }9\frac{1}{2}\mathrm{ feet}
    1\frac{7}{16}}\mathrm{ inches by 1}1\frac{9}{32}\mathrm{ inches 1}\frac{3}{8}\mathrm{ inches by 1 }\frac{3}{16}\mathrm{ inches
11. 19 feet by }14\mathrm{ feet 12. 10, 岁 feet by }11\frac{1}{4}\mathrm{ feet
    2\frac{3}{8}}\mathrm{ inches by 1}\frac{3}{4}\mathrm{ inches 1}\frac{11}{32}\mathrm{ inches by 1 13}32\mathrm{ inches
```

APPLICATIONS An igloo is a domed structure traditionally
built of snow blocks by the Invit people of
buirt of snow blocks by the inuit people of
cluster of igloos connected by passagit a
Use the scale drawing of such a cluster to
Unswer Exercises 13-17.
13. What is the actual diameter of
each living chamber? $\mathbf{8 f t}$
14. What is the actual diameter of
the entry chamber? $\mathbf{6} \mathbf{f t}$
15. What is the actual diameter of
the recreation area? $\mathbf{1 2} \mathbf{f t}$
16. What is the actual diameter of
the storage area? 10 ft
17. Estimate the actual distance from the entry chamber to the from the entry chamber to th about 28 ft

Glencoe/McGraw-Hill Course 2 Intervention

OBJECTIVE: Investigate similar figures. (Strand: Geometry)

USING THE TRANSPARENCY: Ask students what is meant by similar. Have students point out corresponding sides of similar figures on the transparency.

USING THE STUDENT WORKBOOK: Draw a right triangle with sides measuring 3 inches, 4 inches, and 5 inches on the chalkboard. Draw another right triangle with sides measuring 9 inches, 12 inches, and 15 inches. Ask the students to find the ratios of the corresponding sides.

EXTENSION: Have students identify similar objects in the classroom and justify how they are similar.

Student Workbook, p. 121

Transparency, Skill 61

SkILI WARM UP

Similar Figures

Two or more figures that have the same shape, but not necessarily the same size are called similar figures. For example, an enlargement of a
 photograph is similar to the original photograph.

A graphic artist can resize clip-art in a document to change the appearance of the finished document.

The ratios of measurements of similar figures are equal.
height of first figure
$\frac{\text { height of first figure }}{\text { height of second figure }}=$

$$
\frac{\text { width of first figure }}{\text { width of second figure }}=\frac{1.25}{2.5} \text { or } \frac{1}{2}
$$

Student Workbook, p. 122

TEACHER NOTES

Percents as Fractions and

 DecimalsOBJECTIVE: Express percents as fractions and decimals. (Strand: Number and Operation)

USING THE TRANSPARENCY: Write the percent 25% on the chalkboard. Have students describe how they would write this percent as a fraction in simplest form and as a decimal.

USING THE STUDENT WORKBOOK: Have students work in pairs. Have one student write the fraction of a percent in simplest form and the other student write the decimal. Then have the students reverse roles.

EXTENSION: Provide retail store circulars and have students convert discounts from percents to fractions or vice versa.

Transparency, Skill 62

62 SARM UP

Percents as Fractions and Decimals

Many times you will see statistics that are expressed as percents. One example is a circle graph like the one shown at the right.
Percents can be expressed as fractions and decimals.

> | To express a percent as a fraction: |
| :--- |
| - Write a fraction with the percent as the numerator with a denominator |
| of 100 . |
| - Then write the fraction in simplest form. |

To express a percent as a decimal:
To express a percent as a decimal:
- Express the percent as a fraction with a denominator of 100
- Express the percent as a fraction with a denominator of 100
- Then express the fraction as a decimal

Express $93 \frac{3}{4} \%$ as a fraction. $93 \frac{3}{4} \%=\frac{93 \frac{3}{4}}{100}$ $=\frac{4}{100}$ $=\frac{375}{4} \times \frac{1}{100}$
$=\frac{375}{400}$ or $\frac{15}{16}$
Therefore, $12.5 \%=0.125$
Therefore, $93 \frac{3}{4} \%=\frac{15}{16}$.
Glencoe/MCGraw-Hill Course 2 Intervention

Student Workbook, p. 124

```
\begin{tabular}{llllll} 
1. \(75 \%\) & \(\frac{\mathbf{3}}{\mathbf{4}}\) & 2. \(84 \% \frac{\mathbf{2 1}}{\mathbf{2 5}}\) & 3. \(90 \%\) & \(\frac{9}{10}\) & \(4.18 \frac{1}{2}\) \\
5. \(38 \%\) & \(\frac{\mathbf{3 7}}{200}\) \\
50 & 6. \(33 \frac{1}{3} \% \frac{\mathbf{1}}{\mathbf{5}}\) & 7. \(56 \%\) & \(\frac{\mathbf{1 4}}{25}\) & \(8.60 \%\) & \(\frac{\mathbf{3}}{5}\)
\end{tabular}
9. 82% 0.82 10. 61.5% 0.615
9. 82% 0.82 10. 61.5% 0.615
13. 70% 0.7 14. 27\frac{1}{4}%
13. 70% 0.7 14. 27\frac{1}{4}%
Write each percent as a fraction in simplest form and write as a decimal.
Write each percent as a fraction in simplest form and write as a decimal.
17. 18% \frac{9}{50};0.18}1\mathrm{ 18. 22% }\frac{11}{50};0.2
17. 18% \frac{9}{50};0.18}1\mathrm{ 18. 22% }\frac{11}{50};0.2
19. 82\frac{1}{2}% \frac{33}{40};0.825 20. }\frac{5}{8}%\frac{1}{60};0.0062
19. 82\frac{1}{2}% \frac{33}{40};0.825 20. }\frac{5}{8}%\frac{1}{60};0.0062
21. 91\frac{2}{3}%\frac{11}{12};0.916 22. 19.6% \frac{49}{250};0.196
21. 91\frac{2}{3}%\frac{11}{12};0.916 22. 19.6% \frac{49}{250};0.196
23. 0.5625% }\frac{\mathbf{9}}{1,600};\mathbf{0.005625}\quad24.4.9%\frac{49}{1,000};0.04
23. 0.5625% }\frac{\mathbf{9}}{1,600};\mathbf{0.005625}\quad24.4.9%\frac{49}{1,000};0.04
APPLICATIONS
APPLICATIONS
5. The average household in the United States spends 15% of its
5. The average household in the United States spends 15% of its
    money on food. Express 15% as a decimal.
    money on food. Express 15% as a decimal.
. Bananas grow on plants that can be 30 feet tall. A single
. Bananas grow on plants that can be 30 feet tall. A single
    banana may be 75% water. Express 75% as a fraction and as a
    banana may be 75% water. Express 75% as a fraction and as a
    decimal.
    decimal.
    7. In the United States, showers usually account for 32% of home
    7. In the United States, showers usually account for 32% of home
    water use. Express this percent as a fraction and as a decimal.
    water use. Express this percent as a fraction and as a decimal.
    8
    8
28. Only 2% of earthquakes in the world occur in the United States
28. Only 2% of earthquakes in the world occur in the United States
    Express this percent as a fraction and as a decimal
    Express this percent as a fraction and as a decimal
    \frac{1}{50};0.02
    \frac{1}{50};0.02
            Glencoe/MCGraw-Hill _ Course 2 Intervention
            Glencoe/MCGraw-Hill _ Course 2 Intervention
\(T_{o}\) write a percent as a fraction, write a fraction with the percent in the numerator and with a denominator of \(100, \frac{r}{100}\). Then write the fraction
in simplest form.
EXAMPLES
\[
\begin{aligned}
& \text { a. } \begin{aligned}
40 \% & \text { b. } 87 \frac{1}{2} \% \\
& \begin{aligned}
87 \frac{1}{2} \% & = \\
& =\frac{87 \frac{1}{2}}{100}
\end{aligned} \\
& =\frac{2}{5} \\
\text { Therefore, } 40 \%=\frac{20}{5} . & \\
& =\frac{175}{200} \\
& =\frac{175}{2} \times \frac{1}{100} \\
& =\frac{175}{200} \\
& =\frac{7}{8}
\end{aligned} \\
& \\
&
\end{aligned}
\]

To express a percent as a decimal, first express the percent as a fraction with a denominator of 100 . Then express the fraction as a decimal.

EXAMPLES
\[
\begin{aligned}
& \text { Express each percent as a decimal. } \\
& \text { a. } 51 \% \\
& \text { b. } 90.2 \% \\
& \begin{array}{rlrl}
51 \% & =\frac{51}{100} & \begin{aligned}
90.2 \% & =\frac{90.2}{100} \\
& =0.51 \\
& =\frac{90.2 \times 10}{100 \times 10} \\
\text { Therefore, } 51 \%=0.51 . & \\
& \\
& \\
& =\frac{902}{1,000} \\
& \\
& \\
&
\end{aligned} \\
&
\end{array}
\end{aligned}
\]


Student Workbook, p. 123

\section*{Percent of a Number}

OBJECTIVE: Find the percent of a number. (Strand: Number and Operation)

USING THE TRANSPARENCY: Have students use a \(10 \times 10\) grid to show various percents such as \(50 \%, 30 \%, 45 \%\), and so on.

USING THE STUDENT WORKBOOK: Have students explain what happens to a percent of a number as the percent decreases. Ask them what happens when the percent increases. Then ask what happens when the percent is greater than 100\%.

EXTENSION: Have students go through store circulars and find actual prices when given the percent of an original price.

\section*{Transparency, Skill 63}

\section*{SKILL WARM UP}

\section*{Percent of a Number}

The circle graph shows the breakdown of the cost of a race car. If the total cost of a race car is \(\$ 750,000\), what is the cost of the chassis and the cost of the engine?

To find the cost of the chassis you must find \(70 \%\) of \(\$ 750,000\).
Change the percent to a decimal.
\[
70 \%=\frac{70}{100}=0.7
\]

Multiply the number by the decimal.

\[
750,000 \times 0.7=525,000
\]

The cost of the chassis is \(\$ 525,000\).
To find the cost of the engine, you must find \(29 \%\) of \(\$ 750,000\).
Change the percent to a decimal.
\[
29 \%=\frac{29}{100}=0.29
\]

Multiply the number by the decimal.
\[
750,000 \times 0.29=217,500
\]

The cost of the engine is \(\$ 217,500\).

Student Workbook, p. 125

Name
Percent of a Number
\(T_{o}\) find the percent of a number, you can either change the percent to a fraction and then multiply, or change the percent to a decimal and then multiply.
\begin{tabular}{|l|l|}
\hline EXAMPLE & \begin{tabular}{l} 
Old Yankee Stadium in New York had \\
a capacity of about 57,500 . If attendance for one \\
baseball game was about \(90 \%\), approximately how \\
many people attended the game? \\
Change the percent to a decimal. \\
\\
\\
\(90 \%=\frac{90}{100}\) or 0.9 \\
\\
Multiply the number by the decimal. \\
\(57,500 \times 0.9=51,750\) \\
\\
About 51,750 people attended the game.
\end{tabular} \\
\hline
\end{tabular}

EXERCISES Find the percent of each number.
\begin{tabular}{ll} 
1. \(50 \%\) of \(48 \mathbf{2 4}\) & 2. \(25 \%\) of \(164 \mathbf{4 1}\) \\
3. \(70 \%\) of \(90 \mathbf{6 3}\) & 4. \(60 \%\) of \(125 \mathbf{7 5}\) \\
5. \(55 \%\) of \(960 \mathbf{5 2 8}\) & 6. \(35 \%\) of \(600 \mathbf{2 1 0}\) \\
7. \(15 \%\) of \(120 \mathbf{1 8}\) & 8. \(6 \%\) of \(50 \mathbf{3}\) \\
9. \(200 \%\) of \(13 \mathbf{2 6}\) & 10. \(55 \%\) of \(84 \mathbf{4 6 . 2}\) \\
11. \(16 \%\) of \(48 \mathbf{7 . 6 8}\) & 12. \(150 \%\) of \(60 \mathbf{9 0}\) \\
13. \(45 \%\) of \(80 \mathbf{3 6}\) & 14. \(60 \%\) of \(40 \mathbf{2 4}\) \\
15. \(18 \%\) of \(300 \mathbf{5 4}\) & 16. \(5 \%\) of \(16 \mathbf{0 . 8}\) \\
17. \(15 \%\) of \(50 \mathbf{7 . 5}\) & 18. \(100 \%\) of \(47 \mathbf{4 7}\) \\
19. \(12.5 \%\) of \(60 \mathbf{7 . 5}\) & 20. \(0.02 \%\) of \(80 \mathbf{0 . 0 1 6}\)
\end{tabular}
3. \(70 \%\) of 9063
4. \(60 \%\) of 12575
5. \(55 \%\) of 960528 6. \(35 \%\) of 600210
7. \(15 \%\) of 12018 8. \(6 \%\) of 503
12. \(150 \%\) of 6090
13. \(45 \%\) of 8036
14. \(60 \%\) of 4024
17. \(15 \%\) of 507.5
20. \(0.02 \%\) of \(80 \mathbf{0 . 0 1 6}\)

\section*{Student Workbook, p. 126}
\begin{tabular}{lllll} 
21. & \(0.5 \%\) of \(180 \mathbf{0 . 9}\) & 22. \(0.1 \%\) of 770 & \(\mathbf{0 . 7 7}\) \\
23. & \(1.4 \%\) of \(40 \mathbf{0 . 5 6}\) & 24. \(1.05 \%\) of 62 & \(\mathbf{0 . 6 5 1}\) \\
25. \(12 \frac{1}{2} \%\) of \(70 \mathbf{8 . 7 5}\) & 26. \(5 \frac{3}{8} \%\) of 200 & \(\mathbf{1 0 . 7 5}\) \\
27. \(2 \frac{1}{4} \%\) of \(150 \mathbf{3 . 3 7 5}\) & 28. \(33 \frac{1}{3} \%\) of 45 & \(\mathbf{1 5}\)
\end{tabular}

APPLICATIONS Sarah has a part-time job. Each week she budgets her money as shown in the table. Use this data to answer Exercises 29-31.
29. If Sarah made \(\$ 90\) last week, how much can she
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Sarah's Budget } \\
\hline Savings & \(40 \%\) \\
\hline Lunches & \(25 \%\) \\
\hline Entertainment & \(15 \%\) \\
\hline Clothes & \(20 \%\) \\
\hline
\end{tabular} plan to spend on entertainment? \$13.50
30. If Sarah made \(\$ 105\) last week, how much should she plan to save? \(\$ 42.00\)
31. If Sarah made \(\$ 85\) last week, how much can she plan to spend on lunches? \$21.25
32. The population of the U.S. was about 290 million people in 2004. The population of the New York Metropolitan area was about \(7.3 \%\) of the total. About how many people lived in the New York area in 2004? about 21,200,000 people
33. Ninety percent of the seats of a flight are filled. There are 240 seats. How many seats are filled? 216 seats
34. Of the people Joaquin surveyed, \(60 \%\) had eaten lunch in a restaurant in the past week. If Joaquin surveyed 150 people, how many had eaten lunch in a restaurant in the past week? 90 people
35. A car that normally sells for \(\$ 25,900\) is on sale for \(84.5 \%\) of the usual price. What is the sale price of the car? \(\mathbf{\$ 2 1 , 8 8 5 . 5 0}\)

OBJECTIVE: Solve problems using a percent proportion. (Strand: Number and Operation)

USING THE TRANSPARENCY: Surveys and polls often express results as percents. Have groups of students investigate various surveys using percents and then write a problem using the percents.

USING THE STUDENT WORKBOOK: Encourage students to estimate the answers first, and then write the percent proportion. Finally, have them use a calculator to solve the problem.

EXTENSION: Have students find a survey and results from a newspaper or the Internet and explain the percents.

Transparency, Skill 64


\section*{Student Workbook, p. 128}
```

```
9. 30% of what number is 27?
```

```
9. 30% of what number is 27?
    90
    90
1. 61.6 is what percent of 550?
1. 61.6 is what percent of 550?
    11.2%
    11.2%
What percent of 84 is 20?
What percent of 84 is 20?
    23.8%
    23.8%
. 29.7 is 55% of what number?
. 29.7 is 55% of what number?
    54
    54
17. 61.5 is what percent of 600?
17. 61.5 is what percent of 600?
    10.3%
    10.3%
What number is 31% of 13?
What number is 31% of 13?
    4.0
```

```
    4.0
```

```

126 is \(39 \%\) of what number? 323.1
12. 108 is \(18 \%\) of what number? 600
14. What percent of 400 is 164 ? 41\%
16. \(18 \%\) of 350 is what number? 63
18. 72.4 is \(23 \%\) of what number? 314.8
\(33 \frac{1}{3} \%\) of what number is 15 ? 45
```

21. Use a proportion to find $12 \frac{2}{3} \%$ of 462 . Round to the neares hundredth. 58.52
22. Use a proportion to determine what percent of 512 is 56 . Round to the nearest hundredth. 10.94\%
23. Use a proportion to determine 23% of what number is 81.3 . Round to the nearest hundredth. 353.48
```

\section*{APPLICATIONS}
```

24. There are 18 girls and 15 boys in Tyler's homeroom. What percent of Tyler's homeroom are boys? Round to the nearest tenth. 45.5\%
25. If 32% of the 384 students in the eighth grade walk to school, about how many eighth graders walk to school? about 123 students
26. At North Middle School, 53% of the students are girls. There are 927 students at the school. How many of the students are girls? about 491 students
```
    hundredth. 58.52
```

 hundredth. 58.52
 Round to the nearest hundredth. 10.94%
    ```
    Round to the nearest hundredth. 10.94%
```

 ?
 Glencoe/McGraw-Hill Course 2 Intervention

Write a proportion for each problem. Then solve. Round answers to the nearest tenth.
7. What percent of 25 is 5 ? \quad 8. 9.3% of what number is 63 ? 20\% 677.4
.
2. What percent of 10 is 5 ? 10: base; 5: part
$\begin{array}{ll}\mathbf{2 5 \%} \text { : percent; 20: base } & \text { 10: base; 5: part } \\ 14 \% \text { of what number is } 63 ? & \text { 4. } 7 \text { is what percent of } 28 \text { ? }\end{array}$
14\%: percent; 63: part 7: part; 28: base
5. 78% of what number is 50 ? 6. 72 is 24% of what number? 72: part; 24\% percent

Tell whe
percent.

78\%: percent; 50: part 72: part; 24\% perce

SKILL

TEACHER NOTES

Percent of Change

OBJECTIVE: Find the percent of increase or decrease. (Strand: Number and Operation)

USING THE TRANSPARENCY: Write the phrases "an increase from 40 to 50 " and "a decrease from 50 to 40 " on the chalkboard. Have students describe how they would find the percent of increase or decrease.

USING THE STUDENT WORKBOOK: Have students work in pairs. Have one student write the percent proportion and the other student solve the proportion. Then have the students reverse roles.

EXTENSION: Have students research and report on changes in the stock market over the course of a week.

Transparency, Skill 65

skILL WARM UP

Percent of Change

The value of the stock market is summarized daily by several organizations. One such summary is shown in the table. What was the percent of change from Monday to Tuesday? Round to the nearest tenth.
Subtract to find the amount of change.

$$
1,127.23-1,121.22=6.01
$$

| Stock Market
 Closing Value | |
| :--- | :--- |
| Monday | $1,127.23$ |
| Tuesday | $1,121.22$ |
| Wednesday | $1,130.52$ |
| Thursday | $1,132.05$ |
| Friday | $1,139.83$ |

Solve the percent proportion. Compare the amount of increase to the original amount.
percent of change $=\frac{\text { amount of change }}{\text { original amount }}$

$$
\begin{aligned}
& =\frac{6.01}{4,127.23} \\
& \approx 0.005
\end{aligned}
$$

There was a 0.5% decrease in the value of the stock market from Monday to Tuesday.
What was the percent of change from Thursday to Friday? Round to the nearest tenth.

$$
\begin{array}{rlr}
1,139.83-1,132.05 & =7.78 \quad \text { new value }- \text { old value } \\
\text { percent of change } & =\frac{\text { amount of change }}{\text { original amount }} \\
& =\frac{7.78}{1,139.83} \quad \text { Substitution } \\
& \approx 0.007 &
\end{array}
$$

There was a 0.7% increase in the value of the stock market from Thursday to Friday.

GIencoemcGraw-Aill Course 2 Interenention

Student Workbook, p. 130

| EXERCISES | $\begin{array}{l}\text { Find the percent of change. Round to the nearest } \\ \text { tenth. }\end{array}$ |
| :--- | :--- |
| $\begin{array}{ll}\text { 1. old: } \$ 14.50 & \text { 2. old: } 237 \text { students } \\ \text { new: } \$ 13.05 & \text { new: } 312 \text { students } \\ \text { 10\% decrease } & \mathbf{3 1 . 6} \% \text { increase }\end{array}$ | |
| 3. old: 27.4 inches of snow 4. old: 12,000 cars per hours
 new: 22.8 inches of snow new: 14,300 cars per hour
 16.8\% decrease 19.2 $\%$ increase
 5. old: 2.3 million bushels 6. old: $\$ 119.50$
 new: 3.1 million bushels new: $\$ 79.67$
 34.8\% increase 33.3 $\%$ decrease
 7. old: $\$ 7,082$ 8. old: 37.5 hours
 new: $\$ 10,189$ new: 42.0 hours
 43.9\% increase 12 $\%$ increase
 9. old: 74.8 million acres 10. old: 5.7 liters
 new: 67.5 million acres new: 4.8 liters
 9.8\% decrease $\mathbf{1 5 . 8} \%$ decrease
 | |

11. At the beginning of the day, the stock market was at $10,120.8$ points. At the end of the day, it was at $10,058.3$ points. What was the percent of change in the stock market value? was the percent of
$\mathbf{0 . 7 \%}$ decrease
12. An auto manufacturer suggests a selling price of $\$ 32,450$ for its sport coupe. The next year it suggests a selling price of $\$ 33,700$ What is the percent of change in the price of the car? 3.9\% increase
13. The U.S. Consumer Price Index in 1990 was 391.4. By 2000 the Consumer Price Index was 515.8. Find the percent of change. 31.8\% increase
14. During the past school year, there were 2,856 students at Main High School. The next year there were 3,042 students. What was the percent of change? 6.5% increase
15. During a clearance sale, the price of a television is reduced from $\$ 1,099$ to $\$ 899$ the first week. The next week, the price of the television is lowered to $\$ 739$. What is the percent of change each week? What is the percent of change from the original
price to the final price? $\mathbf{1 8 . 2 \%} \boldsymbol{; 1 7 . 8} \% ; \mathbf{3 2 . 8} \%$

Glencoee/McGraw-Hill Course 2 Intervention

Unit Rate

OBJECTIVE: Find unit rates in various situations. (Strand: Algebra)

USING THE TRANSPARENCY: Have students discuss instances where they have heard prices described in unit rates.

USING THE STUDENT WORKBOOK: Engage students in a discussion about cell phone plans. They are likely familiar with a rate per text message or a rate per minute.

EXTENSION: Have students use grocery store circulars to compare the prices of the same item between different stores. Use fruits, vegetables, or canned goods.

Transparency, Skill 66

SKILI WARM UP

Unit Rate

Meisha is getting a new cell phone and plan for her birthday. She is trying to determine which company provides the best price for text messages.

To compare the companies,
you need to have a common "unit" to use for comparison. In this case, find the unit rate, or cost per text message

Company A

$\$ 4.99$ for
50 messages
$\$ 4.99$ per
50 messages
$\$ 4.99 \div 50$
$\$ 0.10$ per message
Now that each price is stated in a unit rate (per message), it is easy to compare. Company C offers the best plan on text messages.

Student Workbook, p. 131

Name Date \qquad
Unit Rate

EXAMPLE

Mr. Lee's car burned 6 gallons of gas when he drove 120 miles. Ms. Mendoza drove her car 100 miles and used 4 gallons of gas. Which car gets more miles per gallon of gas?
Miles per gallon is a unit rate. This unit rate means how many miles a car can drive using 1 gallon of gas.

To find the unit rate for each, set up a ratio.
miles driven/gallons of gas
Mr. Lee's Car
Ms. Mendoza's Car
120 miles/6 gallons
100 miles/4 gallons
Divide the numerator by the denominator to find how many miles the car can drive on 1 gallon of gas.

120 miles/6 gallon
Ms. Mendoza's Car
$120 \div 6=20$ miles/gallon
00 miles/4 gallons

Now you can compare the unit rates. Ms. Mendoza's car gets 25 miles per gallon, while Mr. Lee's car gets only 20 mile per gallon. So Ms. Mendoza's car gets more miles per gallons than Mr. Lee's.

EXERCISES

Calculate a unit rate for each situation
. 5 pounds of apples cost $\$ 7.25$. How much do apples cost per pound? $\$ 1.45$ per pound
2. 245 busses carried 8575 students to school. How many students were there per bus? 35 students per bus
3. An airplane flew 1692 miles in 3 hours. What was the plane's speed in miles per hour? $\mathbf{5 6 4}$ miles per hour
4. T-shirts are on sale at 5 for $\$ 33$. What is the unit rate per shirt? $\mathbf{\$ 6 . 6 0}$ per shirt

| Company | Number of
 Text Messages | Price |
| :--- | :---: | :--- |
| Cell Phone A | 50 | $\$ 4.99$ |
| Cell Phone B | 100 | $\$ 8.50$ |
| Cell Phone C | 250 | $\$ 18.50$ |

Company B
 Company C

$\$ 8.50$ for 100 messages
$\$ 8.50$ per 100 messages
$\$ 8.50 \div 100$
\$0.085 per message
\$18.50 for 250 messages
$\$ 18.50$ per 250 messages
$\$ 18.50 \div 250$
\$0.074 per message

Student Workbook, p. 132

EXERCISES Use unit rates to solve each problem.

5. The SuperLaser printer prints 13 pages in 3 minutes. The PhotoFlash printer prints 26 pages in 5 minutes. Find the unit rate per page. Which printer prints faster? The PhotoFlash (5.2 pages/minute vs. 4.33 pages/minute)
6. At QuickShop, 6 cans of cat food cost $\$ 10$. At Hopper's Grocery, cat food costs $\$ 7.50$ for 4 cans. Find the price per can at each store. Which store gives you a better deal? QuickShop (\$1.67/can vs \$1.88/can)
7. Jane walked 3 miles in 45 minutes. Alexis walked 5 miles in 1 hour and 40 minutes. Find the rate for each walker. Who walked faster? Jane, 15 minutes/mile; Alexis $\mathbf{2 0}$ minutes/mile; Jane walked faster.
8. SonicBoom is having a sale on CDs. Buy any 8 CDs for $\$ 46$. What is the unit rate of each CD? \$5.75 per CD

APPLICATIONS At Sheffield Farms, you can pick your own fruit. Strawberries cost $\$ 3 / q u a r t$, raspberries cost $\$ 4.50 / q u a r t$, Strawberies cost $\$ 3 / q u a t$, raspberies cost $\$ 4.50$ quart and bluebern of each kind of berry
9. Which cost more: 4 quarts of strawberries, or 4 quarts of raspberries? Raspberries
10. How much did all 12 quarts cost together? $\$ \mathbf{4 0 . 0 0}$
11. What was the average (mean) price per quart that Mark paid for his berries? $\$ 3.33$ per quart.

Mark mixed all the berries together and put them in the blender with milk and ice to make smoothies. Each quart of berries made 1.5 quarts of smoothie. He sold the smoothies at his town's Summer Fair. He wanted to make a profit, so he sold the smoothies for more than it cost to make them.

How much did it cost Mark to make 1 quart of smoothie? \$2.22
What price should Mark charge for the smoothies in order to make a profit? It cost him $\mathbf{\$ 2 . 2 2}$ per quart, so he needs to charge at least $\$ \mathbf{2 . 2 3}$ per quart to make a profit
14. If Mark sells 3 quarts of smoothie for $\$ 7.35$, will he make or lose money? Explain your reasoning. He will make money. The 3 quarts sold for $\mathbf{\$ 2 . 4 5 / q u a r t , ~ a n d ~ o n l y ~ c o s t ~ h i m ~} \$ 2.22$ to make.

SKILL
 67

TEACHER NOTES

Using Rates to Convert Currencies

OBJECTIVE: To use proportions to convert between currencies. (Strand: Algebra)

USING THE TRANSPARENCY: If Internet access is available, have students find the current exchange rate. See how the price of the souvenirs varies from the numbers given in the example.

USING THE STUDENT WORKBOOK: Have students share any experiences they have with using different currencies or discuss the current exchange rates for some of the countries shown in the worksheet.

EXTENSION: Have students plan a vacation to a country outside the U.S. Have them find a hotel, meal, and an amusement activity and convert all the prices to U.S. dollars to determine how much they must save to take the vacation.

Student Workbook, p. 133

Transparency, Skill 67

sKILL WARM UP

Using Rates to Convert Currencies

Latisha is on vacation with her parents in Mexico. She found some souvenirs she would like to purchase but wants to know what the price is in U.S. dollars. The tags show 190 pesos. What is this equal to in U.S. dollars?

$$
\underline{\text { (number of pesos in } 1 \text { dollar) }}=\underline{\text { (price in pesos) }}
$$

(1 dollar)
(price in dollars)

$$
\frac{10.345 \text { pesos }}{1 \text { dollar }}=\frac{190 \text { pesos }}{x \text { dollars }}
$$

Now, solve for x to determine the price in dollars.
x dollars $\cdot 10.345$ pesos $=190$ pesos per dollar

$$
\begin{aligned}
x \text { dollars } & =\frac{190 \text { pesos per dollar }}{10.345 \text { pesos }} \\
x & =\frac{190}{10.345}=18.36
\end{aligned}
$$

So the souvenirs cost about $\$ 18.36$.

Student Workbook, p. 134

EXERCISES Use this table of exchange rates to solve the following problems. For each problem, convert the given price into the new currency.

| | 1 U.S. Dollar | 1 Brazilian
 Real | 1 Chinese
 Yuan | 1 Euro | 1 Hong
 Kong Dollar |
| :--- | :--- | :--- | :--- | :--- | :--- |
| U.S. Dollar | 1 | 0.60 | 0.14 | 1.55 | 0.13 |
| Brazilian Real | 1.66 | 1 | 0.24 | 2.57 | 0.21 |
| Chinese Yuan | 6.98 | 4.17 | 1 | 10.74 | 0.9 |
| Euro | 0.64 | 0.39 | 0.09 | 1 | 0.08 |
| Hong Kong
 Dollar | 7.79 | 4.65 | 1.12 | 11.98 | 1 |
| Indian Rupee | 40.8 | | | | |
| Thai Baht | 31.67 | | | | |

1. A shirt costs 450 rupees. What is the price in U.S. dollars? 11.03 dollars
2. A meal in a restaurant costs 20 euros. What is the price in yuan? 214.8 yuan
3. A train ticket costs 155 Hong Kong dollars. What is the price in real? 32.55 real
4. A pair of sneakers costs 280 yuan. What is the price in real? 67.2 real
5. A book costs 50 yuan. What is the price in U.S. dollars? $\mathbf{7}$ dollars
6. A haircut costs 30 U.S. dollars. What is the price in Hong Kong dollars? 233.7 dollars
7. $\mathrm{A} C D$ costs 25 real. What is the price in euros? $\mathbf{9 . 7 5}$ euros
8. Washing and drying a load of laundry costs 3 U.S. dollars. What is the price in real? 4.98 real
9. A cab ride costs 42 real. What is the price in yuan? $\mathbf{1 7 5 . 1 4}$ yuan

APPLICATIONS The exchange table in the Exercises section is incomplete. It does not include columns to show how to convert from Rupees or Baht to other currencies.
10. Explain how you could use the information you have to figure out how many U.S. dollars 1 Rupee is worth.
Sample answer: I know that 1 U.S. dollar $=\mathbf{4 0 . 8}$
rupees. So I can set up a proportion:
$\frac{1 \text { dollar }}{40.8 \text { rupees }}=\frac{x \text { dollars }}{1 \text { rupee. }}$ Solving that proportion
$\overline{40.8 \text { rupees }}=\frac{1 \text { rupee. }}{}$
shows that 1 dollar $=0.0245$ rupees.
Glencoe/McGraw-Hill Course 2 Intervention

[^0]: Glencoe/McGraw-Hill Course 2 Intervention

[^1]: EXERCISES
 List the first four multiples of each number.
 $\begin{array}{lll}\text { 1. } 10 \\ \mathbf{1 0}, \mathbf{2 0}, \mathbf{3 0}, \mathbf{4 0} & \text { 2. } 9 \\ \mathbf{9}, \mathbf{1 8}, \mathbf{2 7}, \mathbf{3 6} & \text { 3. } 15 \\ \mathbf{1 5}, \mathbf{3 0}, \mathbf{4 5}, \mathbf{6 0}\end{array}$
 $\begin{array}{llll}\text { 4. } 7 \\ \mathbf{7}, \mathbf{1 4}, \mathbf{2 1}, \mathbf{2 8} & \text { 5. } 18 \\ 18, \mathbf{3 6}, 54,72 & \text { 6. } 12 \\ 12,24, \mathbf{3 6}, 48\end{array}$
 $\begin{array}{ll}\text { 7. } 20 \\ \mathbf{2 0}, \mathbf{4 0}, 60,80 & \text { 8. } 25 \\ \mathbf{2 5}, 50,75,100 & \\ \text { 9. } 16 \\ 16,32,48,64\end{array}$

[^2]: Glencoe/MGGraw-Hill Course 2 Intervention

