## Contributing Author

Dinah Zike

## FOLDABLES

## Consultant

Douglas Fisher, Ph.D.
Professor of Language and Literacy Education
San Diego State University
San Diego, CA

Glencoe

## The McGraw-Hill companies


#### Abstract

Copyright © by The McGraw-Hill Companies, Inc. All rights reserved. No part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written consent of The McGraw-Hill Companies, Inc., including, but not limited to, network storage or transmission, or broadcast for distance learning.


Send all inquiries to:
The McGraw-Hill Companies
8787 Orion Place
Columbus, OH 43240-4027
Printed in the United States of America.

ISBN: 978-0-07-890238-3
MHID: 0-07-890238-X

Math Connects: Concepts, Skills, and Problem Solving, Course 3 Noteables ${ }^{\text {TM }: ~ I n t e r a c t i v e ~ S t u d y ~ N o t e b o o k ~ w i t h ~ F o l d a b l e s ~}{ }^{\circledR}$

## Contents

## CHAPTER 1

Foldables. ..... 1
Vocabulary Builder. ..... 2
1-1 A Plan for Problem Solving ..... 4
1-2 Variables, Expressions, and Properties ..... 6
1-3 Integers and Absolute Value ..... 9
1-4 Adding Integers ..... 12
1-5 Subtracting Integers ..... 16
1-6 Multiplying and Dividing Integers ..... 18
1-7 Writing Equations ..... 21
1-8 Problem-Solving Investigation: Work Backward ..... 23
1-9 Solving Addition and Subtraction Equations ..... 24
1-10 Solving Multiplication and Division Equations ..... 26
Study Guide ..... 28
CHAPTER 2
Foldables ..... 32
Vocabulary Builder. ..... 33
2-1 Rational Numbers ..... 35
2-2 Comparing and Ordering Rational Numbers ..... 38
2-3 Multiplying Positive and Negative Fractions. ..... 40
2-4 Dividing Positive and Negative Fractions ..... 42
2-5 Adding and Subtracting Like Fractions ..... 45
2-6 Adding and Subtracting Unlike Fractions ..... 47
2-7 Solving Equations with Rational Numbers ..... 49
2-8 Problem-Solving Investigation: Look for a Pattern ..... 51
2-9 Powers and Exponents ..... 52
2-10 Scientific Notation. ..... 54
Study Guide ..... 57
CHAPTER 3
Foldables. ..... 61
Vocabulary Builder. ..... 62
3-1 Square Roots ..... 64
3-2 Estimating Square Roots ..... 66
3-3 Problem-Solving Investigation: Use a Venn Diagram ..... 68
3-4 The Real Number System ..... 69
3-5 The Pythagorean Theorem ..... 72
3-6 Using the Pythagorean Theorem ..... 75
3-7 Geometry: Distance on the Coordinate Plane ..... 77
Study Guide ..... 80
CHAPTER 4
Foldables. ..... 84
Vocabulary Builder ..... 85
4-1 Ratios and Rates ..... 87
4-2 Proportional and Nonproportional Relationships ..... 89
4-3 Rate of Change ..... 91
4-4 Constant Rate of Change ..... 94
4-5 Solving Proportions ..... 97
4-6 Problem-solving Investigation: Draw a Diagram ..... 99
4-7 Similar Polygons ..... 100
4-8 Dilations ..... 103
4-9 Indirect Measurement ..... 105
4-10 Scale Drawings and Models ..... 108
Study Guide ..... 110
CHAPTER 5
Foldables. ..... 115
Vocabulary Builder ..... 116
5-1 Ratios and Percents ..... 118
5-2 Comparing Fractions, Decimals, and Percents ..... 120
5-3 Algebra: The Percent Proportion ..... 123
5-4 Finding Percents Mentally ..... 125
5-5 Problem-Solving Investigation:
Reasonable Answers ..... 127
5-6 Percent and Estimation ..... 128
5-7 Algebra: The Percent Equation ..... 131
5-8 Percent of Change. ..... 133
5-9 Simple Interest ..... 137
Study Guide ..... 139
CHAPTER 6
Foldables ..... 143
Vocabulary Builder. ..... 144
6-1 Line and Angle Relationships ..... 146
6-2 Problem-Solving Investigation: Use Logical Reasoning. ..... 149
6-3 Polygons and Angles ..... 150
6-4 Congruent Polygons ..... 152
6-5 Symmetry ..... 154
6-6 Reflections ..... 156
6-7 Translations ..... 159
Study Guide ..... 162

## Contents

## CHAPTER 7

Foldables ..... 166
9-9 Scatter Plots ..... 245
Vocabulary Builder. ..... 167
7-1 Circumference and Area of Circles ..... 169
7-2 Problem-Solving Investigation: Solve a Simpler Problem ..... 171
7-3 Area of Composite Figures ..... 172
7-4 Three-Dimensional Figures ..... 174
7-5 Volume of Prisms and Cylinders ..... 177
7-6 Volume of Pyramids and Cones ..... 180
7-7 Surface Area of Prisms and Cylinders. ..... 182
7-8 Surface Area of Pyramids ..... 185
7-9 Similar Solids ..... 187
Study Guide ..... 190
CHAPTER 8
Foldables. ..... 195
Vocabulary Builder ..... 196
8-1 Simplifying Algebraic Expressions ..... 197
8-2 Solving Two-Step Equations ..... 200
8-3 Writing Two-Step Equations ..... 203
8-4 Solving Equations with Variables on Each Side. ..... 206
8-5 Problem-Solving Investigation: Guess and Check ..... 208
8-6 Inequalities ..... 209
8-7 Solving Inequalities by Adding or Subtracting ..... 212
8-8 Solving Inequalities by Multiplying or Dividing ..... 214
Study Guide ..... 216
CHAPTER 9
Foldables ..... 220
Vocabulary Builder ..... 221
9-1 Sequences ..... 223
9-2 Functions ..... 226
9-3 Representing Linear Functions ..... 229
9-4 Slope ..... 233
9-5 Direct Variation ..... 236
9-6 Slope-Intercept Form ..... 239
9-7 Systems of Equations ..... 241
9-8 Problem-Solving Investigation: Use a Graph ..... 244
Study Guide ..... 248
CHAPTER 10
Foldables. ..... 253
Vocabulary Builder. ..... 254
10-1 Linear and Nonlinear Functions ..... 255
10-2 Graphing Quadratic Functions ..... 258
10-3 Problem-Solving Investigation: Make a Model ..... 260
10-4 Graphing Cubic Functions ..... 261
10-5 Multiplying Monomials ..... 264
10-6 Dividing Monomials ..... 266
10-7 Powers of Monomials ..... 269
10-8 Roots of Monomials ..... 271
Study Guide ..... 273
CHAPTER 11
Foldables. ..... 277
Vocabulary Builder ..... 278
11-1 Problem-Solving Investigation: Make a Table ..... 280
11-2 Histograms ..... 281
11-3 Circle Graphs ..... 284
11-4 Measures of Central Tendency and Range ..... 288
11-5 Measures of Variation ..... 291
11-6 Box-and-Whisker Plots ..... 294
11-7 Stem-and-Leaf Plots ..... 297
11-8 Select an Appropriate Display ..... 301
Study Guide ..... 303
CHAPTER 12
Foldables. ..... 307
Vocabulary Builder ..... 308
12-1 Counting Outcomes ..... 310
12-2 Probability of Compound Events ..... 313
12-3 Experimental and Theoretical Probability ..... 316
12-4 Problem-Solving Investigation: Act It Out ..... 320
12-5 Using Sampling to Predict. ..... 321
Study Guide ..... 324

## Organizing Your Foldables

## FOLDABLES

Have students make this Foldable to help them organize and store their chapter Foldables.
Begin with one sheet of 11 " $\times 17$ " paper.

## STEP 1 Fold

Fold the paper in half lengthwise. Then unfold.


## STEP 2. Fold and Glue

Fold the paper in half widthwise and glue all of the edges.


## STEP 3) Glue and Label

Glue the left, right, and bottom edges of the Foldable to the inside back cover of your Noteables notebook.


Reading and Taking Notes As you read and study each chapter, record notes in your chapter Foldable. Then store your chapter Foldables inside this Foldable organizer.

## Using Your <br> Noteables" <br> Interactive Study Notebook

This note-taking guide is designed to help you succeed in Math Connects, Course 3. Each chapter includes:


Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.


## NOTE-TAKING TIPS

Your notes are a reminder of what you learned in class. Taking good notes can help students succeed in mathematics. The following tips will help you take better classroom notes.

- Before class, ask what your teacher will be discussing in class. Review mentally what you already know about the concept.
- Be an active listener. Focus on what your teacher is saying. Listen for important concepts. Pay attention to words, examples, and/or diagrams your teacher emphasizes.
- Write your notes as clear and concise as possible. The following symbols and abbreviations may be helpful in your note-taking.

| Word or Phrase | Symbol or <br> Abbreviation | Word or Phrase | Symbol or <br> Abbreviation |
| :---: | :---: | :---: | :---: |
| for example | e.g. | not equal | $\neq$ |
| such as | i.e. | approximately | $\approx$ |
| with | w/ | therefore | $\therefore$ |
| without | w/o | versus | vs |
| and | + | angle | $\angle$ |

- Use a symbol such as a star ( $\star$ ) or an asterisk (*) to emphasize important concepts. Place a question mark (?) next to anything that you do not understand.
- Ask questions and participate in class discussion.
- Draw and label pictures or diagrams to help clarify a concept.
- When working out an example, write what you are doing to solve the problem next to each step. Be sure to use your own words.
- Review your notes as soon as possible after class. During this time, organize and summarize new concepts and clarify misunderstandings.


## Note-Taking Don'ts

- Don't write every word. Concentrate on the main ideas and concepts.
- Don't use someone else's notes as they may not make sense.
- Don't doodle. It distracts you from listening actively.
- Don't lose focus or you will become lost in your note-taking.


## 1 Algebra: Integers

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.

Begin with a plain piece of $11^{\prime \prime} \times 17^{\prime \prime}$ paper.

STEP 1 Fold the paper in sixths lengthwise


STEP 1 Open and Fold a 4" tab along the short side. Then fold the rest in half.


STEP 3) Label Draw lines along the folds and label as shown.

|  | Words | Example(s) |
| :---: | :---: | :---: |
|  |  |  |
|  |  |  |
|  |  |  |
| Stiole |  |  |
| ¢ |  |  |

NOTE-TAKING TIP: When taking notes, it may be helpful to explain each idea in words and give one or more examples.

1

## BUILD YOUR VOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 1.
As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

| Vocabulary Term | Found <br> on Page | Definition | Description or <br> Example |
| :--- | :--- | :--- | :--- |
| absolute value |  |  |  |
| additive inverse |  |  |  |
| algebra |  |  |  |
| algebraic expression <br> [AL-juh-BRAY-ihk] |  |  |  |
| conjecture |  |  |  |
| coordinate |  |  |  |
| counterexample |  |  |  |
| define a variable |  |  |  |
| equation |  |  |  |
| [ih-KWAY-zhuhn] |  |  |  |
| evaluate |  |  |  |
| inequality |  |  |  |


| Vocabulary Term | Found on Page | Definition | Description or Example |
| :---: | :---: | :---: | :---: |
| integer <br> [IHN-tih-juhr] |  |  |  |
| inverse operations |  |  |  |
| negative number |  |  |  |
| numerical expression |  |  |  |
| opposites |  |  |  |
| order of operations |  |  |  |
| positive number |  |  |  |
| powers |  |  |  |
| property |  |  |  |
| solution |  |  |  |
| solve |  |  |  |
| variable |  |  |  |

## 1-1 A Plan for Problem Solving

## Main Idea

Solve problems using the four-step plan.

## BUILD YOUR VOGABULARY (pages 2-3)

Some problem solving strategies require you to make an $\square$ or conjecture.

## EXAMPLIS Use the Four-Step Plan

## FOLDABLES

## Organize It

Summarize the four-step problem-solving plan in words and symbols. Include an example of how you have used this plan to solve a problem.

|  | Words | Example(s) |
| :---: | :---: | :---: |
| ${ }_{\text {P }}$ APlon for |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |

HOME IMPROVEMENT The Vorhees family plans to paint the walls in their family room. They need to cover 512 square feet with two coats of paint. If a 1-gallon can of paint covers 220 square feet, how many 1-gallon cans of paint do they need?

UNDERSTAND Since they will be using $\square$ coats of paint, we must $\square$ the area to be painted.

PLAN
They will be covering $\square \times \square$ square feet or $\square$ square feet. Next, divide $\square$ by $\square$ to determine how many cans of paint are needed.

SOLVE


CHECK Since they will purchase a whole number
of cans of paint, round $\square$ to $\square$

## Check Your Progress

Jocelyn plans to paint her bedroom. She needs to cover 400 square feet with three coats of paint. If a 1-gallon can of paint covers 350 square feet, how many 1 -gallon cans of paint does she need?

## Remember It

Always check to make sure your answer is reasonable. You can solve the problem again if you think your answer is not correct.

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

## HOMEWORK

 ASSIGNMENTPage(s):
Exercises:

## CHECK

Compare the water area for each state to determine which state has the least water area.

square miles.

## Check Your Progress

 Refer to Example 2. How many times larger is the land area of Alaska than the land area of Montana?
## 1-2 Variables, Expressions, and Properties

## MAIN IDEA

- Evaluate expressions and identify properties.


## Key Concept

Order of Operations

1. Do all operations within grouping symbols first; start with the innermost grouping symbols.
2. Evaluate all powers before other operations.
3. Multiply and divide in order from left to right.
4. Add and subtract in order from left to right.

## BUILD YOUR YOCABULARY (pages 2-3)

 number, and at least one $\square$ symbol.

When you substitute a number for the $\square$ an algebraic expression becomes a numerical expression.

To evaluate an expression means to find its $\square$ value.

To avoid confusion, mathematicians have agreed on a called the order of operations.

## EXAMPLES Evaluate Algebraic Expressions

Evaluate each expression if $q=5, r=6$, and $s=3$.
(1) $4(r-s)^{2}$
$4(r-s)^{2}$

$=4(\square)^{2}$
Perform operations in the


Evaluate the


Simplify.

## BUILD YOUR VOCABULARY (pages 2-3)

Expressions such as $7^{2}$ and $2^{3}$ are called powers and represent repeated $\qquad$
2) $q^{2}-4 r-1$

(3) $\frac{6 q}{5 s}$

The fraction bar is a grouping symbol. Evaluate the expressions in the numerator and denominator separately before dividing.


## Check Your Progress Evaluate each expression.

a. $2(a+b)^{2}$ if $a=3$ and $b=2$
b. $b^{2}+3 c-5$ if $b=4$ and $c=2$

c. $\frac{3 \mathrm{~s}}{q+4}$ if $q=2$ and $s=4$

## Remember It

Commutative Property
$a+b=b+a$
$a \cdot b=b \cdot a$
Associative Property
$a+(b+c)=(a+b)+c$ $a \cdot(b \cdot c)=(a \cdot b) \cdot c$

Distributive Property
$a(b+c)=a b+a c$
$a(b-c)=a b-a c$
Identity Property
$a+0=a$
$a \cdot 1=a$

## Homework Assignment

## 1-3 Integers and Absolute Values

## MAIN IDEA

- Compare and order integers and find absolute value.


## BUILD YOUR VOGABULARY (pages 2-3)


are members of the set of integers.

## EXAMPLE Compare Two Integers

1) Replace the with < or > to make -2 - -1 a true sentence.


The number line shows that -2 is $\square$ than -1 , since it lies to the $\square$ of -1 . So, write $-2 \square-1$.

## Check Your Progress

Replace each with < or > to make a true sentence.
a. $-2 \bigcirc 2$

b. $-4 \bigcirc-6$


## BUILD YoUR VocABULARY (pages 2-3)

$\square$ that corresponds to a $\square$ is called the coordinate of that point.

A sentence that $\square$ two different numbers or quantities is called an inequality.

## 1-3

## BUILD YOUR YOCABULARY (pages 2-3)

The absolute value of a number is the distance the number is from $\square$ on the number line.

## Remember IT

The absolute value of a number is not the same as the opposite of a number. Remember that the absolute value of a number cannot be negative.

## EXAMPLES Expressions with Absolute Value

## Evaluate each expression.

2) $|5|-|5|$


The graph of 5 is $\square$ units from 0 on the number line.
So, $|5|=\square$. Then subtract 5 units.
Thus, $|5|-|5|=\square$
$|6|-|-5|$
$|6|-|-5|=\square-|-5| \quad$ The absolute value of 6 is $\square$.

| $=6-\square$ | $\|-5\|=\square$ |
| :--- | :--- |
| $=\square$ | Simplify. |

Evaluate $|6-9|-|5-3|$.
$|6-9|-|5-3|=|\square|-\mid \quad$ Simplify the absolute value expressions.
$=\square-|2| \quad$ The absolute value of -3 is $\square$.

$$
=3-\square
$$

The absolute value of
$\square$
$=\square$

5 Evaluate $|x|+13$ if $x=-4$.
$|x|+13=|\square|+13$
$=\square+13$
$=\square$

Replace $x$ with $\square$.
$|-4|=\square$
Simplify.

Check Your Progress
Evaluate each expression.
a. $|-3|-|3|$
b. $|9|-|-6|$
c. $|4-7|-|11-6|$

d. Evaluate $|x|+7$ if $x=-2$.

## 1-4 Adding Integers

## EXAMPLE Add Integers with the Same Sign

MAIN IDEA

- Add integers.


## Key Concept

Adding Integers with the Same Sign To add integers with the same sign, add their absolute values. Give the result the same sign as the integers.

1 Add $-8+(-4)$.
Use a number line.
Start at zero.
Move $\square$ units to the left.
From there, move 4 units


So,$-8+(-4)=\square$.

## Check Your Progress

Add using a number line or counters.
a. $-3+(-6)$

b. $-13+(-12)$


## EXAMPLES Add Integers with Different Signs

Foldables

## Organize IT

Explain and give examples of how to add integers with the same sign and how to add integers with a different signs.

|  | Words | Example(s) |
| :---: | :---: | :---: |
| $\begin{array}{\|c\|} \hline \text { A Plan for } \\ \text { Problem Solving } \end{array}$ |  |  |
| $\begin{gathered} +8-\text { of } \\ \text { Integers } \end{gathered}$ |  |  |
| $\begin{aligned} & x \&+\text { of } \\ & \text { Integers } \end{aligned}$ |  |  |
| $\begin{array}{\|c\|} \hline \text { Solving }+\&- \\ \text { Equations } \\ \hline \end{array}$ |  |  |
| $\begin{array}{\|c\|} \hline \text { Solving } \times \& \div \\ \text { Equations } \\ \hline \end{array}$ |  |  |

2 Find $4+(-6)$.
Use a number line.
Start at


Move 4 units


From there, move $\square$ units left.


So, $4+(-6)=\square$.
3 Find $-5+9$.
Use a number line.
Start at $\square$


## Key Concepts

Adding Integers with Different Signs To add integers with different signs, subtract their absolute values. Give the result the same sign as the integer with the greater absolute value.

## (4) Find $-33+16$.

$$
-33+16=\square
$$

To find $-33+16$, subtract |16| from |-33|.

The sum is


Check Your Progress
Add.
a. $3+(-5)$

b. $-6+8$

c. $25+(-15)$


## BUILD YOUR VOGABULARY (pages 2-3)

Two numbers with the same
 but different signs are called opposites.

An integer and its $\square$ are also called additive inverses.

## EXAMPL: Add Three or More Integers

5 Find $2+(-5)+(-3)$.

$$
\begin{aligned}
2+(-5)+(-3) & =2+[\square+(-3)] & & \text { Associative Property } \\
& =2+\square & & \text { Order of operations } \\
& =\square & & \text { Simplify. }
\end{aligned}
$$

## Find each sum.

a. $3+(-6)+(-2)$

b. $-10+5+10+7$


## EXAMPLE Add Three or More Integers

6 STOCKS An investor owns 50 shares in a video-game manufacturer. A broker purchases 30 shares more for the client on Tuesday. On Friday, the investor asks the broker to sell 65 shares. How many shares of this stock will the client own after these trades are completed?
Selling a stock decreases the number of shares, so the integer for selling is $\qquad$
Purchasing new stock increases the number of shares, so the integer for buying is $\square$.

Add these integers to the starting number of shares to find the new number of shares.

$$
\begin{aligned}
50 & +\square+(\square) \\
& =(50+\square)+(\square+(-65) \\
& =\square \\
& =\square
\end{aligned}
$$

Associative Property


Simplify.

Check Your Progress
MONEY Jaime gets an allowance of $\$ 5$. She spends $\$ 2$ on video games and $\$ 1$ on lunch. Her best friend repays a $\$ 2$ loan and she buys a $\$ 3$ pair of socks. How much money does Jaime have left?

## 1-5 Subtracting Integers

## EXAMPLES Subtract a Positive Integer

## Main IdeA

- Subtract integers.


## Key Concept

## Subtracting Integers

To subtract an integer, add its opposite or additive inverse.

FOLDABLES

## ORGANIZE IT

Record in your Foldable how to subtract integers. Be sure to include examples.
$\left.\begin{array}{|c|c|c|}\hline & \text { Words } & \text { Example(s) } \\ \begin{array}{|c|c|}\hline \text { A Plan for } \\ \text { Problem Solving }\end{array} & & \\ \hline+\&-\text { of } & & \\ \hline \begin{array}{c}\times \&+\text { of } \\ \text { Integrs }\end{array} & & \\ \hline \text { Integers }\end{array}\right)$
(1) Find 2-6.
$2-6=2+(-6)$
To subtract 6, add $\square$

$$
=\square
$$

Add.

2 Find -7-5.

$$
-7-5=7 \square(-5)
$$

$$
=-12
$$

To subtract $\square$, add -5 .
Add.

## EXAMPLES Subtract a Negative Integer

3 Find 11 - (-8).

$$
\begin{aligned}
11-(-8) & =\square+8 & & \text { To subtract }-8, \text { add } \square . \\
& =\square & & \text { Add. }
\end{aligned}
$$

4 WEATHER The overnight temperature at a research station in Antarctica was $-13^{\circ} \mathrm{C}$, but the temperature rose to $2^{\circ} \mathrm{C}$ during the day, what was the difference between the temperatures?
$2-(-13)=2$ $\square$
$\square$ To subtract -13 , $\square$

$$
=15
$$

Add.

The difference between the temperatures was $\square$

Check Your Progress
Subtract.
a. 3-7

b. $-6-2$


## Write It

Explain why -b does not necessarily mean that the value of $-b$ is negative.
$\qquad$
$\qquad$
$\qquad$
6) $q-p^{2}$
$q-p=-3-(6)^{2}$
Replace $q$ with $\square$ and $p$ with $\square$.

$\square$ Add.

Check Your Progress
Evaluate each expression if $a=3, b=-6$, and $c=2$.
a. $10-c$

b. $b-a$


## 1-6 Multiplying and Dividing Integers

## EXAMPL: Multiply Integers with Different Signs

## Main Idea

- Multiply and divide integers.


## Key Concepts

Multiplying Two Integers The product of two integers with different signs is negative.

The product of two integers with the same sign is positive.

Dividing Integers The quotient of two integers with different signs is negative.

The quotient of two integers with the same sign is positive.

## Remember It

Decide on the sign of the product before multiplying. If the number of negatives is even the product is positive. If the number of negatives is odd the product is negative.

1 Find 8(-4).
$8(-4)=\square$
The factors have $\square$ signs. The product is
$\square$

## EXAMPLE Multiply Integers with the Same Sign

2 Find $-12(-12)$.

$$
-12(-12)=\square
$$

 sign. The product
$\square$

## EXAMPLE Multiply More Than Two Integers

3 Find 6(-2)(-4).
$6(-2)(-4)=[6(-2)] \square$


Check Your Progress

## Multiply.

a. $6(-3)$

b. $-2(6)$

c. $-8(-8)$

d. $5(-3)(-2)$


## EXAMPLE Divide Integers

(4) Find $30 \div(-5)$.
$30 \div-5=\square$
The dividend and the divisor have $\square$ signs.

The quotient is $\square$

## FOLDABLES

## Organize IT

Describe why the product or quotient of two integers with the same sign is positive and the product or quotient of two integers with different signs is negative.

|  | Words | Example(s) |
| :---: | :---: | :---: |
| ${ }_{\text {Pa }}^{\text {A Plon for }}$ |  |  |
| $\underset{\substack{\text { Integers }}}{\substack{\text { der }}}$ |  |  |
|  |  |  |
|  |  |  |
| Sole |  |  |

## Check Your Progress

## Divide.

a. $36 \div(-6)$
b. $\frac{-30}{-5}$


## EXAMPLE Evaluate Algebraic Expressions

5 Evaluate $-3 x-(-4 y)$ if $x=-10$ and $y=-4$.
$3 x-(-4 y)$

and $y$ with

$3(-10)=\square$
$-4(-4)=\square$

$$
=-30+\square
$$

To subtract $\square$, add


Add.

Check Your Progress
Evaluate $2 a-(-3 b)$ if $a=-6$ and $b=-4$.

## EXAMPLE Find the Mean of a Set of Integers

6 GOLF Justin scored the following points for a round of nine holes of golf. Find Justin's average score for the round.

| Hole | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Score | +4 | +3 | 0 | -1 | +2 | -1 | +2 | +1 | -1 |

To find the mean of a set of numbers, find the sum of the numbers. Then divide the result by how many numbers there are in the set.
$\frac{4+3+0+(-1)+2+(-1)+2+1+(-1)}{9}=\frac{\square}{9}=1$
Justin's average score was $\square$

## Homework

 Assignment
## Check Your Progress

The table shows a set of record low temperatures. Find the mean (average) of all 12 temperatures.


| Average Low Temperatures |  |
| :--- | :---: |
| Month | Temp. $\left({ }^{\circ} \mathrm{C}\right)$ |
| Jan. | -20 |
| Feb. | -15 |
| March | -5 |
| April | 10 |
| May | 25 |
| June | 31 |
| July | 41 |
| Aug. | 38 |
| Sept. | 34 |
| Oct. | 19 |
| Nov. | 3 |
| Dec. | -15 |

## 1-7 Writing Equations

## MAIN IDEA

- Write algebraic equations from verbal sentences and problem situations.


## BUILD YOUR VOGABULARY (pages 2-3)

A mathematical sentence that contains an sign (=) is called an equation. When you choose a variable and an unknown quantity for the variable to represent, this is called defining the variable.

## EXAMPLE Write an Algebraic Equation

(1) CONSUMER ISSUES The cost of a book purchased online plus $\$ 5$ shipping and handling comes to a total of $\$ 29$. Write an equation to model this situation.

Words $\quad$ The price of a book plus $\$ 5$ shipping is $\$ 29$.
Variable Let $b$ represent the price of the book.
The price


The equation is $\square$

Write the price of a toy plus $\$ 6$ shipping is $\$ 35$ as an algebraic equation.

## EXAMPLE Write an Equation to Solve a Problem

2 NUTRITION A box of oatmeal contains 10 individual packages. If the box contains $\mathbf{3 0}$ grams of fiber, write an equation to find the amount of fiber in one package of oatmeal.

Words $\quad$ Ten packages of oatmeal contain 30 grams of fiber.
Variable Let $f$ represent the grams of fiber per package.


The equation is $\square$

## Review It

Explain why it is important to read a word problem more than once before attempting to solve it.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Homework Assignment

Page(s):<br>Exercises:

Check Your Progress A particular box of cookies contains 10 servings. If the box contains 1,200 Calories, write an equation to find the number of Calories in one serving of cookies.
$\square$

## EXAMPL

3 TEST EXAMPLE The eighth grade has $\mathbf{\$ 3 5}$ less in its treasury than the seventh grade has. Given $s$, the number of dollars in the seventh-grade treasury, which equation can be used to find $e$, the number of dollars in the eighth-grade treasury?
$\mathbf{A} e=35-s$
B $e=s-35$
$\mathbf{C} e=s \div 35$
D $e=35 s$

## Read the Item

The phrase $\$ 35$ less . . . than the seventh grade indicates
$\square$

## Solve the Item

$\underbrace{$|  The amount of money  |
| :---: |
|  in the eighth-grade  |
|  treasury  |}$_{e} \underbrace{\text { is }}_{=} \underbrace{$|  the amount of money in  |
| :---: |
|  the seventh-grade  |
|  treasury  |}$_{s} \quad \underbrace{\text { less }}_{-} \underbrace{\$ 35 .}_{35}$

The solution is $\square$

MULTIPLE CHOICE Helena and her friends ordered 3 bags of popcorn and 4 drinks from the snack stand. Which equation could be used to find $c$, the total cost if $p$ represents the cost of a bag of popcorn and $d$ represents the cost of a drink?
$\mathbf{F} c=7(p+d)$
$\mathbf{H} c=3 p+4 d$
$\mathbf{G} c=7(p-d)$
$\mathbf{J} c=7 p+7 d$

## 1-8 Problem-Solving Investigation: Work Backward

## EXAMPLE

## MAIN IDEA

- Solve problems by working backward.

SCHEDULING Wendie is meeting some friends for a movie and a dinner. She needs to be finished with dinner by 7:30 P.M. to make it home by 8:00 P.M. The movie runs for 90 minutes, and she wants to have at least 1 hour for dinner. If it takes 20 minutes to get from the theater to the restaurant, what is the latest starting time she can choose for the movie she wants to see?

UNDERSTAND You know what time Wendie needs to head home. You know the time it takes for each event. You need to determine

$\square$

PLAN

SOLVE


7:30 P.M.
Go back 1 hour for dinner.


Go back $\quad$ for travel. 6:10 P.M.
Go back 90 minutes for the movie. $\square$ CHECK

Assume the movie starts at $\square$ Work foward, adding the time for each event.

The latest starting time for the movie is $\square$

Check Your Progress
SHOPPING Mia spent $\$ 9.50$ at a fruit stand, then spent three times that amount at the grocery store. She had $\$ 7.80$ left. How much money did she have initially?

## 1-9 Solving Addition and Subtraction Equations

## Main IDEA

- Solve equations using the Subtraction and Addition Properties of Equality.


## BUILD YOUR VOGABULARY (pages 2-3)

When you solve an equation, you are trying to find the values of the variable that makes the equation $\qquad$ A solution is the value of the variable that makes the variable $\square$ .

## EXAMPLE Solve an Addition Equation

## Key Concepts

Subtraction Property of Equality If you subtract the same number from each side of an equation, the two sides remain equal.

Addition Property of Equality If you add the same number to each side of an equation, the two sides remain equal.
(1) Solve $7=15+c$.

METHOD 1 Vertical Method

$$
\begin{array}{rlrl}
7 & =15+c & & \text { Write the equation. } \\
7 & =15+c & & \text { Subtract } \square \\
-15 & =-15 & \text { from each side. } \\
\square & & & \\
\square & 7-15=\square ; 15-15=\square
\end{array}
$$

METHOD 2 Horizontal Method


Check Your Progress
Solve $6=11+a$.

BUILD YOUR VOCABULARY (pages 2-3)
Addition and subtraction are called inverse operations because they "undo" each other.

## EXAMPLE Solve an Addition Equation

FOLDABLES

## Organize IT

Compare how to solve an equation involving whole numbers and an equation involving integers.

|  | Words | Example(s) |
| :---: | :---: | :---: |
| A Plan for <br> Problem Solving |  |  |
| $+\&-$ of |  |  |
| Integers |  |  |
| I of <br> Integers |  |  |
| Solving $+\&-$ <br> Equations |  |  |
| Solving $\times \& \div$ <br> Equations |  |  |

## Homework ASSIGNMENT

Page(s):
Exercises:

2 OCEANOGRAPHY At high tide, the top of a coral formation is 2 feet above the surface of the water. This represents a change of -6 feet from the height of the coral at low tide. Write and solve an equation to determine $h$, the height of the coral at low tide.


The height at low tide plus the change is the height at high tide.

Let $h$ represent the height at low tide.

$$
h+(-6)=2
$$

$$
h+-6=2 \quad \text { Write the equation. }
$$

$$
h+(-6)-\square=2-\square \quad \begin{aligned}
& \text { Subtract } \square \\
& \text { side. }
\end{aligned} \quad \text { from each }
$$

$$
h=\square \quad \text { Simplify. }
$$

The height of the coral at low tide is 8 feet.

## EXAMPLE Solve a Subtraction Equation

(3) Solve $-5=z-16$.

Use the horizontal method.


Check Your Progress
Solve $-6=x-12$.

## 1-10 Solving Multiplication and Division Equations

## EXAMPLE Solve a Multiplication Equation

## Main Idea

- Solve equations by using the Division and Multiplication Properties of Equality.


## Key Concepts

Division Property of Equality If you divide each side of an equation by the same nonzero number, the two sides remain equal.

## Multiplication Property

 of Equality If you multiply each side of an equation by the same number, the two sides remain equal.(1) Solve $7 z=-49$.
$7 z=-49 \quad$ Write the equation.

$7 \div 7=\square,-49 \div 7=\square$


Identity Property; $1 z=$ $\square$

## EXAMPLE Solve a Division Equation

(2) Solve $\frac{c}{9}=-6$.

$$
\frac{c}{9}=-6 \quad \text { Write the equation. }
$$



Multiply each side by


$$
c=\square
$$

$$
-6 \boxed{\square}=\square
$$

## EXAMPLE Use an Equation to Solve a Problem

3 SURVEYING English mathematician Edmund Gunter lived around 1600. He invented the chain, which was used as a unit of measure for land and deeds. One chain equals 66 feet. If the south side of a property measures 330 feet, how many chains long is it?


FOLDABLES
ORGANIZE IT
On your Foldable table, explain how to solve multiplication equations using the multiplication properties of equality.

|  | Words | Example(s) |
| :---: | :---: | :---: |
| A Alan for |  |  |
| $\begin{gathered} +\&-\alpha+0 \\ \text { Integers } \end{gathered}$ |  |  |
|  |  |  |
|  |  |  |
|  |  |  |

## Check Your Progress

a. Solve $8 a=-64$.
b. Solve $\frac{x}{5}=-10$.

c. Most horses are measured in hands. One hand equals 4 inches. If a horse measures 60 inches, how many hands is it?

## STUDY GUIDE

FOLDABLES

Use your Chapter 1 Foldable to help you study for your chapter test.

## VOCABULARY PUZZLEMAKER

To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 1, go to:
glencoe.com

## BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (pages 2-3) to help you solve the puzzle.

## 1-1

## A Plan for Problem Solving

## Use the four step plan to solve the problem.

1. Lisa plans to redecorate her bedroom. Each wall is 120 square feet. Three walls need a single coat of paint and the fourth wall needs a double coat. If each can of paint will cover 200 square feet, how many gallons of paint does Lisa need?

## 1-2

## Variables, Expressions, and Properties

2. Number the operations in the correct order for simplifying $2+4(9-6 \div 3)$.

3. Describe how the expressions $2+5$ and $5+2$ are different. Then determine whether the two expressions are equal to each other. If the expressions are equal, name the property that says they are equal.

## 1-3

## Integers and Absolute Values

Complete each sentence with either left or right to make a true sentence. Then write a statement comparing the two numbers with either $<$, or $>$.
4. -45 lies to the $\square$ of 0 on a number line. $\square$
5. 72 lies to the $\square$ of 0 on a number line. $\square$
6. -3 lies to the $\square$ of -95 on a number line. $\square$
7. 6 lies to the $\square$ of -7 on a number line. $\square$

## 1-4

Adding Integers
Determine whether you add or subtract the absolute values of the numbers to find the sum. Give reasons for your answers.
8. $4+8$ $\square$
9. $-3+5$ $\square$
10. $9+(-12)$ $\square$
11. $-23+(-16)$ $\square$

## 1-5

Subtracting Integers
Rewrite each difference as a sum. Then find the sum.
12. $2-9$ $\square$
13. $-3-8$

14. $10-(-12)$

15. $-5-(-16)$ $\square$

1-6

## Multiplying and Dividing Integers

Find each product or quotient.
16. $9(-2)$

17. $-6(-7)$ $\square$
18. $12 \div(-4)$ $\square$ 19. $-35 \div(-7)$ $\square$

1-7
Writing Equations
Determine whether each situation requires addition, subtraction, multiplication or division.
20. Find the difference in the cost of a gallon of premium gasoline and the cost of a gallon of regular gasoline.
21. Find the flight time after the time has been increased by 15 minutes. $\square$

## 1-8

Problem Solving Investigation: Work Backward
22. LOANS Alonso bought supplies for a camping trip. He has about $\$ 2$ left. He spent $\$ 15.98$ at the grocery store, then spent $\$ 21.91$ at the sporting goods store. He also spent a third of his money for a deposit on the campsite. About how much money did Alonso have originally?

## 1-9

## Solving Addition and Subtraction Equations

Solve each equation.
23. $x+6=9$ $\square$ 24. $s-5=14$ $\square$ 25. $11+m=33$

## 1-10

Solving Multiplication and Division Equations
Solve each equation.
26. $8 r=32$ $\square$ 27. $3=\frac{x}{7}$ $\square$ 28. $-9=-9 g$ $\square$

1

## ARE YOU READY FOR THE CHAPTER TEST?

## Checklist

## Math Online

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 1.

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want take the Chapter 1 Practice Test on page 79 of your textbook as a final check.

I used my Foldable or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 1 Study Guide and Review on pages 74-78 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 1 Practice Test on page 79 of your textbook.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 1 Foldable.
- Then complete the Chapter 1 Study Guide and Review on pages 74-78 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 1 Practice Test on page 79 of your textbook.


Student Signature


Parent/Guardian Signature


Teacher Signature

## 2

## Algebra: Rational Numbers

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.
Begin with five sheets of $8 \frac{1}{2} " \times 11^{\prime \prime}$ paper.
STEP 1.
Place 5 sheets of paper
$\frac{3}{4}$ inch apart.
STEP 3.
All tabs should be the
same size.
Staple along the fold.
Label the tabs with the
lesson numbers.

NOTE-TAKING TIP: As you study a lesson, write down questions you have, comments and reactions, short summaries of the lesson, and key points that are highlighted and underlined.

## BUILD YOUR VOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 2. As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

| Vocabulary Term | Found <br> on Page | Definition | Description or <br> Example |
| :--- | :--- | :--- | :--- |
| bar notation |  |  |  |
| base |  |  |  |
| dimensional analysis |  |  |  |
| exponent |  |  |  |
| like fractions |  |  |  |
| multiplicative inverses |  |  |  |


| Vocabulary Term | Found <br> on Page | Definition | Description or <br> Example |
| :--- | :--- | :--- | :--- |
| power |  |  |  |
| rational number |  |  |  |
| reciprocals |  |  |  |
| repeating decimal |  |  |  |
| scientific notation |  |  |  |

## 2-1 Rational Numbers

## Main Idea

- Express rational numbers as decimals and decimals as fractions.


## BUILD YOUR VOCABUIARY (pages 33-34)

A rational number is any number that can be expressed in the form $\frac{a}{b}$ where $a$ and $b$ are $\square$ and $b \neq 0$.

A decimal like 0.0625 is a terminating decimal because the division ends, or terminates, when the $\square$ is 0 .

## EXAMPLE Write a Fraction as a Decimal

## Key Concept

Rational Numbers
A rational number is any number that can be expressed in the form $\frac{a}{b}$, where $a$ and $b$ are integers and $b \neq 0$.
$\frac{3}{16}$ means $3 \square 16$.
0.1875
$1 6 \longdiv { 3 . 0 0 0 0 }$

Divide 3 by 16.
16
140
128
120
112
80
80
Division ends when the $\square$ is 0 .

You can also use a calculator.
The fraction $\frac{3}{16}$ can be written as $\square$

Check Your Progress
Write $\frac{1}{16}$ as a decimal.

## BUILD YOUR VOGABULARY (pages 33-34)

A like $1.6666 \ldots$ is called a repeating decimal. Since it is not possible to show all of the $\square$, you can use bar notation to show that the 6 $\square$

## EXAMPLE Write a Mixed Number as a Decimal

## Write IT

Explain how you decide where the bar is placed when you use bar notation for a repeating decimal.
$\qquad$
$\qquad$

FOLDABLES

## Organize It

Under the tab for Lesson 2-1, explain in your own words how to express rational numbers as decimals and decimals as fractions.


2 Write $-3 \frac{2}{11}$ as a decimal.
You can write $-3 \frac{2}{11}$ as $\frac{-35}{11}$ or $\frac{35}{-11}$. To change $-3 \frac{2}{11}$ to a decimal, find $\square$ or $\square$.

$- 1 1 \longdiv { 3 5 . 0 0 0 0 }$
$-33$
20
$-11$
90
$-88$
20
$-11$
90
$-88$
The remainder after each step is 2 or 9 .
The mixed number $-3 \frac{2}{11}$ can be written as
$\square$

Check Your Progress
Write $5 \frac{1}{9}$ as a decimal.


EXAMPLE Write a Terminating Decimal as a Fraction
3 Write 0.32 as a fraction.
$0.32=\frac{32}{\square}$
0.32 is 32 $\square$
Simplify. Divide by the greatest
common factor of 32 and 100, $\square$

The decimal 0.32 can be written as $\square$
Check Your Progress Write 0.16 as a fraction.

## EXAMPLE Write a Repeating Decimal as a Fraction

4) ALGEBRA Write $2 . \overline{7}$ as a mixed number.

$$
\text { Let } N=2 . \overline{7} \text { or } 2.777 \ldots \text { Then } 10 N=\square \text {. }
$$

## Homework AssignMent

Page(s):
Exercises:

Multiply $N$ by $\square$ because 1 digit repeats.

Subtract $N=2.777 \ldots$ to eliminate the $\square$ part, 0.777 . . .
$10 N=27.777 .$.
$-1 N=2.777 \ldots$
$N=1 N$
$\square=25$
$10 N-1 N=\square$


Divide each side by $\square$
$N=\square$ Simplify.

## Check Your Progress <br> Write $1 . \overline{7}$ as a mixed number.

## 2-2 Comparing and Ordering Rational Numbers

## EXAMPLE Compare Positive Rational Numbers

## Main Idea

Compare and order rational numbers.

## FOLDABLES

ORGANIZE IT
Under the tab for Lesson 2-2, explain how you can compare two numbers by expressing them as decimals and comparing the decimals.


1 Replace with $<$,$\rangle , or =$ to make $\frac{3}{7} \bigcirc \frac{8}{13}$ a true sentence.

Write as fractions with the same denominator.
For $\frac{3}{7}$ and $\frac{8}{13}$, the least common denominator is 91 .


Since $\frac{\square}{91}<\frac{\square}{91}, \frac{3}{7} \square \frac{8}{13}$

## EXAMPLE Compare Using Decimals

2 Replace $\bigcirc$ with $<,>$, or $=$ to make $0.7 \bullet \frac{7}{11}$ a true sentence.
$0.7 \bigcirc \frac{7}{11}$


Express $\frac{7}{11}$ as a decimal. In the tenths place, $7>6$.
So, $0.7 \square \frac{7}{11}$.

Check Your Progress Replace each $\bigcirc$ with $<$, $>$, or $=$ to make a true sentence.
a. $\frac{2}{3} \bigcirc \frac{3}{5}$
b. $\frac{4}{9} \bigcirc 0.5$


## EXAMPLE Order Rational Numbers

## Remember It

On a number line, a number to the left is always less than a number to the right.

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

## Homework

 AssignmentPage(s):
Exercises:

3 CHEMISTRY The values for the approximate densities of various substances are shown in the table. Order the densities from least to greatest.
Write each fraction as a decimal.


| Substance | Density <br> $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$ |
| :--- | :---: |
| aluminum | 2.7 |
| beryllium | 1.87 |
| brick | $1 \frac{4}{5}$ |
| crown glass | $2 \frac{1}{4}$ |
| fused silica | $2 . \overline{2}$ |
| marble | $2 \frac{3}{5}$ |
| nylon | 1.1 |
| pyrex glass | 2.32 |
| rubber neoprene | $1 . \overline{3}$ |

Source: CRC Handbook of Chemistry and Physics

From the least to the greatest, the densities are $1.1,1 . \overline{3}, 1 \frac{4}{5}, 1.87,2 . \overline{2}, 2 \frac{1}{4}, 2.32,2 \frac{3}{5}$, and 2.7. So, the $\square$ the least dense, and $\square$ is the most dense.

## Check Your Progress

The ride times for five amusement park attractions are shown in the table. Order the lengths from least to greatest.


| Coaster | Ride Time <br> $(\mathbf{m i n})$ |
| :--- | :---: |
| Big Dipper | $1 \frac{3}{4}$ |
| Double Loop | 1.5 |
| Mind Eraser | 1.8 |
| Serial Thriller | $2 \frac{1}{12}$ |
| X-Flight | $2 . \overline{3}$ |

## 2-3 Multiplying Positive and Negative Fractions



## EXAMPLE Multiply Negative Fractions

2 Find $-\frac{3}{4} \cdot \frac{7}{12}$. Write in simplest form.
$-\frac{3}{4} \cdot \frac{7}{12}=-\frac{1}{4} \cdot \frac{7}{122} \quad$ Divide -3 and 12 by their GCF, $\square$.


The factors have different signs, so the product is negative.

## EXAMPLE Multiply Mixed Numbers

3 Find $3 \frac{1}{5} \cdot 1 \frac{3}{4}$. Write in simplest form.
$3 \frac{1}{5} \cdot 1 \frac{3}{4}=\square \cdot \square$

$$
3 \frac{1}{5}=\square, 1 \frac{3}{4}=\square
$$

## FOLDABLES

## Organize IT

Under the tab for Lesson 2-3, explain in your own words how to multiply rational numbers.


## Homework ASSIGNMENT

Page(s):
Exercises:

## 2-4 Dividing Positive and Negative Fractions

## MAIN IDEA

Divide positive and negative fractions.

## BUILD YOUR VOGABULARY (pages 33-34)

Two numbers whose product is one are multiplicative inverses.

The numbers 4 and $\frac{1}{4}$ are or reciprocals of each other.

## EXAMPLE Find a Multiplicative Inverse

## Key Concepts

Inverse Property of Multiplication The product of a rational number and its multiplicative inverse is 1.

Dividing Fractions
To divide by a fraction, multiply by its multiplicative inverse.
(1) Write the multiplicative inverse of $-2 \frac{4}{7}$.

$$
-2 \frac{4}{7}=\square \quad \text { Write }-2 \frac{4}{7} \text { as an improper fraction. }
$$

Since $-\frac{18}{7}\left(-\frac{7}{18}\right)=\square$, the multiplicative inverse
of $-2 \frac{4}{7}$ is $\square$

## Check Your Progress

a. Write the multiplicative inverse of $-1 \frac{5}{6}$.

## EXAMPLE Divide Negative Fractions

2 Find $\frac{2}{7} \div-\frac{8}{9}$. Write in simplest form.
$\frac{2}{7} \div-\frac{8}{9}=\frac{2}{7} \cdot \square \begin{aligned} & \text { Multiply by the multiplic } \\ & \text { inverse of }-\frac{8}{9} \text { which is }\end{aligned}$
Divide 2 and 8 by their GCF, $\square$

The fractions have different signs, so the quotient is negative.

## EXAMPLE Divide Mixed Numbers

3 Find $3 \frac{1}{4} \div\left(-2 \frac{1}{8}\right)$. Write in simplest form.

$$
\begin{array}{r}
3 \frac{1}{4} \div\left(-2 \frac{1}{8}\right)=\square \div\left(\square \frac{1}{4}=\square\right. \\
-2 \frac{1}{8}=\square
\end{array}
$$

$$
=\square \cdot\left(-\frac{8}{17}\right) \quad \text { The multiplicative }
$$

$$
=\frac{13}{\frac{1}{4}} \cdot\left(-\frac{2}{8} 17\right) \quad \text { Divide } 4 \text { and } 8 \text { by their }
$$

$$
\mathrm{GCF}, \square .
$$

$$
=-\frac{26}{17} \text { or } \square \quad \text { Simplify. }
$$

## Write It

Explain how you would divide a fraction by a whole number.
$\qquad$

Check Your Progress
Find each quotient. Write in simplest form.
a. $-\frac{3}{5} \div \frac{9}{10}$
b. $2 \frac{1}{3} \div\left(-1 \frac{1}{9}\right)$


## EXAMPLE

4. PAINTING It took the five members of the Johnson family $10 \frac{1}{2}$ days to paint the 7 rooms in their house. At this rate, how long will it take the four members of the Reyes family to complete a similar task in their house?

If $\square$ persons of the Johnson family each worked days, the project required $5 \times 10 \frac{1}{2}$ person-days of work. Divide this number by $\square$ persons to find the number of days it will take the Reyes family to complete their task.
$5 \square 10 \frac{1}{2}$ person-days $\div 4$

$$
=\frac{5 \times 10 \frac{1}{2} \text { person-days }}{1} \times \frac{1}{4 \text { persons }} \quad \begin{aligned}
& \text { Multiply by the } \\
& \text { multiplicative inverse } \\
& \\
& \text { of 4, which is } \square .
\end{aligned}
$$ Simplify.

## Homework Assignment

## 2-5 Adding and Subtracting Like Fractions

## MAIN IDEA

- Add and subtract fractions with like denominators.


## BUILD YOUR VOCABULARY (pages 33-34)

Fractions with like $\square$ are called like fractions.

## EXAMPLE Add Like Fractions

(1) Find $\frac{3}{16}+\left(-\frac{15}{16}\right)$. Write in simplest form.

$$
\begin{aligned}
\frac{3}{16}+\left(-\frac{15}{16}\right) & =\frac{\square+(\square)}{16} \longleftarrow \begin{array}{l}
\text { Add the numerators. } \\
\text { The denominators } \\
\text { are the same. } \\
\text { Simplify. }
\end{array} \\
& =\frac{-12}{16} \text { or } \square
\end{aligned}
$$

## EXAMPLE Subtract Like Fractions

## KEY Concepts

Adding Like Fractions To add fractions with like denominators, add the numerators and write the sum over the denominator.

Subtracting Like Fractions To subtract fractions with like denominators, subtract the numerators and write the difference over the denominator.

2 Find $-\frac{7}{10}-\frac{9}{10}$. Write in simplest form.


Check Your Progress
Find each difference. Write in simplest form.
a. $\frac{2}{9}+\left(-\frac{8}{9}\right)$
b. $-\frac{7}{8}-\frac{5}{8}$

## ORGANIZE IT

Under the tab for Lesson 2-5, record models illustrating the addition and subtraction of like fractions.


## Homework

Assignment
Page(s):
Exercises:
she grow between the ages of 4 and 10 ?

## Check Your Progress

a. Find $3 \frac{3}{10}+4 \frac{1}{10}$. Write in simplest form.

$\square$

## 2-6 Adding and Subtracting Unlike Fractions

## Main Idea

- Add and subtract fractions with unlike denominators.


## Key Concept

Adding and Subtracting Unlike Fractions To find the sum or difference of two fractions with unlike denominators, rename the fractions with a common denominator. Then add or subtract and simplify, if necessary.

## BUILD YOUR VOCABULARY (pages 33-34)

Fractions with $\square$ denominators are called unlike fractions.

## EXAMPLES Add and Subtract Unlike Fractions

## Add or subtract. Write in simplest form.

(1) $\frac{5}{8}+\left(-\frac{3}{4}\right)$
$\frac{5}{8}+\left(-\frac{3}{4}\right)=\frac{5}{8}+\left(-\frac{3}{4}\right) \cdot \square \quad$ The LCD is $2 \cdot 2 \cdot 2$ or 8.
 using the LCD.

Add the numerators.

Simplify.
2) $-\frac{7}{96}-\left(-\frac{15}{128}\right)$
$-\frac{7}{96}-\left(-\frac{15}{128}\right)$

$=\frac{\square}{384}+\frac{\square}{384}$
$=\frac{-28+45}{\square}$
$=\frac{\square}{384}$

Rename using the LCD.

Add the numerators.

Simplify.

FOLDABLES

## ORGANIZE IT

Under the tab for Lesson 2-6, record the differences between adding and subtracting like and unlike fractions.


## Homework

 AssignmentPage(s):
Exercises:

## 2-7 Solving Equations with Rational Numbers

## EXAMPLES Solve by Using Addition or Subtraction

## Main Idea

- Solve equations involving rational numbers.


## FOLDABLES

ORGANIZE IT
Under the tab for Lesson 2-7, summarize in your own words what you have learned about solving equations with rational numbers.

(1) Solve $g+2.84=3.62$.

2) Solve $-\frac{4}{5}=s-\frac{2}{3}$.

$$
\begin{array}{lll}
-\frac{4}{5} & =s-\frac{2}{3} & \text { Write the equation. } \\
-\frac{4}{5}+\square & =s-\frac{2}{3}+\square & \text { Add } \square \text { to each side. } \\
-\frac{4}{5}+\square & =s & \text { Simplify. }
\end{array}
$$

$$
+\frac{10}{15}=s
$$

$$
\square=s
$$

## EXAMPLES Solve by Using Multiplication or Division

(3) Solve $\frac{7}{11} c=-21$.

$$
\frac{7}{11} c=-21 \quad \text { Write the equation. }
$$

$\square\left(\frac{7}{11} c\right)=\square(-21) \quad$ Multiply each side by $\square$.

$$
c=\square \quad \text { Simplify. }
$$

## Review IT

What is a mathematical sentence containing equals sign called? (Lesson 1-7)
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Homework

 Assignment
## 2-8 Problem-Solving Investigation: Look for a Pattern

## EXAMPLE

## Main Idea

- Look for a pattern to solve problems.

1 INTEREST The table below shows the amount of interest $\$ 3,000$ would earn after 7 years at various interest rates. How much interest would $\$ 3,000$ earn at 6 percent interest?

| Interest Rate <br> (\%) | Interest Earned <br> (\$) |
| :---: | :---: |
| 1 | $\$ 210$ |
| 2 | $\$ 420$ |
| 3 | $\$ 630$ |
| 4 | $\$ 840$ |
| 5 | $\$ 1,050$ |

UNDERSTAND You know the amount of interest earned at interest rates of $1 \%, 2 \%, 3 \%, 4 \%, 5 \%$, and $6 \%$. You want to know the amount of interest earned at 6\%.

PLAN Look for a pattern in the amounts of interest earned. Then continue the pattern to find the amount of interest earned at a rate of $\square$
For each increase in interest rate, the amount of interest earned increases by $\$ 210$. So for an interest rate of $6 \%$, the amount of interest earned would be $\$ 1,050+\$ 210=\square$.

CHECK Check your pattern to make sure the answer is correct.

Check Your Progress
INTEREST The table below shows the amount of interest $\$ 5,000$ would earn after 3 years at various interest rates. How much interest would $\$ 5,000$ earn at 7 percent interest?


| Interest Rate <br> (\%) | Interest Earned <br> (\$) |
| :---: | :---: |
| 1 | $\$ 150$ |
| 2 | $\$ 300$ |
| 3 | $\$ 450$ |
| 4 | $\$ 600$ |
| 5 | $\$ 750$ |

## 2-9 Powers and Exponents

## Main IdeA

- Use powers and exponents in expressions.


## BUILD YOUR VOGABULARY (pages 33-34)

The base is the number that is $\square$ The exponent tells how many times the $\square$ is used as a $\square$
The number that is expressed using an $\square$ called a power.

## Key Concept

## Zero and Negative

 Exponents Any nonzero number to the zero power is 1 . Any nonzero number to the negative $n$ power is 1 divided by the number to the $n$th power.
## EXAMPLES Write Expressions Using Powers

(1) Write $\frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot 7 \cdot 7$ using exponents.


2 Write $\boldsymbol{p} \cdot \boldsymbol{p} \cdot \boldsymbol{p} \cdot \boldsymbol{q} \cdot \boldsymbol{p} \cdot \boldsymbol{q} \cdot \boldsymbol{q}$ using exponents. $p \cdot p \cdot p \cdot q \cdot p \cdot q \cdot q$

$$
=p \cdot p \cdot p \cdot p \cdot q \cdot q \cdot q
$$



$$
=(p \cdot p \cdot p \cdot p) \cdot(q \cdot q \cdot q)
$$



Definition of exponents

Check Your Progress
Write each expression using exponents.
a. $2 \cdot 2 \cdot 2 \cdot 2 \cdot 5 \cdot 5 \cdot 5$

b. $x \cdot y \cdot x \cdot x \cdot y \cdot y \cdot y$


## FOLDABLES

## Organize IT

On the tab for Lesson 2-9, compare how to evaluate an expression with positive exponents and one with negative exponents.


## Homework

 AssignmentPage(s):
Exercises:

## EXAMPLES Evaluate Powers

3 Evaluate $\left(\frac{3}{4}\right)^{5}$.

$$
\begin{array}{rlr}
\left(\frac{3}{4}\right)^{5} & =\square & \text { Definition of exponents } \\
& =\frac{243}{1,024} & \text { Simplify. }
\end{array}
$$

(4) Evaluate $3^{-7}$.
$3^{-7}=\frac{1}{\square}$
$=\frac{1}{\square}$
Simplify.

Definition of negative exponents

5 ALGEBRA Evaluate $x^{3} \cdot y^{5}$ if $x=4$ and $y=2$.


Check Your Progress
a. $\left(\frac{3}{5}\right)^{3}$


Evaluate each expression.
b. $2^{-5}$

c. Evaluate $x^{2} \cdot y^{4}$ if $x=3$ and $y=4$.

## 2-10 Scientific Notation

## MAIN IDEA

- Express numbers in scientific notation.


## BUILD YOUR VOGABULARY (pages 33-34)

A number is expressed in scientific notation when it is written as a $\square$ of a factor and a $\square$ of 10 .

## EXAMPLES Express Numbers in Standard Form

$9.62 \times 10^{5}$ in standard form.
$9.62 \times 10^{5}=962000$

> The decimal place moves

$=\square$
2 Write $2.85 \times 10^{-6}$ in standard form.
$2.85 \times 10^{-6}=0.00000285$


The decimal point moves 6 places to the left.

## Check Your Progress <br> Write each number in standard form.

a. $5.32 \times 10^{4}$

b. $3.81 \times 10^{-4}$


## FOLDABLES

## ORGANIZE IT

Under the tab for Lesson 2-10, collect and record examples of numbers you encounter in your daily life and write them in scientific notation.


## EXAMPLES Write Numbers in Scientific Notation

3 Write $-931,500,000$ in scientific notation.
$-931500000=-9.315 \times 100,000,000$ The decimal point moves 8 places.
$\square$ The exponent is positive.
4) Write 0.00443 in scientific notation.

## EXAMPLE Compare Numbers in Scientific Notation

(5) PLANETS The following table lists the average radius at the equator for planets in our solar system. Order the planets according to radius from largest to smallest.

First order the numbers according to their exponents. Then order the numbers with the same exponents by comparing the factors.

| Planet | Radius (km) |
| :--- | ---: |
| Earth | $6.38 \times 10^{3}$ |
| Jupiter | $7.14 \times 10^{4}$ |
| Mars | $3.40 \times 10^{3}$ |
| Mercury | $2.44 \times 10^{3}$ |
| Neptune | $2.43 \times 10^{4}$ |
| Saturn | $6.0 \times 10^{4}$ |
| Uranus | $2.54 \times 10^{4}$ |
| Venus | $6.05 \times 10^{3}$ |

Source: CRC Handbook of Chemistry and Physics

The decimal point moves
places.
The exponent is $\square$

## STEP 2



The order from largest to smallest is $\square$ , Saturn,

Uranus, Neptune, Earth, Venus, Mars, and $\square$

## Check Your Progress

Write each number in scientific notation.
a. $35,600,000$
b. 0.000653

c. The table lists the mass for each of the planets in our solar system. Order the planets according to mass from largest to smallest.

| Planet | Mass <br> (in tons) |
| :--- | :---: |
| Mercury | $3.64 \times 10^{20}$ |
| Venus | $5.37 \times 10^{21}$ |
| Earth | $6.58 \times 10^{21}$ |
| Mars | $7.08 \times 10^{20}$ |
| Jupiter | $2.09 \times 10^{24}$ |
| Saturn | $6.25 \times 10^{23}$ |
| Uranus | $9.57 \times 10^{23}$ |
| Neptune | $1.13 \times 10^{23}$ |

Source: NASA

## BRINGING IT ALL TOGETHER

## STUDY GUIDE

## FOLDABles

Use your Chapter 2 Foldable to help you study for your chapter test.

## Vocabulary <br> PUZZLEMAKER

To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 2, go to:
glencoe.com

## BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (pages 33-34) to help you solve the puzzle.

## 2-1

## Rational Numbers

Write each fraction or mixed number as a decimal.

1. $-\frac{3}{4}$
2. $3 \frac{1}{6}$
3. $-7 \frac{2}{5}$


Write each decimal as a fraction or mixed number in simplest form.
4. 9.5

5. 0.6

6. 8.125


## 2-2

## Comparing and Ordering Rational Numbers

Use $<,>$, or $=$ to make each sentence true.
7. $-\frac{4}{5} \square-\frac{2}{3}$
8. 4.4 $\square$ $4 \frac{2}{5}$
9. 2.93 $\square$ 2.93

Graph each pair of rational numbers on a number line.
10. $\frac{1}{5}, \frac{1}{3}$
11. $-\frac{4}{5},-\frac{9}{10}$
$\square$


## 2-3

## Multiplying Positive and Negative Fractions

Complete each sentence.
12. The greatest common factor of two numbers is the
$\square$
13. Numerators and denominators are $\square$ by their greatest common factors to $\square$ the fraction.

## Multiply. Write in simplest form.

14. $-\frac{7}{12} \cdot \frac{3}{4}$
15. $4 \frac{2}{3} \cdot 5 \frac{1}{8}$


## 2-4 <br> Dividing Positive and Negative Fractions

Write the multiplicative inverse for each mixed number.
16. $2 \frac{1}{5}$

17. $-1 \frac{3}{8}$ $\square$ 18. $3 \frac{4}{7} \square$

Complete the sentence.
19. To divide by a $\square$ , multiply by its
 inverse.
20. To $\square$ a number by $2 \frac{1}{5}$, multiply by $\frac{5}{11}$.

## 2-5

Adding and Subtracting Like Fractions
Determine whether each pair of fractions are like fractions.
21. $\frac{3}{5}, \frac{3}{7}$ $\square$ 22. $\frac{5}{8}, \frac{7}{8}$ $\square$ 23. $\frac{4}{7},-\frac{5}{7}$ $\square$ 24. $\frac{5}{9},-\frac{2}{3}$ $\square$

Add or subtract. Write in simplest form.
25. $\frac{5}{9}-\frac{2}{9}$
26. $\frac{5}{8}+\frac{7}{8}$ $\square$ 27. $\frac{4}{7}-\frac{5}{7}$ $\square$

2-6

## Adding and Subtracting Unlike Fractions

Add or subtract. Write in simplest form.
28. $\frac{5}{8}-\frac{7}{12}$

29. $\frac{3}{5}+\frac{3}{7}$ $\square$ 30. $-\frac{2}{3}+\frac{5}{9}$ $\square$

2-7
Solving Equations with Rational Numbers
Match the method of solving with the appropriate equation.
31. $25 a=3.75$ $\square$ a. Subtract $\frac{3}{5}$ from each side.
32. $\frac{3}{5} m=\frac{7}{10}$

b. Multiply each side by $\frac{5}{3}$.
c. Subtract 3.75 from each side.
33. $r-1.25=4.5$ $\square$ d. Add 1.25 to each side.
34. $\frac{3}{5}+f=\frac{1}{2}$ $\square$ e. Divide each side by 25 .

## 2-8

## Problem Solving Investigation: Look for a Pattern

35. LIFE SCIENCE The table shows about how many times a firefly flashes at different temperatures. About how many times will a firefly flash when the temperature is $36^{\circ} \mathrm{C}$ ?

| Outside <br> Temperature <br> (${ }^{\circ}$ C) | Flashes per <br> Minute |
| :---: | :---: |
| 16 | 8 |
| 20 | 9 |
| 24 | 11 |
| 28 | 14 |

## 2-9

Powers and Exponents
Evaluate each expression.
36. $5^{4}$ $\square$
37. $6^{3}$ $\square$
38. $2^{8}$
$\square$

## 2-10

## Scientific Notation

Write each number in scientific notation.
39. $8,790,000$ $\square$ 40. 0.0000125 $\square$

## ARE YOU READY FOR THE CHAPTER TEST?

## Checklist

## Math Online

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 2.

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want take the Chapter 2 Practice Test on page 139 of your textbook as a final check.

I used my Foldable or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 2 Study Guide and Review on pages 134-138 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 2 Practice Test on page 139 of your text book.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 2 Foldable.
- Then complete the Chapter 2 Study Guide and Review on pages 134-138 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 2 Practice Test on page 139 of your textbook.



## Real Numbers and the Pythagorean Theorem

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.


NOTE-TAKING TIP: When you take notes, clarify terms, record concepts, and write examples for each lesson. You may also want to list ways in which the new concepts can be used in your daily life.

## BUILD YOUR VOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 3.
As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

| Vocabulary Term | Found on Page | Definition | Description or Example |
| :---: | :---: | :---: | :---: |
| abscissa <br> [ab-SIH-suh] |  |  |  |
| converse |  |  |  |
| coordinate plane |  |  |  |
| hypotenuse |  |  |  |
| irrational number |  |  |  |
| legs |  |  |  |
| ordered pair |  |  |  |
| ordinate [OR-din-it] |  |  |  |
| origin |  |  |  |
| perfect square |  |  |  |


| Vocabulary Term | Found <br> on Page | Definition | Description or <br> Example |
| :---: | :---: | :---: | :---: |
| Pythagorean Theorem |  |  |  |
|  |  |  |  |
|  |  |  |  |

## 3-1 Square Roots

## MAIN IDEA

- Find square roots of perfect squares.


## BUILD YOUR VOGABULARY (pages 62-63)

Numbers such as 1, 4, 9, and 25 are called perfect squares because they are squares of $\square$ numbers. The $\square$ of squaring a number is finding a square root.

The symbol $\sqrt{ }$ is called a radical sign and is used to indicate the positive $\square$

## EXAMPLES Find Square Roots

## Key Concept

Square Root A square root of a number is one of its two equal factors.

## Find each square root.

(1) $\sqrt{81}$ $\sqrt{81}$ indicates the $\square$ square root of 81. Since $\square=81, \sqrt{81}=\square$.
2. $-\sqrt{\frac{16}{81}}$
$-\sqrt{\frac{16}{81}}$ indicates the $\square$ square root of $\frac{16}{81}$.
Since $\square=\frac{16}{81},-\sqrt{\frac{16}{81}}=\square$.
(3) $\pm \sqrt{1.44}$
$\pm \sqrt{1.44}$ indicates both square roots of 1.44 .
Since $\square=1.44$ and $\square=1.44, \pm \sqrt{1.44}= \pm 1.2$, or $\square$.

## FOLDABLES

## Organize IT

On Lesson 3-1 of your Foldable, explain how to find the square root of a number and give an example.


Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

## Homework Assignment

Page(s):
Exercises:

## Check Your Progress

## Find each square root.

a. $\sqrt{64}$
$\square$
b. $-\sqrt{\frac{25}{144}}$
$\square$
c. $\pm \sqrt{2.25}$
$\square$

## EXAMPLE Use an Equation to Solve a Problem

(4) MUSIC The art work of the square picture in a compact disc case is approximately $14,161 \mathrm{~mm}^{2}$ in area. Find the length of each side of the square.
The area is equal to the square of the length of a side.
Let $A=$ the area and let $s=$ the length of the side $A=s^{2}$
$14,161=s^{2} \quad$ Write the equation.
$\square$

$$
=\sqrt{s^{2}}
$$

Take the square root of each side.

The length of a side of a compact disc case is about millimeters since distance cannot be negative.

Check Your Progress
A piece of art is a square picture that is approximately 11,025 square inches in area. Find the length of each side of the square picture.

## 3-2 Estimating Square Roots

## EXAMPLES Estimate Square Roots

MAIN IDEA

- Estimate square roots.
(1) Estimate $\sqrt{54}$ to the nearest whole number.

The first perfect square less than 54 is $\square$

The first perfect square greater than 54 is $\square$

$\sqrt{7^{2}}<\sqrt{54}<\sqrt{8^{2}}$
$7<\sqrt{54}<8$

Write an inequality.


Take the square root of each number.

Simplify.

So, $\sqrt{54}$ is between $\square$ and $\square$. Since 54 is closer to 49 than 64 , the best whole number estimate for $\sqrt{54}$ is $\square$
2 Estimate $\sqrt{41.3}$ to the nearest whole number.

- The first perfect square less than 41.3 is 36 .
- The first perfect square greater than 41.3 is 49 .

Plot each square root on a number line. Then plot $\sqrt{41.3}$.


$$
36<41.3<49 \quad \text { Write an inequality. }
$$


$\sqrt{6^{2}}<\sqrt{41.3}<\sqrt{7^{2}} \quad$ Find the square root of each number.
$\square<\sqrt{41.3}<\square \quad$ Simplify.
So, $\sqrt{41.3}$ is between $\square$ and $\square$. Since 41.3 is closer to 36
than 49 , the best whole number estimate for $\sqrt{41.3}$ is $\square$

## EXAMPLE Estimate Square Roots

## FOLDABLES

## Organize IT

On Lesson 3-2 of your Foldable, explain how to estimate square roots.


Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

## Homework ASSIGNMENT

Page(s):
Exercises:

3 FINANCE If you were to invest $\$ 100$ in a bank account for two years, your investment would earn interest daily and be worth more when you withdrew it. If you had $\$ 120$ after two years, the interest rate, written as a decimal, would be found using the expression $\frac{(\sqrt{120}-10)}{10}$.
Estimate the value.
First estimate the value of $\sqrt{120}$.

$$
100<120<121
$$


perfect squares.

$$
10^{2}<120<11^{2}
$$

$$
100=\square \text { and } 121=
$$

$\square$
$\square$ Take the square root of each number.

Since 120 is closer to than 100 , the best whole number estimate for $\sqrt{120}$ is $\square$ . Use this to evaluate the expression.


The approximate interest rate is 0.10 or $\square$

## Check Your Progress

a. Estimate $\sqrt{65}$ to the nearest whole number.
$\square$
b. If you were to invest $\$ 100$ in a bank account for two years, your money would earn interest daily and be worth more when you withdrew it. If you had $\$ 250$ after two years, the interest rate, written as a decimal, would be found using the expression $\frac{(\sqrt{150}-10)}{10}$. Estimate this value.

## 3-3 Problem-Solving Investigation: Use a Venn Diagram

## EXAMPLE

## MAIN IDEA

- Use a Venn diagram to solve problems.


## Homework Assignment



LANGUAGES Of the 40 foreign exchange students attending a middle school, 20 speak French, 23 speak Spanish, and 22 speak Italian. Nine students speak French and Spanish, but not Italian. Six students speak French and Italian, but not Spanish. Ten students speak Spanish and Italian, but not French. Only 4 students speak all three languages. Use a Venn diagram to find how many exchange students do not speak any of these languages.
UNDERSTAND You know how many students speak each of the different languages. You want to organize the information.
PLAN

SOLVE

CHECK
Make a Venn Diagram to organize the information.
Since 4 students speak all three languages, place a three in the section that represents all three languages.
 Fill in the other sections as appropriate. Add the numbers in each region of the diagram:

$$
1+9+6+4+10+2=\square
$$

Since there are 40 exchange students

$$
\text { altogether, } 40-32=\square \text { of them do not }
$$ speak French, Spanish, or Italian.

Check each circle to see if the appropriate number of students is represented.

Check Your Progress SPORTS Of the 30 students in Mr. Hall's gym class, 14 play basketball, 9 play soccer, and 11 play volleyball. Three students play basketball and soccer, but not volleyball. One student plays soccer and volleyball, but not basketball. Six students play basketball and volleyball, but not soccer. Only 2 students play all three sports. Use a Venn diagram to find how many students in the class do not play any of these sports.

## 3-4 The Real Number System

| MAIN IDEA |  |  |
| :--- | :--- | :--- |
| BUILD YOUR YOCABULARY (pages 62-63) <br> - Identify and classify <br> numbers in the real <br> number system. | Numbers that are not <br> irrational numbers. | The set of rational numbers and the set of $\square$ <br> numbers together make up the set of real numbers. |

## EXAMPLES Classify Numbers

## KEY Concept

Irrational Number An irrational number is a number that cannot be expressed as $\frac{a}{b}$, where $a$ and $b$ are integers and $b \neq 0$.

Name all sets of numbers to which each real number belongs.
(1) 0.090909 . .

The decimal ends in a $\square$ pattern.

It is a $\square$ number because it is equivalent to

2) $\sqrt{25}$

Since $\sqrt{25}=\square$, it is a $\square$ number, an
$\square$ , and a rational number.
(3) $-\sqrt{12}$

Since the decimal does not repeat or $\square$ , it is
$\square$ number.

Check Your Progress
Name all sets of numbers to which each real number belongs.
a. 0.1010101010...
b. $\sqrt{64}$

c. $\sqrt{13}$

## EXAMPLES Graph Real Numbers

## FOLDABLES

## ORGANIZE IT

On Lesson 3-4 of your Foldable, summarize the properties of the real number system.


4 Estimate $\sqrt{8}$ and $-\sqrt{2}$ to the nearest tenth. Then graph $\sqrt{8}$ and $-\sqrt{2}$ on a number line.
Use a calculator to determine the approximate decimal values.

$$
\begin{aligned}
\sqrt{8} & \approx \square \\
-\sqrt{2} & \approx \square
\end{aligned}
$$

Locate these points on a number line.

$\sqrt{8} \approx \square$ and $-\sqrt{2} \approx \square$.

## Check Your Progress Estimate $\sqrt{3}$ and $-\sqrt{6}$ to the nearest

 tenth. Then graph $\sqrt{3}$ and $-\sqrt{6}$ on a number line.$\square$

## EXAMPLES Compare Real Numbers

Replace each $\bigcirc$ with $<,>$, or $=$ to make a true sentence.
(5) $3 \frac{7}{8} \bigcirc \sqrt{15}$

Write each number as a decimal.


$$
3 \frac{7}{8}=\square \sqrt{15}
$$

## WRITE IT

Explain why you can determine that $-\sqrt{2}$ is less than 1.2 without computation.
$\qquad$

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

## Homework ASSIGNMENT

Page(s):
Exercises:

## 3-5 The Pythagorean Theorem

## Main IDEA

- Use the Pythagorean Theorem.


## Key Concept

Pythagorean Theorem In a right triangle, the square of the length of the hypotenuse is equal to the sum of the squares of the lengths of the legs.

## BUILD YOUR VOGABULARY (pages 62-63)

A right triangle is a triangle with one right angle of $90^{\circ}$.
The sides that form the right angle are called legs.
The hypotenuse is the side opposite the right angle.
The Pythagorean Theorem describes the relationship between the lengths of the legs and the hypotenuse for any right triangle.

## EXAMPLES Find the Length of a Side

Write an equation you could use to find the length of the missing side of the right triangle. Then find the missing length. Round to the nearest tenth if necessary.

$c^{2}=a^{2}+b^{2}$
Pythagorean Theorem
$c^{2}=12^{2}+\square$

$c^{2}=\square+\square$ Evaluate $12^{2}$ and $16^{2}$.
$c^{2}=\square$
Add 144 and 256.
$c= \pm \sqrt{400}$
Definition of square root
$\mathrm{c}=\square$ or $\square \quad$ Simplify.
The equation has two solutions, $\square$ and


However, the length of a side must be positive. So, the hypotenuse is $\square$ inches long.

## FOLDABLES

ORGANIZE IT
On Lesson 3-5 of your Foldable, explain how to use the Pythagorean Theorem to find the missing length of a side of a right triangle.


Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

## Check Your Progress

Write an equation you could use to find the length of the missing side of the right triangle. Then find the missing length. Round to the nearest tenth if necessary.


## EXAMPLE Find the Length of a Side

2 The hypotenuse of a right triangle is 33 centimeters long and one of its legs is 28 centimeters. What is $a$, the length of the other leg?

$$
\begin{aligned}
& c^{2}=a^{2}+b^{2} \quad \text { Pythagorean Theorem } \\
& \square^{2}=a^{2}+\square^{2} \quad \text { Replace the variables. } \\
& 1,089=a^{2}+784 \quad \text { Evaluate each power. } \\
& \square-\square=a^{2}+\square \quad \text { Subtract. } \\
& \square=a^{2} \quad \text { Simplify. } \\
& \pm \sqrt{305}=a \quad \text { Definition of square root } \\
& \square=a \quad \text { Use a calculator. }
\end{aligned}
$$

The length of the other leg is about $\square$ centimeters.

Check Your Progress The hypotenuse of a right triangle is 26 centimeters long and one of its legs is 17 centimeters. Find the length of the other leg.

## Key Concept

## Converse of the

 Pythagorean Theorem If the sides of a triangle have lengths $a, b$, and $c$ units such that $c^{2}=a^{2}+b^{2}$, then the triangle is a right triangle.Homework Assignment

## BUILD YOUR VOGABULARY (pages 62-63)

If you $\square$ the parts of the Pythagorean Theorem, you have formed its converse.

## EXAMPLE Identify a Right Triangle

3 The measures of three sides of a triangle are 24 inches, 7 inches, and 25 inches. Determine whether the triangle is a right triangle.

$$
\begin{aligned}
c^{2} & =a^{2}+b^{2} & & \text { Pythagorean Theorem } \\
25^{2} & \stackrel{?}{=} 7^{2}+24^{2} & & c=25, a=7, b=24 \\
625 & \stackrel{?}{=}+576 & & \text { Evaluate } 25^{2}, 7^{2}, \text { and } 24^{2} . \\
& =625 & & \text { Simplify. The triangle is a right triangle. }
\end{aligned}
$$

## Check Your Progress

The measures of three sides of a triangle are 13 inches, 5 inches, and 12 inches. Determine whether the triangle is a right triangle.

## 3-6 Using the Pythagorean Theorem

## EXAMPLE Use the Pythagorean Theorem

## MAIN IDEA

- Solve problems using the Pythagorean Theorem.
(1) RAMPS A ramp to a newly constructed building must be built according to the guidelines stated in the Americans with Disabilities Act. If the ramp is 24.1 feet long and the top of
 the ramp is 2 feet off the ground, how far is the bottom of the ramp from the base of the building?

Notice the problem involves a right triangle. Use the Pythagorean Theorem.


## Foldables

## Organize It

On Lesson 3-6 of your Foldable, explain the Pythagorean Theorem in your own words and give an example of how it might be used in a real-life situation.


## Check Your Progress

If a truck ramp is 32 feet long and the top of the ramp is 10 feet off the ground, how far is the end of the ramp from the truck?

## EXAMPLE

2 TEST EXAMPLE The cross-section of a camping tent is shown. Find the width of the base of the tent.
A 6 ft
C 10 ft
B 8 ft
D 12 ft


## Read the Item

From the diagram, you know that the tent forms two congruent right triangles.

## Solve the Item

Use the Pythagorean Theorem.
$c^{2}=a^{2}+b^{2}$
$\square=a^{2}+\square$
Pythagorean Theorem

$$
c=\square, b=\square
$$

$$
\square=a^{2}+\square
$$

Evaluate $10^{2}$ and $8^{2}$.
$100-64=a^{2}+64-64$
Subtract 64 from each side.

$=a^{2}$
Simplify.


Definition of square root $\square=a \quad$ Simplify
The width of the base of the tent is $a+a$ or $\square+\square=$ $\square$ feet. Therefore, choice $\square$ is correct.

## Check Your Progress

MULTIPLE CHOICE The diagram shows the crosssection of a roof. How long is each rafter, $r$ ?


Homework Assignment

Page(s):
Exercises:
F 15 ft
G 18 ft

H 20 ft
J 22 ft


## 3-7 Geometry: Distance on the Coordinate Plane

## Main Ideas

- Graph rational numbers on the coordinate plane.
- Find the distance between points on the coordinate plane.


## FOLDABLES

## Organize It

On Lesson 3-7 of your Foldable, explain in writing how to use ordered pairs to find the distance between two points.


## BUILD YOUR VOGABULARY (pages 62-63)

A coordinate plane is formed by two number lines that form right angles and intersect at their $\square$ points.

The point of intersection of the two number lines is the origin.

The $\square$ number line is the $\boldsymbol{y}$-axis.
The $\square$ number line is the $\boldsymbol{x}$-axis.
The number lines separate the coordinate plane into
$\square$ sections called quadrants.

Any point on the coordinate plane can be graphed by using an ordered pair of numbers.

The $\square$ number in the ordered pair is called the $x$-coordinate.

The $\square$ number of an ordered pair is the $y$-coordinate.


## EXAMPLE Name an Ordered Pair

(1) Name the ordered pair for point $A$.

- Start at the origin.
- Move right to find the
of point $A$, which is
$\square$
$\square$

- Move up to find the $\square$ ,which is $\square$
So, the ordered pair for point $A$ is $\square$


## Check Your Progress

Name the ordered pair for point $A$.


## EXAMPLES Graphing Ordered Pairs

## Graph and label each point on the same coordinate plane.

$J(-3,2.75)$

- Start at $\square$ and move


Then move $\square$
$\square$ units.

- Draw a dot and label it


3. $K\left(4,-1 \frac{1}{4}\right)$

- Start at $\square$ and move $\square$ units to the $\qquad$ Then move

$\square$ units.
- Draw a dot and label it


Check Your Progress
Graph and label each point on the same coordinate plane.
a. $J(-2.5,3.5)$
b. $K\left(2,-2 \frac{1}{2}\right)$


## EXAMPLE Find the Distance on the Coordinate Plane

4 Graph the ordered pairs $(0,-6)$ and $(5,-1)$. Then find the distance between the points.


Let $c=$ distance between the two points, $a=5$, and $b=5$.
$c^{2}=a^{2}+b^{2}$
Pythagorean Theorem
$c^{2}=\square+\square$
Replace a with $\square$ and $b$ with
$c^{2}=\square$


$$
\sqrt{c^{2}}=\square
$$

Definition of
Simplify.
$\square$

The points are about $\square$ apart.

## Remember It

You can use the Pythagorean Theorem to find the distance between two points on a coordinate plane.

## Homework Assignment

Page(s):
Exercises:

Check Your Progress Graph the ordered pairs $(0,-3)$ and $(2,-6)$. Then find the distance between the points.


## STUDY GUIDE

## FOLDABLES

Use your Chapter 3 Foldable to help you study for your chapter test.

## VOCABULARY PUZZLEMAKER

To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 3, go to
glencoe.com

## BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (pages 62-63) to help you solve the puzzle.

## 3-1

## Square Roots

## Complete each sentence.

1. The principle square root is the $\square$ square root of a number.
2. To solve an equation in which one side of the square is a squared term, you can take the $\square$ of each side of the equation.

Find each square root.
3. $\sqrt{900}$ $\square$ 4. $-\sqrt{\frac{36}{49}}$

5. $-\sqrt{625}$ $\square$ 6. $\sqrt{\frac{25}{121}}$


## 3-2

## Estimating Square Roots

Determine between which two consecutive whole numbers each value is located.
7. $\sqrt{23}$ $\square$ 8. $\sqrt{59}$ $\square$
9. $\sqrt{27}$ $\square$ 10. $\sqrt{18}$ $\square$

## 3-3

## Problem-Solving Investigation: Use a Venn Diagram

11. NUMBER THEORY A subset is a part of a set. The symbol $\subset$ means "is a subset of." Consider the following two statements.
integers $\subset$ rational numbers
rational numbers $\subset$ integers
Are both statements true? Draw a Venn diagram to justify your answer.
$\square$

## 3-4

## The Real Number System

Match the property of real numbers with the algebraic example.
12. Commutative
a. $(x+y)+z=x+(y+z)$
13. Associative
b. $p q=q p$
c. $h+0=h$
14. Distributive
d. $c+(-c)=0$
15. Identity
e. $x(y+z)=x y+x z$
16. Multiplicative Inverse $\square$ f. $\frac{a}{b} \cdot \frac{b}{a}=1$

## 3-5

## The Pythagorean Theorem

Use the Pythagorean Theorem to determine whether each of the following measures of the sides of a triangle are the sides of a right triangle.
17. 4, 5, 6 $\square$
19. $10,24,26$ $\square$
18. $9,12,15$
20. 5, 7, 9
$\square$

## 3-6

## Using the Pythagorean Theorem

21. The triple $8-15-17$ is a Pythagorean Triple. Complete the table to find more Pythagorean triples.

|  | $a$ | $b$ | $c$ | Check: $c^{2}=a^{2}+b^{2}$ |
| :---: | :---: | :---: | :---: | :---: |
| original | 8 | 15 | 17 | $289=64+225$ |
| $\times 2$ |  |  |  |  |
| $\times 3$ |  |  |  |  |
| $\times 5$ |  |  |  |  |
| $\times 10$ |  |  |  |  |
|  |  |  |  |  |

Determine whether each of the following is a Pythagorean triple.
22. 13-84-85 $\square$ 23. 11-60-61 $\square$
24. 21-23-29 $\square$ 25. 12-25-37

## 3-7

## Geometry: Distance on the Coordinate Plane

Match each term of the coordinate plane with its description.
26. ordinate $\square$ a. one of four sections of the coordinate plane
27. $y$-axis $\square$ b. $x$-coordinate
28. origin $\square$ c. $y$-coordinate
29. abscissa $\square$ d. vertical number line
30. $x$-axis $\square$ e. horizontal number line
f. point where number lines meet

## ARE YOU READY FOR THE CHAPTER TEST?

Checklist

## Math Online

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 3.

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 3 Practice Test on page 183 of your textbook as a final check.

I used my Foldable or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 3 Study Guide and Review on pages 179-182 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 3 Practice Test on page 183 of your textbook.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 3 Foldable.
- Then complete the Chapter 3 Study Guide and Review on pages 179-182 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 3 Practice Test on page 183 of your textbook.


Student Signature


Parent/Guardian Signature


Teacher Signature

## Proportions and Similarity

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.

## Begin with a plain sheet of 11 " by 17 " paper.

STEP 1 Fold in thirds widthwise.


STEP 1. Open and fold the bottom to form a pocket. Glue edges.


STEP 3 Label each pocket. Place index cards in each pocket.


NOTE-TAKING TIP: When you take notes, define new vocabulary words, describe new ideas, and write examples that help you remember the meanings of the words and ideas.

## BUILD YOUR VOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 4. As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

| Vocabulary Term | Found <br> on Page | Definition | Description or <br> Example |
| :--- | :--- | :--- | :--- |
| congruent |  |  |  |
| constant of proportionality |  |  |  |
| corresponding parts |  |  |  |
| cross products |  |  |  |
| equivalent ratios |  |  |  |
| nonproportional |  |  |  |
| proportion |  |  |  |


| Vocabulary Term | Found <br> on Page | Definition | Description or <br> Example |
| :--- | :--- | :--- | :--- |
| proportional |  |  |  |
| rate |  |  |  |
| rate of change |  |  |  |
| ratio |  |  |  |
| scale |  |  |  |
| scale drawing |  |  |  |
| scale factor |  |  |  |
| scale model |  |  |  |
| unit rate |  |  |  |

## 4-1 Ratios and Rates

## MAIN IDEA

- Express ratios as fractions in simplest form and determine unit rates.


## BUILD YOUR VOGABULARY (pages 85-86)

A ratio is a comparison of two numbers by $\square$ A rate is a special kind of $\square$ It is a comparison of two quantities with different types of units.

When a rate is $\square$ so it has a denominator of
$\square$ , it is called a unit rate.

## EXAMPLE Write Ratios in Simplest Form

(1) Express 12 blue marbles out of 18 marbles in simplest form.

$\frac{12 \text { marbles }}{18 \text { marbles }}=$| $\square \quad$Divide the numerator and denominator <br> by the greatest common factor, $\square$. <br> Divide out common units. |
| :--- |

The ratio of blue marbles to total marbles is $\square$ or


## EXAMPLE Find a Unit Rate

2 READING Yi-Mei reads 141 pages in 3 hours. How many pages does she read per hour?

Write the rate that expresses the comparison of pages to hours. Then find the unit rate.


Yi-Mei reads an average of $\square$ pages per $\square$

## ReVIEW IT

What is the greatest common factor of two or more numbers? How can you find it?
(Prerequisite Skill)
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

OLDABLES

## ORGANIZE IT

Write the definitions of rate and unit rate on an index card. Then on the other side of the card, write examples of how to find and compare unit rates. Include these cards in your Foldable.


## Homework Assignment

Page(s):<br>Exercises:

Check Your Progress
Express each ratio in simplest form.
a. 5 blue marbles out of 20 marbles
$\square$
b. 14 inches to 2 feet
$\square$
c. On a trip from Columbus, Ohio, to Myrtle Beach, South Carolina, Lee drove 864 miles in 14 hours. What was Lee's average speed in miles per hour?
$\square$

## EXAMPLE Compare Unit Rates

3 SHOPPING Alex spends $\$ 12.50$ for 2 pounds of almonds and $\$ 23.85$ for 5 pounds of jellybeans. Which item costs less per pound? By how much?
For each item, write a rate that compares the cost to the amount. Then find the unit rates.
Almonds: $\frac{\$ 12.50}{2 \text { pounds }}=\frac{\square}{1 \text { pound }}$
Jellybeans: $\frac{\$ 23.85}{5 \text { pounds }}=\frac{}{1 \text { pound }}$
The almonds cost $\square$ per pound and the jellybeans
$\square$ per pound. So, the jellybeans cost
$\square$ per pound less than the almonds.

Check Your Progress
Cameron spends $\$ 22.50$ for 2 pounds of macadamia nuts and $\$ 31.05$ for 3 pounds of cashews. Which item costs less per pound? By how much?
$\square$
$\square$

## 4-2 Proportional and Nonproportional Relationships

## MAIN IDEA

- Identify proportional and nonproportional relationships.


## EXAMPLES Identify Proportional Relationships

## Key Concepts

Proportional A statement of equality of two ratios with a constant ratio.

Nonproportional A relationship in which two quantities do not have a common ratio.

If two quantities are proportional, then they have a
$\square$ ratio.

For ratios in which this ratio is $\square$ quantities are said to be nonproportional.

## 1) HOUSE CLEANING A house-cleaning service charges

 $\mathbf{\$ 4 5}$ for the first hour and $\mathbf{\$ 3 0}$ per hour for each additional hour. The service works for 4 hours. Is the fee proportional to the number of hours worked? Make a table of values to explain your reasoning.Find the cost for $1,2,3$, and 4 hours and make a table to display numbers and cost.

## BUILD YOUR VOCABULARY (pages 85-86)

 the two| Hours Worked | 1 | 2 | 3 | 4 |
| :--- | :---: | :---: | :---: | :---: |
| Cost (\$) | $\square$ | $\square$ | $\square$ | $\square$ |

For each number of hours, write the relationship of the cost and number of hours as a ratio in simplest form.
$\frac{\text { cost }}{\text { hours worked }} \rightarrow \frac{45}{1}$ or $\square \frac{75}{2}$ or $\square \frac{105}{3}$ or $\square \frac{135}{4}$ or $\square$

Since the ratios of the two quantities are $\square$ the cost is $\square$ to the number of hours
worked. The relationship is $\square$

## Homework Assignment



2 BAKING A recipe for jelly frosting calls for $\frac{1}{3}$ cup of jelly and 1 egg white. Is the number of egg whites used proportional to the cups of jelly used? Make a table of values to explain your reasoning.
Find the amount of jelly and egg whites needed for different numbers of servings and make a table to show these measures.

| Cups of Jelly | $\square$ | $\square$ | $\square$ | $\square$ |
| :--- | :---: | :---: | :---: | :---: |
| Egg whites | 1 | 2 | 3 | 4 |

For each number of cups of jelly, write the relationship of the

ratio in simplest form.


Since the ratios between the two quantities are all equal
to $\square$, the amount of jelly used is

number of egg whites used.

## Check Your Progress

a. PLUMBING A plumbing company charges $\$ 50$ for the first hour and $\$ 40$ for each additional hour. Suppose a service call is estimated to last 4 hours. Is the fee proportional to the number of hours worked?
$\square$
b. COOKING Among other ingredients, a chocolate chip cookie recipe calls for 2.5 cups of flour for every 1 cup of sugar and every 2 eggs. Is the amount of flour used proportional to the number of eggs used?


## 4-3 Rate of Change

## Main Idea

Find rates of change.

BUILD YOUR VOCABULARY (pages 85-86)
A rate of change is a rate that describes how one quantity $\square$ in $\square$ to another.

## EXAMPLE Find a Rate of Change

(1) DOGS The table below shows the weight of a dog in pounds between 4 and 12 months old. Find the rate of change in the dog's weight between 8 and 12 months of age.

| Age (mo) | 4 | 8 | 12 |
| :---: | :---: | :---: | :---: |
| Weight (lb) | 15 | 28 | 43 | $\frac{\text { change in weight }}{\text { change in age }}=\frac{(43-\square) \text { pounds }}{(\square-8) \text { months }} \begin{aligned} & \text { The dog grew from } \\ & \begin{array}{l}28 \text { to } 43 \text { pounds from } \\ \text { ages } 8 \text { to } 12 \text { months }\end{array}\end{aligned}$



Subtract to find the change in weights and ages.


Express this rate as


The dog grew an average of $\square$ pounds per $\square$

Check Your Progress
The table below shows Julia's height in inches between the ages of 6 and 11. Find the rate of change in her height between ages 6 and 9 .

| Age (yr) | 6 | 9 | 11 |
| :--- | :---: | :---: | :---: |
| Weight (in.) | 52 | 58 | 60 |

## EXAMPLE Find a Negative Rate of Change

## Key Concept

Rate of Change To find the rate of change, divide the difference in the $y$-coordinate by the difference in the $x$-coordinate.

FOLDABLES Record this concept on one side of an index card. Write an example on the other side of the card.

## Remember It

Always read graphs from left to right.

SCHOOLS The graph shows the number of students in the seventh grade between 2000 and 2004. Find the rate of change between 2002 and 2004.

Number of 7th Grade Students


Use the data to write a rate comparing the change in students to the change in time.


The number of students changed from 485 to 459 from 2002 to 2004.


Simplify.

Express as a unit rate.

The rate of change is $\square$ students per $\square$

Check Your Progress
The graph below shows the number of students in the 6th grade between 1999 and 2005. Find the rate of change between 2003 and 2005 .



## EXAMPLES Compare Rates of Change

3 TEMPERATURE the graph shows the temperature measured on each hour from 10 A.M. to 3 P.M. During which 1-hour period was the rate of change in temperature the greatest?
Find the rates of change for each 1-hour period. Use the ratio
 change in temperature
change in time
10 A.M. to 11 A.M. $\frac{55^{\circ}-54^{\circ}}{11 \text { A.M. }-10 \text { A.M. }}=$ $\square$
11 A.M. to 12 P.M.


12 P.M. to 1 P.M. $\frac{60^{\circ}-59^{\circ}}{2 \text { P.M. }-12 \text { P.M. }}=$

1 P.M. to 2 P.M.

$$
\frac{60^{\circ}-60^{\circ}}{2 \text { P.M. }-1 \text { P.M. }}=\square
$$

2 P.M. to 3 P.M. $\frac{62^{\circ}-60^{\circ}}{3 \text { P.M. }-2 \text { P.M. }}=$ $\square$

The greatest rate of change in temperature is between $\square$

Check Your Progress
The graph shows the temperature measured each hour from 10 a.m. to 4 p.m. Find the 1-hour time period in which the rate of change in temperature was the greatest.

Temperature


## 4-4 Constant Rate of Change

## MAIN IDEA

- Identify proportional and nonproportional relationships by finding a constant rate of change.

BUILD YOUR VOCABULARY (pages 85-86)


## EXAMPLE Identify linear Relationships

1) BABYSITTING The amount a babysitter charges is shown. Is the relationship between the number of hours and the amount charged linear? If so, find the constant rate of change. If not, explain your reasoning.

| Number of <br> Hours | Amount <br> Earned |
| :---: | :---: |
| 1 | $\$ 10$ |
| 2 | $\$ 18$ |
| 3 | $\$ 26$ |
| 4 | $\$ 34$ |

Examine the change in the number of hours worked and in the amount earned.

| Number of <br> Hours | Amount <br> Earned |
| :---: | :---: |
| +1 | 1 |
| $\$ 10$ |  |
| +1 | 2 |
| +1 | $\$ 18$ |
| +8 |  |
|  | +8 |

Since the rate of change $\square$, this is

is $\frac{8}{1}$ or $\square$ This means that the babysitter earns
$\square$

## Check Your Progress

BABYSITTING The amount a babysitter charges is shown. Is the relationship between the number of hours and the amount charged linear? If so, find the constant rate of change.
$\square$

| Number <br> of Hours | Amount <br> Earned |
| :---: | :---: |
| 1 | $\$ 12$ |
| 2 | $\$ 19$ |
| 3 | $\$ 26$ |
| 4 | $\$ 33$ |

## EXAMPLE Find a Constant Rate of Change

2 TRAVEL Find the constant rate of change for the hours traveled and miles traveled. Interpret its meaning.

Choose any two points on the line and find the rate of change between them.

Miles and Hours Traveled


$(4,120)$


## Check Your Progress

TRAVEL Find the constant rate of change for the hours traveled and miles traveled. Interpret its meaning.



## EXAMPLE

3 TAXIS Use the graph to determine if there is a proportional linear relationship between the miles driven and the charge for a ride. Explain your reasoning.
Since the graph of the data
 forms a line, the relationship between the two scales is linear.
This can also be seen in the table of values created using the points on the graph.

| $+4+4$ |  |  |  |  | +4 | +4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Charge (\$) | 4 | 8 | 12 | 16 | 20 |  |
| Miles | 0 | 5 | 10 | 15 | 20 |  |
| $+5+5$ |  |  |  |  |  | $+5+5$ |$\quad$| change in charge |
| :---: |
| change in miles |$=$| $\square$ |
| :---: |

To determine if the two scales are proportional, express the relationship between the charges for several miles as a ratio.

$$
\frac{\text { charge }}{\text { miles }} \rightarrow \frac{8}{5}=\square \quad \frac{12}{10}=\square \quad \frac{16}{15} \approx \square
$$

Since the ratios are $\square$, the total charge is $\square$ to the number of miles driven.

## Check Your Progress

MOVIES Use the graph to determine if there is a proportional linear relationship between the number of movies rented and the total cost. Explain your reasoning.

## Homework

 Assignment
## Page(s):

Exercises:

## 4-5 Solving Proportions

## Main Idea

- Use proportions to solve problems.


## KEy CONCEPTS

Proportion A proportion is an equation stating that two ratios are equivalent.

Property of Proportions The cross products of a proportion are equal.

FOLDABLES Be sure to include this definition and property in your Foldable.

## BUILD YOUR VOGABULARY (pages 85-86)

In a proportion, two $\square$ are $\square$
Equivalent ratios simplify to the same $\square$
In a proportion, the cross products are $\square$

## EXAMPLE Write and Solve a Proportion.

1) COOKING A recipe serves 10 people and calls for 3 cups of flour. If you want to make the recipe for 15 people, how many cups of flour should you use?


You will need $\square$ cups of flour to make the recipe for 15 people.

## Check Your Progress

COOKING A recipe serves 12 people and calls for 5 cups of sugar. If you want to make the recipe for 18 people, how many cups of sugar should you use?

## BUILD YOUR VOCABULARY (pages 85-86)

You can use the constant of proportionality to write an $\square$ involving two $\square$ quantities.

## EXAMPLE

2 FOOD Haley bought 4 pounds of tomatoes for \$11.96. Write an equation relating the cost to the number of pounds of tomatoes. How much would Haley pay for 6 pounds at this same rate? for 10 pounds?

Find the constant of proportionality between cost and pounds.

$$
\frac{\text { cost in dollars }}{\text { pounds of tomatoes }}=\frac{11.96}{4} \text { or } 2.99 \quad \begin{aligned}
& \text { The cost is } \$ 2.99 \text { per } \\
& \text { pound. }
\end{aligned}
$$



The cost is $\$ 2.99$ times the number of pounds.
Let $c$ represent the cost.
Let $p$ represent the number of pounds.

$$
c=2.99 \cdot p
$$

Use this same equation to find the cost for 6 and 10 pounds of tomatoes sold at the same rate.
$c=2.99 p \quad \longleftarrow$ Write the equation. $\longrightarrow c=2.99 p$
$c=2.99 \square \quad \begin{aligned} & \text { Replace } p \text { with the } \\ & \text { number of pounds. }\end{aligned} \longrightarrow c=2.99 \square$
$c=\square \quad$ Multiply. $\quad \longrightarrow c=\square$
The cost for 6 pounds of tomatoes is $\square$ and for
10 pounds is $\square$

Homework Assignment

## Page(s):

Exercises:

Check Your Progress FOOD Cameron bought 3 pounds of apples for $\$ 11.37$. Write an equation relating the cost to the number of pounds of apples. How much would Cameron pay for 5 pounds at this same rate?

## 4-6 Problem-Solving Investigation: Draw a Diagram

## EXAMPLE

## Main IDEA

- Solve problems by drawing a diagram.


## Homework Assignment

Page(s):
Exercises:

VOLUME A bathtub is being filled with water. After 4 minutes, $\frac{1}{5}$ of the bathtub is filled. How much longer will it take to completely fill the bathtub assuming the water rate is constant?

UNDERSTAND After 4 minutes, the bathtub is $\frac{1}{5}$ of the way filled. How many more minutes will it take to fill the bathtub?

PLAN Draw a diagram showing the water level after every 4 minutes.

SOLVE The bathtub will be filled after $\square$ 4 -minute periods. This is a total of $5 \times 4$



CHECK The question asks how much longer will it take to completely fill the bathtub after the initial 4 minutes. Since the total time needed is 20 minutes, it will take
 the bathtub.

## Check Your Progress

VOLUME A swimming pool is being filled with water. After 3 hours, $\frac{1}{4}$ of the pool is filled. How much longer will it take to completely fill the swimming pool assuming the water rate is constant?

## 4-7 Similar Polygons

## MAIN IDEA

- Identify similar polygons and find missing measures of similar polygons.


## KEY Concept

Similar Polygons If two polygons are similar, then

- their corresponding angles are congruent, or have the same measure, and
- their corresponding sides are proportional.


## BUILD YOUR VOGABULARY (pages 85-86)

A polygon is a simple closed figure in a plane formed
by $\square$ line segments.

Polygons that have the $\square$ shape are called similar polygons.

The parts of $\square$ figures that "match" are called corresponding parts.

Congruent means to have the $\square$ measure.

## EXAMPLE Identify Similar Polygons

Determine whether triangle DEF is similar to triangle HJK. Explain your reasoning.


First, check to see if corresponding angles are congruent.
$\angle D \cong \angle H, \angle E \cong \angle J$, and $\angle F \cong \angle K$.
Next, check to see if corresponding sides are proportional.

$$
\begin{gathered}
\frac{D E}{H J}=\square=0.8 \quad \frac{E F}{J K}=\square=0.8 \\
\frac{D F}{H K}=\square=0.8
\end{gathered}
$$

Since the corresponding angles are congruent and $\frac{4}{5}=\frac{5}{6.25}=\frac{3}{3.75}$, triangle $D E F$ is $\square$ to triangle $H J K$.

## Check Your Progress

Determine whether triangle $A B C$ is similar to triangle TRI. Explain your reasoning.



## FOLDABLES

## Organize IT

Make vocabulary cards for each term in this lesson. Be sure to place the cards in your Foldable.


## BUILD YOUR VOGABULARY (pages 85-86)

The $\square$ of the lengths of two

sides of two similar polygons is called the scale factor.

## EXAMPLE Finding Missing Measures

2 Given that rectangle LMNO ~ rectangle GHIJ, find the missing measure.


METHOD 1 Write a proportion.
The missing measure $n$ is the length of $\overline{N O}$. Write a proportion involving $N O$ that relates corresponding sides of the two rectangles.


METHOD 2 Use the scale factor to write an equation.
Find the scale factor from rectangle GHIJ to rectangle LMNO by finding the ratio of corresponding sides with known lengths. scale factor: $\frac{G J}{L O}=\square$

The scale factor is the constant of proportionality.
(continued on the next page)


102

## Main IDEA

- Graph dilations on a coordinate plane.


## BUILD YOUR VOGABULARY (pages 85-86)

The image produced by $\square$ or reducing a
figure is called a dilation. The center of a dilation is a fixed

an enlargement. A scale factor between $\square$ and
 produces a reduction.

## EXAMPLE Graph a Dilation

1) Graph $\triangle M N O$ with vertices $M(3,-1), N(2,-2)$, and $O(0,4)$. Then graph its image $\Delta M^{\prime} N^{\prime} O^{\prime}$ after a dilation with a scale factor of $\frac{\mathbf{3}}{\mathbf{2}}$.

To find the vertices of the dilation, multiply each coordinate in the ordered pairs by $\frac{3}{2}$. Then graph both images on the same axes.




## Check Your Progress

Graph $\triangle J K L$ with vertices $J(2,4)$, $K(4,-6)$, and $L(0,-4)$. Then graph its image $\triangle J^{\prime} K^{\prime} L^{\prime}$ after a dilation with a scale factor of $\frac{1}{2}$.

## EXAMPLE Find and Classify a Scale Factor

## Remember It

If the scale factor is equal to 1 , the dilation is the same size as the original figure.

## Homework Assignment

## 4-9 Indirect Measurement

## MAIN IDEA

- Solve problems involving similar triangles.


## BUILD YOUR VOGABULARY (pages 85-86)

Indirect measurement uses the properties of $\square$ polygons and $\square$ to measure distance of lengths that are too $\square$ to measure directly.

## EXAMPLE Use Shadow Reckoning

(1) TREES A tree in front of Marcel's house has a shadow 12 feet long. At the same time, Marcel has a shadow 3 feet long. If Marcel is 5.5 feet tall, how tall is the tree?

tree's shadow $\longrightarrow \frac{12}{3}=\frac{h}{5.5} \rightleftarrows$ tree's height
Marcel's shadow $\longrightarrow$ Marcel's height


Find the cross products.


Multiply.


$$
\square=h
$$

Simplify.

The tree is $\square$ feet tall.

Check Your Progress 10 feet. At the same time, a flagpole casts a shadow that is 40 feet. If the flagpole is 20 feet tall, how tall is Jayson?


## EXAMPLE Use Indirect Measurement

FOLDABLES

## ORGANIZE IT

Include a definition of indirect measurement. Also include an explanation of how to use indirect measurement with your own words or sketch.


3
SURVEYING The two triangles shown in the figure are similar. Find the distance $d$ across the stream.


In this figure $\triangle A B C \sim \triangle E D C$.
So, $\overline{A B}$ corresponds to $\overline{E D}$, and $\overline{B C}$ corresponds to $\square$

$$
\frac{A B}{E B}=\frac{B C}{D C} \quad \text { Write a } \square .
$$


$A B=48, E D=d, B C=60$, and $D C=20$


Find the cross products.


Multiply. Then divide each side by


The distance across the stream is $\square$

Check Your Progress The two triangles shown in the figure are similar. Find the distance $d$ across the river.


## 4-10 Scale Drawings and Models

## MAIN IDEA

- Solve problems involving scale drawings.


## Remember IT

Scales and scale factors are usually written so that the drawing length comes first in the ratio.

## BUILD YOUR VOCABULARY (pages 85-86)

A scale drawing or a scale model is used to represent an object that is too $\square$ or too $\square$ to be drawn or built at actual size.

The scale is determined by the $\square$ of given length on a $\square$ to the corresponding actual length of the object.

## EXAMPLE Find a Missing Measurement

1 RECREATION Use the map to find the actual distance from Bingston to Alanton.


Use an inch ruler to measure the map distance.
The map distance is about 1.5 inches.
METHOD 1 Write and solve a proportion.


METHOD 2 Write and solve an equation.
Write the scale as
 which means
 per inch.

## FOLDABLES

## ORGANIZE IT

Write definitions of scale, scale drawing, and scale model on cards and give your own examples. Be sure to explain how to create a scale for a scale drawing or model.


## Homework

 AssignmentPage(s):
Exercises:

## EXAMPLE Find the Scale

## (2) SCALE DRAWINGS A wall in a room is $\mathbf{1 5}$ feet long. On a

 scale drawing it is shown as 6 inches. What is the scale of the drawing?Write and solve a proportion to find the scale of the drawing.


So, the scale is 1 inch $=$ $\square$

## Check Your Progress

The length of a garage is 24 feet. On a scale drawing the length of the garage is 10 inches. What is the scale of the drawing?

## STUDY GUIDE

## FOLDABLES

Use your Chapter 4 Foldable to help you study for your chapter test.

## VOCABULARY

 PUZZLEMAKERTo make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 4, go to:
glencoe.com

## BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (pages 85-86) to help you solve the puzzle.

## 4-1 <br> Ratios and Rates

Match each phrase with the term they describe.

1. a comparison of two numbers
2. a comparison of two quantities with different types of units
$\square$
$\square$
3. a rate that is simplified so it has a denominator of 1 $\square$
b. numerator
c. ratio
d. rate
4. Express 12 wins to 14 losses as a ratio in simplest form.
$\square$
5. Express 6 inches of rain in 4 hours as a unit rate. $\square$

## 4-2

Proportional and Nonproportional Relationships
Determine whether each relationship is proportional.
6.

| Side length (ft) | 1 | 2 | 3 | 4 | 5 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Perimeter (ft) | 4 | 8 | 12 | 16 | 20 |

$\square$
7.

| Time (hr) | 1 | 2 | 3 | 4 | 5 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Rental Fee (\$) | 10.00 | 12.50 | 15.00 | 17.50 | 20.00 |

$\square$

4-3

## Rate of Change

Use the table shown to answer each question.
8. Find the rate of change in the number of bicycles sold between weeks 2 and 4 .

9. Between which weeks is the rate of change negative? $\square$

| Week | Bicycles Sold |
| :---: | :---: |
| 2 | 2 |
| 4 | 14 |
| 6 | 14 |
| 8 | 12 |

## 4-4

## Constant Rate of Change

Find the constant rate of change for each graph and interpret its meaning.
10.

Uptown Pizzeria


11.



4-5

## Solving Proportions

12. Do the ratios $\frac{a}{b}$ and $\frac{c}{d}$ always form a proportion? Why or why not?
$\square$
Solve each proportion.
13. $\frac{7}{b}=\frac{35}{5}$

14. $\frac{a}{16}=\frac{3}{8}$
15. $\frac{4}{13}=\frac{3}{c}$


## 4-6

## Problem-Solving Investigation: Draw a Diagram

16. FAMILY At Willow's family reunion, $\frac{4}{5}$ of the people are 18 years of age or older. Half of the remaining people are under 12 years old. If 20 children are under 12 years old, how many people are at the reunion?
$\square$

4-7

## Similar Polygons

17. If two polygons have corresponding angles that are congruent, does that mean that the polygons are similar? Why or why not?

18. Rectangle $A B C D$ has side lengths of 30 and 5. Rectangle $E F G H$ has side lengths of 15 and 3 . Determine whether the rectangles are similar.
$\square$

4-8

## Dilations

19. If you are given the coordinates of a figure and the scale factor of a dilation of that figure, how can you find the coordinates of the new figure?
$\square$
20. Complete the table.

| If the scale factor is | Then the dilation is |
| :--- | :--- |
| between 0 and 1 |  |
| greater than 1 |  |
| equal to 1 |  |

## 4-9

## Indirect Measurement

21. When you solve a problem using shadow reckoning, the objects being compared and their shadows form two sides of triangles.
22. STATUE If a statue casts a 6 -foot shadow and a 5 -foot mailbox casts a 4 -foot shadow, how tall is the statue?
$\square$

## 4-10

Scale Drawings and Models
23. The scale on a map is 1 inch $=20$ miles.

Find the actual distance for the map distance of $\frac{5}{8}$ inch.
$\square$
24. What is the scale factor for a model if part of the model that is 4 inches corresponds to a real-life object that is 16 inches?
$\square$

## ARE YOU READY FOR THE CHAPTER TEST?

## Checklist

## Math Online

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 4.

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 4 Practice Test on page 247 of your textbook as a final check.

I used my Foldable or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 4 Study Guide and Review on pages 242-246 of your textbook.
- If you are unsure of any concepts or skills, refer to the specific lesson(s).
- You may also want to take the Chapter 4 Practice Test on page 247.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 4 Foldable.
- Then complete the Chapter 4 Study Guide and Review on pages 242-246 of your textbook.
- If you are unsure of any concepts or skills, refer to the specific lesson(s).
- You may also want to take the Chapter 4 Practice Test on page 247.


Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.

Begin with 4 sheets of $8 \frac{1}{2}^{\prime \prime} \times 11^{\prime \prime}$ paper.

STEP 1 Draw a large circle on one of the sheets of paper.


STEP 1 Stack the sheets of paper. Place the one with the circle on top. Cut all four sheets in the shape of a circle.


Staple the circles on the left side. Write the chapter title and the first four lesson numbers on each circle.


STEP 4 Turn the circles to the back side so that the staples are still on the left. Write the last four lesson titles on
 the front and right pages of the journal.

NOTE-TAKING TIP: When you take notes, it may help to create a visual representation, such as a drawing or a chart, to organize the information you learn. When you use a visual, be sure to clearly label it.

## BUILD YOUR VOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 5.
As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

| Vocabulary Term | Found <br> on Page | Definition | Description or <br> Example |
| :--- | :--- | :--- | :--- |
| compatible numbers |  |  |  |
| compound interest |  |  |  |
| discount |  |  |  |
| interest |  |  |  |
| markup |  |  |  |

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

| Vocabulary Term | Found <br> on Page | Definition | Description or <br> Example |
| :--- | :--- | :--- | :--- |
| percent equation |  |  |  |
| percent of change |  |  |  |
| percent of decrease |  |  |  |
| percent of increase |  |  |  |
| percent proportion |  |  |  |

## 5-1 Ratios and Percents

| MAIN IDEA |
| :---: |
| - Write ratios as percents <br> and vice versa. |

## Key Concept

Percent A percent is a ratio that compares a number to 100.

## BUILD YOUR VOGABULARY (pages 116-117)

$\square$ such as 27 out of 100 or 8 out of 25 can be written as percents.

## EXAMPLES Write Ratios as Percents

1) POPULATION According to a recent census, 13 out of every 100 people living in Delaware were 65 or older. Write this ratio as a percent.
13 out of every $\square=13 \%$
2 BASEBALL Through 2005, Manny Ramirez has gotten on base 40.9 times for every 100 times at bat. Write this ratio as a percent.
40.9 out of $\square=40.9 \%$

Check Your Progress Write each ratio as a percent.
a. 59 out of 100
b. 68 out of 100

$\square$

## EXAMPLES Write Ratios and Fractions as Percents

3 TRANSPORTATION About 4 out of 5 commuters in the United States drive or carpool to work. Write this ratio as a percent.


So, $\square$ out of $\square$ equals $\square$.

## FOLDABLES

## ORGANIZE IT

Write in words and symbols what you've learned about expressing ratios as percents.


## HOMEWORK ASSIGNMENT

Page(s):
Exercises:

4 INTERNET In 2000, about $\frac{3}{200}$ of the population in Peru used the Internet. Write this fraction as a percent.

$\frac{3}{200}=\frac{1.5}{100}$


So,

out of
 equals $\square$

Check Your Progress
Write each ratio or fraction as a percent.
a. 3 out of 5
b. $\frac{122}{200}$ teens


## EXAMPLE Write Percents as Fractions

5 SCHEDULE The circle graph shows an estimate of the percent of his day that Peter spends on each activity. Write the percents for eating and sleeping as fractions in simplest form.


How Peter Spends His Day


## Check Your Progress

The circle graph shows an estimate of the percent of his day that Leon spends on each activity. Write the percents for school and television as fractions in simplest form.
$\qquad$
How Leon Spends His Day


## 5-2 Comparing Fractions, Decimals, and Percents

## EXAMPLES Percents as Decimals

## Main IDEA

Write percents as fractions and decimals and vice versa.

## KEY CONCEPTS

Decimals and Percents To write a percent as a decimal, divide by 100 and remove the percent symbol.

To write a decimal as a percent, multiply by 100 and add the percent symbol.

## Write each percent as a decimal.

1) $52 \%$
$52 \%=52 \%$
$\square$

Divide by $\square$
Remove the percent symbol.

2 $245 \%$

$$
\begin{aligned}
245 \% & =245 \% \\
& =\square
\end{aligned}
$$

Divide by $\square$
Remove the percent symbol.

Check Your Progress
a. $28 \%$


## EXAMPLES Decimals as Percents

## Write each decimal as a percent.

(3) 0.3
$0.3=0.30$
Multiply by $\square$
$\square$ Add the percent symbol.
0.71
$0.71=0.71$


Add the percent symbol.

Check Your Progress
Write each decimal as a percent.
a. 0.91
b. 1.65


EXAMPLES Fractions as Percents
(5) Write $\frac{3}{4}$ as a percent.

## METHOD 1

Use a proportion.

$$
\begin{aligned}
\frac{3}{4} & =\frac{x}{100} \\
3 \cdot 100 & =\square \\
300 & =\square \\
\square & =\square \\
\square & =x
\end{aligned}
$$

So, $\frac{3}{4}$ can be written as $\square$
(6) Write $\frac{1}{6}$ as a percent.

## METHOD 1

Use a proportion.


Show an example of how to write fractions as decimals. (Lesson 2-1)
$\qquad$
$\qquad$
$\square$
$\qquad$

## Review it

So, $\frac{1}{6}$ can be written as $\square$

## METHOD 2

First write as a decimal. Then write as a percent.

$$
\begin{aligned}
\frac{3}{4} & =0.75 \\
& =\square \\
& \begin{array}{r}
0.75 \\
3.00 \\
\frac{28}{20} \\
\frac{20}{0}
\end{array}
\end{aligned}
$$

## METHOD 2

First write as a decimal. Then write as a percent.

$$
\begin{aligned}
\frac{1}{6} & =0.16 \overline{6} \\
& =\square
\end{aligned}
$$

Check Your Progress
a. $\frac{1}{4}$
b. $\frac{1}{9}$


Write each fraction as a percent.

## FOLDABLES

## ORGANIZE IT

Write in words and symbols what you have learned about the relationship between percents, decimals, and fractions.


## Homework

 Assignment

## EXAMPLE Compare Numbers

7 POLITICS In Sun City, $\mathbf{0 . 4 5}$ of voters are Democrats. In Moon Town, $48 \%$ of voters are Democrats. In which town is there a greater portion of Democrats?
Write 0.45 as a percent.


Since $\square$ is less than $\square$ there are $\square$
Democrats in Moon Town.

Check Your Progress In Star City, $\frac{3}{20}$ of voters are Republicans. In Meteorville, $13 \%$ of voters are Republicans. In which town is there a greater proportion of Republicans?


## EXAMPLE Order Numbers

(8) Order $70 \%, \frac{7}{100}, \frac{19}{25}$, and 0.77 from least to greatest.

$$
\frac{7}{100}=\square \quad \frac{19}{25}=\frac{\square}{100} \text { or } \square \quad 0.77=\square
$$

From least to greatest, the numbers are


Check Your Progress Order $18 \%, \frac{1}{5}, \frac{3}{10}$, and 0.21 from least to greatest.
$\square$

## 5-3 Algebra: The Percent Proportion

## MAIN IDEA

- Solving problems using the percent proportion.


## Key Concept

## Percent Proportion

$$
\frac{\text { part }}{\text { whole }}=\frac{\text { percent }}{100}
$$

## BUILD YoUR VocABULARY (pages 116-117)

In a percent proportion, $\square$ of the numbers, called the part, is being compared to the $\square$ quantity, also called the base. The other ratio is the percent, written as a fraction, whose base is $\square$

## EXAMPLE Find the Percent

(1) 34 is what percent of $\mathbf{1 3 6}$ ?

Since 34 is being compared to 136, $\square$ is part and
 the whole. You need to find the percent. Let $n$ represent the percent.


So, 34 is $\square$ of 136 .

Check Your Progress 63 is what percent of 210 ?

## FOLDABLES

## ORGANIZE IT

Be sure to explain how to find the percent, the part, and the base of a percent proportion. You also may want to show the ideas in a chart like the Concept Summary in your text.


## Homework Assignment

Exercises:

## 5-4 Finding Percents Mentally

## EXAMPLES Use Fractions to Compute Mentally

## Main IdeA <br> - Compute mentally with percents.

## Write IT

Explain how you can move the decimal point to mentally multiply 0.1 by 1.1 .
$\qquad$

Compute mentally.
c. $10 \%$ of 13
d. $1 \%$ of 244

a. $20 \%$ of 60

b. $66 \frac{2}{3} \%$ of 300



FOLDABLES

## ORGANIZE IT

In your Foldable, be sure to include examples that show how to estimate percents of numbers.


Homework Assignment

Exercises:

## EXAMPLE Use Mental Math to Solve a Problem

5 TECHNOLOGY A company produces 2,500 of a particular printer. They later discover that $25 \%$ of the printers have defects. How many printers from this group have defects?

METHOD 1 Use a fraction.


THINK $\frac{1}{4}$ of 2,000 is $\square$ and $\frac{1}{4}$ of 500 is $\square$.


METHOD 2 Use a decimal.
$25 \%$ of $2,500=\square$ of 2,500
THINK 0.5 of 2,500 is


There were $\square$ printers that had defects.

Check Your Progress
A company produces 1,400 of a particular monitor. They later discover that $20 \%$ of the monitors have defects. How many monitors from this group have defects?


## 5-5 Problem-Solving Investigation: Reasonable Answers

## EXAMPLE

## Main IdeA

Determine a reasonable answer.

## HoMEWORK ASSIGNMENT

Page(s):
Exercises:

SHOPPING Cara sees an advertisement for a pair of shoes. One pair costs $\$ 34.99$ plus 5 percent tax. She wants to buy a black pair and a brown pair. Cara has $\$ 75$ saved in her clothing budget. Can she afford both pairs of shoes?

UNDERSTAND You know the cost of the shoes and the sales tax rate. You want to know if two pairs of


PLAN
 to determine a reasonable answer.

SOLVE

$10 \%$ of $\$ 70=\$ 7$, so $5 \%$ of $\$ 70=$


The total cost will be about $\$ 70+\$ 3.50=$
 enough to buy $\square$ CHECK

Find the $\square$ of the two pairs of shoes. Then compute the sales tax and compare the sum to $\$ 75$. rate is 5 percent. If David has $\$ 17$ in his wallet, will he have enough to buy the CD and batteries?

## 5-6 Percent and Estimation

## MAIN IDEA

- Estimate by using equivalent fractions and percents.


## BUILD YOUR VOCABULARY (pages 116-117)

Compatible numbers are two numbers that are easy to add, subtract, multiply, or divide mentally.

## EXAMPLES Estimate Percents of Numbers

## Estimate.

$48 \%$ of 70
$48 \%$ is about

of 70 is


So, $48 \%$ of 70 is about


2 $12 \%$ of 81

and 81 is about $\square$
$\square$ of
 is $\square$
So, $12 \%$ of 81 is about

$3 \mathbf{2 3 \%}$ of $\mathbf{8 2}$
$23 \%$ is about $\frac{1}{4}$, and 82 is about $\square$
$\frac{1}{4}$ of $\square$ is


So, $23 \%$ of 82 is about $\square$
compatible numbers. $\frac{1}{4}$ and $\square$ are compatible numbers.


## FOLDABLES

## Organize IT

Include the meaning of the symbol " $\approx$. . You may wish to include an example of estimating a percent in which the symbol $\approx$ is used.

Estimate.

## EXAMPLES Estimate Percents

a. $51 \%$ of 60


## EXAMPLE

4 POPULATION About $9 \%$ of the population of Texas lives in the city of Houston. If there are about 22 million people in the state of Texas, estimate the population of Houston.


So, the population of Houston is about $\square$

Check Your Progress
LEFT-HANDEDNESS About $11 \%$ of the population is left-handed. If there are about 17 million people in Florida, about how many Florida residents are left-handed?

## Estimate each percent.

## (5) 12 out of 47



So, 12 out of 47 is about $\square$

## (6) 41 out of 200

$\frac{41}{200} \approx \square$ or $\frac{1}{5} \quad 41$ is about $\square$.
$\frac{1}{5}=\square$
So, 41 out of 200 is about $\square$
758 out of 71


So, 58 out of 71 is about


Check Your Progress Estimate each percent.
a. 15 out of 76

b. 58 out of 121

c. 14 out of 47


## 5-7 Algebra: The Percent Equation



## Foldables

## ORGANIZE IT

Write the percent equation in words and symbols. Explain why the rate in a percent equation is usually written as a decimal.


## Homework

 AssignmentPage(s):
Exercises:

## EXAMPLE Find the Base

## 3 144 is $45 \%$ of what number?

Estimate 144 is 50\% of 288.
The part is $\square$ . The percent is $\square$ You need to find the whole. Let $n$ represent the whole.

$\square$ $=n$

So, 144 is $45 \%$ of $\square$

## Check Your Progress

Find the part, percent, or base.
a. Find $20 \%$ of 315 .

b. 135 is what percent of 250 ?

c. 186 is $30 \%$ of what number?
$\square$

## EXAMPLE Solve a Real-Life Problem

SALES TAX The price of a sweater is $\boldsymbol{\$ 7 5}$. The sales tax is $5 \frac{3}{4} \%$. What is the total price of the sweater?
You need to find what amount is $5 \frac{3}{4} \%$ of $\$ 75$.
Let $t=$ the amount of tax.


The amount of tax is $\square$ The total cost of the sweater is $\$ 75+\square$ or $\square$.

## Check Your Progress

The price of a pair of shoes is $\$ 60$.
The sales tax is 5 percent. What is the total price of the shoes?
$\square$

## 5-8 Percent of Change

## Main Idea

Find and use the percent of increase or decrease.

## BUILD YOUR VOCABULARY (pages 116-117)

A percent of change is a $\square$ that compares the change in quantity to the original amount. When the new amount is $\square$ than the original, the percent of change is called a percent of increase.

When the new amount is $\square$ than the original, the percent of change is called a percent of decrease.

## EXAMPLE Find the Percent of Increase

## KEY Concept

Percent of Change A percent of change is a ratio that compares the change in quantity to the original amount.

1 HOMES The Neitos bought a house several years ago for $\mathbf{\$ 1 2 0 , 0 0 0}$. This year, they sold it for $\mathbf{\$ 1 5 0 , 0 0 0}$. Find the percent of change. State whether the change is an increase or decrease.
Step 1 The amount of change is $150,000-120,000=$ $\square$
Definition of

Step 2 Percent of change $=\frac{\text { amount of change }}{\text { original amount }}$

$=0.25$
Divide.
Step 3 The decimal 0.25 written as a percent is $\square$ So, the percent of change is $\square$ percent of change


The new amount is $\square$ than the original. The percent
$\square$ is $25 \%$.

## Check Your Progress <br> CLUBS Last year Cedar Park Swim

 Club had 340 members. This year they have 391 members. Find the percent increase.
## ORGANIZE IT

Be sure to include an explanation and examples showing the difference between percent of increase and percent of decrease.


## EXAMPLE Find the Percent of Change

2 SCHOOLS Johnson Middle School had 240 students last year. This year, there are 192 students. Find the percent of change. State whether the percent of change is an increase or a decrease.

Step 1 The amount of change is $240-192=$ $\square$
Step 2 Percent of change $=\frac{\text { amount of change }}{\text { original amount }}$


$$
=0.20
$$

Divide.

Step 3 The decimal 0.20 written as a percent is $\square$
The percent of change is $\square$ Since the new amount is
$\square$ than the original, it is a percent of $\square$

## Check Your Progress

CARS Meagan bought a new car several years ago for $\$ 14,000$. This year she sold the car for $\$ 9,100$. Find the percent of change. State whether the percent of change is an increase or a decrease.

## BUILD YOUR VOGABULARY (pages 116-117)

The markup is the amount the price of an item is
$\square$ above the price the store $\square$
for the item.

The selling price is the amount the $\square$ pays. is $\square$ The amount by which a $\square$ is called the discount.

## EXAMPLE Find the Selling Price

## Remember It

There may be more than one way to solve a problem. See pages 286 and 287 of your textbook for other methods you can use to solve Examples 3 and 4.

3 MARKUP Shirts bought by a sporting goods store cost them $\$ 20$ per shirt. They want to mark them up $40 \%$. What will be the selling price?

METHOD 1 Find the amount of the markup first. The whole is $\square$. The percent is $\square$. You need to find the amount of the markup, or the part. Let $m$ represent the amount of the markup.


Add the markup to the cost of each shirt to find the selling price. $\square$
$\square$ $=$ $\square$
METHOD 2 Find the total percent first.
The customer will pay $100 \%$ of the store's cost plus an extra $40 \%$ of the cost. Find $100 \%+40 \%$ or $140 \%$ of the store's cost. Let $p$ represent the price.


The selling price of the shirts for the customer is $\square$

Check Your Progress Silk flowers bought by a craft store cost them $\$ 10$ per box. They want to mark them up 35 percent. What will be the selling price?

## EXAMPLE Find the Sale Price

4) SHOPPING A computer usually sells for $\$ \mathbf{1 , 2 0 0}$. This week, it is on sale for $30 \%$ off. What is the sale price?

METHOD 1 Find the amount of the discount first.
The percent is $\square$ and the whole is $\square$ We need to find the amount of the discount, or the part. Let $d$ represent the amount of discount.


Subtract the amount of the discount from the original price to find the sale price.


METHOD 2 Find the percent paid first.
If the amount of the discount is $30 \%$, the percent paid is $100 \%-30 \%$ or $70 \%$. Find $70 \%$ of $\$ 1,200$. Let $s$ represent the sale price.


The sale price of the computer is $\square$

Check Your Progress A DVD sells for $\$ 28$. This week it is on sale for $20 \%$ off. What is the sale price?

## Homework Assignment



## 5-9 Simple Interest

## MAIN IDEA

- Solve problems involving simple interest.


## BUILD YOUR VOGABULARY (pages 116-117)

Interest is the amount of money paid or $\square$ for the use of money.

Principal is the amount of money $\square$ or borrowed.

## EXAMPLE Find Simple Interest

1) Find the simple interest for $\mathbf{\$ 2 , 0 0 0}$ invested at $5.5 \%$ for 4 years.
$I=p r t \quad$ Write the simple interest formula.

$I=$

$\square$

## EXAMPLE Find the Total Amount

## Remember It

The $t$ in the simple interest formula represents time in years. If time is given in months, weeks, or days, the time must be changed to time in years.

2 TEST EXAMPLE Find the total dollar amount in an account where $\$ 80$ is invested at a simple annual interest rate of $6 \%$ for 6 months.
A \$41.20
B $\$ 82.40$
C $\$ 84.80$
D $\$ 108.80$

## Read the Item

You need to find the total amount in an account. The time is given in months. Six months is $\frac{6}{12}$ or $\square$ year.

## Solve the Item

$I=p r t$

$I=$


The amount in the account is $\$ 80+$ $\square$
The correct answer is choice $\square$

## FOLDABLES

## ORGANIZE IT

Explain what you have learned about computing simple interest. Be sure to include the simple interest formula.


## Homework

 AssignmentPage(s):
Exercises:

## Check Your Progress

a. Find the simple interest for $\$ 1,500$ invested at $5 \%$ for 3 years.
$\square$
b. Find the total amount of money in an account where $\$ 60$ is invested at $8 \%$ for 3 months.

## EXAMPLE Find the Interest Rate

(3) LOANS Gerardo borrowed $\$ 4,500$ from his bank for home improvements. He will repay the loan by paying $\$ 120$ a month for the next four years. Find the simple interest rate of the loan.

Use the formula $I=p r t$. To find $I$, first find the total amount of money Gerardo will pay.
$\$ 120 \cdot 48=\square$.
He will pay $\square-\$ 4,500$ or $\square$ in interest.
So $I=1,260$.
The principle is $\$ 4,500$. So, $p=4,500$. The loan will be for 48 months or 4 years. So, $t=4$.


Simplify.
The simple interest rate is


Check Your Progress Jocelyn borrowed \$3,600 from her bank for home improvements. She will repay the loan by paying $\$ 90$ a month for the next 5 years. Find the simple interest rate of the loan.

## BRINGING IT ALL TOGETHER

## STUDY GUIDE

## FOLDABLES

Use your Chapter 5 Foldable to help you study for your chapter test.

## Vocabulary <br> PUZZLEMAKER

To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 5, go to:
glencoe.com

## BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (pages 116-117) to help you solve the puzzle.

## 5-1 <br> Ratios and Percents

Write each ratio or fraction as a percent.

1. 21 out of 100
2. $4: 10$
3. $\frac{9}{25}$

$\square$

Write each percent as a fraction in simplest form.
4. $27 \%$

5. $50 \%$

6. $80 \%$


## 5-2

Comparing Fractions, Decimals, and Percents
Write each percent as a decimal.
7. $29 \%$
8. $376 \%$

9. $5 \%$


Write each decimal or fraction as a percent.
10. 3.9
11. $\frac{7}{8}$
12. $\frac{1}{3}$


## 5-3

## Algebra: The Percent Proportion

## Solve.

13. What percent of 48 is 6 ?

14. 14 is $20 \%$ of what number?


## 5-4

Finding Percents Mentally
Complete each statement.
15. $40 \%$ of $25=\square$ of 25 or $\square$
16. $\square$ of $36=\frac{1}{4}$ of 36 or $\square$
17. $66 \frac{2}{3} \%$ of $48=\square$ of 48 or $\square$ 18. of $89=0.1$ of 89 or $\square$

## 5-5

Problem-Solving Investigation: Reasonable Answers
19. AGRICULTURE An orange grower harvested 1,260 pounds of oranges from one grove, 874 pounds from another, and 602 pounds from a third. What is a reasonable number of crates to have on hand if each crate holds 14 pounds of oranges?

## 5-6

Percent and Estimation
20. Are $\frac{1}{8}$ and 56 compatible numbers? Explain.
$\square$
21. Describe how to estimate $65 \%$ of 64 using compatible numbers.
$\square$

## 5-7

## Algebra: The Percent Equation

Write each percent proportion as a percent equation.
22. $\frac{16}{64}=\frac{25}{100}$

23. $\frac{a}{14}=\frac{2}{100}$

24. $\frac{96}{b}=\frac{48}{100}$

25. $\frac{13}{100}=\frac{p}{675}$ $\square$

## 5-8

Percent of Change
Find the percent of change. Round to the nearest tenth if necessary. State whether the change is an increase or decrease.
29. Original: 29
New: 64
30. Original: 51
New: 42

$\square$
31. Find the selling price for the sweater.

Cost to store: $\$ 15$
Mark up: 35\% $\square$

## 5-9

## Simple Interest

Write interest or principal to complete each sentence.
32. $\square$ is the amount of money paid or earned for the use
of money.
33. $\square$ equals $\square$ times rate times time.
34. Find the total amount in the account where $\$ 560$ is invested at $5.6 \%$ for 6 months.
First, find the $\square$ earned. Then, add the $\square$ earned and the $\square$ to find the total amount in the account. What is the total amount for $\$ 560$ at $5.6 \%$ for 6 months?


## ARE YOU READY FOR THE CHAPTER TEST?

## Checklist

## Math Online

Visit glencoe.com to access your text book, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 5.

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 5 Practice Test on page 299 of your textbook as a final check.

I used my Foldable or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 5 Study Guide and Review on pages 295-298 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may want to take the Chapter 5 Practice Test on page 299.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 5 Foldable.
- Then complete the Chapter 5 Study Guide and Review on pages 295-298 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may want to take the Chapter 5 Practice Test on page 299.



## Geometry and Spatial Reasoning

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.

Begin with 7 sheets of $8 \frac{1}{2}^{\prime \prime} \times 11^{\prime \prime}$ paper.

5TEP 1 Fold a sheet of paper in half lengthwise. Cut a 1 " tab along the left edge through one thickness.

STEP 1 Glue the 1 " tab down. Write the lesson title on the front tab.


STEP 3. Repeat Steps 1-2 for the remaining sheets of paper. Staple together to form a booklet.


NOTE-TAKING TIP: When you read and learn new concepts, help yourself remember these concepts by taking notes, writing definitions and explanations, and draw models as needed.

## BUILD YOUR VOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 6.
As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

| Vocabulary Term | Found <br> on Page | Definition | Description or <br> Example |
| :--- | :--- | :--- | :--- |
| alternate exterior <br> angles |  |  |  |
| alternate interior <br> angles |  |  |  |
| complementary angles |  |  |  |
| congruent polygon |  |  |  |
| equiangular |  |  |  |
| equilateral |  |  |  |
| equilateral triangle |  |  |  |
| exterior angles |  |  |  |
| line of symmetry |  |  |  |
| line of reflection |  |  |  |


| Vocabulary Term | Found on Page | Definition | Description or Example |
| :---: | :---: | :---: | :---: |
| line symmetry |  |  |  |
| obtuse triangle |  |  |  |
| parallel lines |  |  |  |
| perpendicular lines |  |  |  |
| reflection |  |  |  |
| regular polygon |  |  |  |
| supplementary angles |  |  |  |
| transformation |  |  |  |
| translation |  |  |  |
| transversal |  |  |  |
| vertical angles |  |  |  |

## 6-1 Line and Angle Relationships

## Main IDEA

Identify special pairs of angles and relationships of angles formed by two parallel lines cut by a transversal.

## Key Concepts

Acute angles have measures less than $90^{\circ}$.

Right angles have measures equal to $90^{\circ}$.

Obtuse angles have measures between $90^{\circ}$ and $180^{\circ}$.

Straight angles have measures equal to $180^{\circ}$.

## BUILD YOUR VOGABULARY (pages 144-145)

Vertical angles are $\square$ angles formed by intersecting lines. Vertical angles are $\qquad$
The sum of the measures of supplementary angles
is $\square$
The sum of the measures of complementary angles
is $\square$

## EXAMPLE Finding a Missing Angle Measure

(1) The two angles below are supplementary. Find the value of $\boldsymbol{x}$.


$$
155+x=180
$$



$$
x=25
$$

Write an equation.
Subtract $\square$ from each side.
Simplify.

## EXAMPL: Find a Missing Angle Measure

2 Find the value of $\boldsymbol{x}$ in the figure.
Use the two vertical angles to solve for $x$.


Write an equation.

$$
x=\square
$$



## BUILD YOUR VOGABULARY (pages 144-145)

Lines that intersect at $\square$ angles are called perpendicular lines.

Two lines in a plane that never $\square$ or cross are called parallel lines.

A transversal is a line that $\square$ two or more lines. Interior angles lie $\square$ the two lines and exterior angles lie $\square$ the two lines.

Alternate interior angles are $\square$ angles that lie on opposite sides of the transversal.

Alternate exterior angles are exterior angles that lie on
$\square$ sides of the transversal.

Corresponding angles are those angles that are in the same $\square$ on the two lines in relation to the transversal.

## FOLDABLES

## ORGANIZE IT

Use sketches and words to define the lines and angles discussed in this lesson. Try to show relationships among different lines and angles. Write this in your Foldable.

Line and Angle Relationships

## Homework Assignment

## Page(s): <br> Exercises:

## EXAMPLE Find an Angle Measure

3
BRIDGES The sketch below shows a simple bridge design. The top beam and the floor of the bridge are parallel. If $\angle 2 \cong \angle 3$ and $m \angle 3=55^{\circ}$, classify the relationship between $\angle 1$ and $\angle 5$. Then find $m \angle 1$ and $m \angle 5$.


Since $\angle 3$ and $\angle 5$ are $\square$ angles, they are congruent. Also, since $\angle 1$ and $\angle 2$ are $\square$ $\angle 1$ and $\angle 3$ are $\square$ and $\angle 1$ and $\angle 5$ are supplementary.
Since $m \angle 3=55^{\circ}$ and $\angle 2 \cong \angle 3, m \angle 2=\square$.
Since $\angle 3$ and $\angle 5$ are alternate interior angles, $m \angle 5=\square$.
Since $\angle 1$ and $\angle 2$ are supplementary, the sum of their measures is $180^{\circ}$.

Therefore, $m \angle 1=180^{\circ}-55^{\circ}$ or $\square$.

Check Your Progress
BRIDGES The sketch below shows a simple bridge design. The top beam and floor of the bridge are parallel. If $m \angle 1=45^{\circ}$ and $m \angle 3=40^{\circ}$, find $m \angle 4$.


## 6-2 Problem-Solving Investigation: Use Logical Reasoning

## EXAMPLE Use Logical Reasoning

## Main Idea

- Solve problems by using the logical reasoning strategy.


## Homework Assicnment

Page(s):
Exercises:

FOOD Mona, Sharon, Pat, and Dena each have a favorite food. One likes pizza, another fish and chips, another chicken, and another hamburgers. From the given clues, give each person's favorite food.

- Pat does not like pizza, hamburgers, or fish and chips.
- Neither Mona nor Dena likes hamburgers.
- Mona does not like to eat fried food.

UNDERSTAND You know that each of the four students has a particular favorite food. Use the clues given and logical reasoning to determine the favorite food of each student.
PLAN Read each clue and deduce what you know about the favorite foods of the students.
SOLVE According to the first clue, Pat does not like pizza, hamburgers, or fish and chips. The only other


Since neither Mona nor Dena likes
hamburgers, that means that $\square$ must like hamburgers.
Finally, there are two students left, Mona and Dena, and two food choices left, pizza and fish and chips. Since Mona does not like

$\square$
CHECK Read each clue again and make sure the answers seem reasonable.

Check Your Progress SPORTS Craig, Amy, Julia, and Ronaldo each have a favorite sport. One likes soccer, another basketball, another tennis, and another skateboarding. From the given clues, give each person's favorite sport.

- Amy does not like soccer, basketball, or skateboarding.
- Neither Craig nor Ronaldo likes playing soccer.
- Craig prefers team sports as opposed to individual sports.


## 6-3 Polygons and Angles

## Main IDEA

- Find the sum of angle measures of a polygon and the measure of an interior angle of a polygon.


## Key Concept

Interior Angle Sum of a Polygon

The sum of the measures of the interior angles of a polygon is $(n-2) 180$, where $n$ is the number of interior angles in the polygon.

## BUILD YOUR VOGABULARY (pages 144-145)

An interior angle lies $\square$ a polygon.

## EXAMPLE Find the Sum of Interior Angle Measures

(1) Find the sum of the measures of the interior angles of a hexagon.

A hexagon has $\square$ sides.

$$
\begin{aligned}
& S=(n-2) 180 \\
& S=(\square-2) 180 \\
& S=(4) 180 \text { or } \square
\end{aligned}
$$

The sum of the measures of the interior angles of a hexagon
is $\square$

Check Your Progress
Find the sum of the measures of the interior angles of a heptagon (7-sided figure).


## BUILD YOUR VOGABULARY (pages 144-145)

A polygon that is equilateral (all $\square$ congruent) and equiangular (all $\square$ congruent) is called a regular polygon.

EXAMPLE Find the Measure of an Interior Angle
2 DESIGN A designer is creating a new logo for a bank. The logo consists of a regular pentagon surrounded by isosceles triangles. Find the measure of an interior angle of a pentagon.
A pentagon has $\square$ sides.


Step 1 Find the sum of the measures of the angles.

$$
S=(n-2) 180 \quad \text { Write an equation. }
$$

$S=(\square-2) 180 \quad$ Replace $n$ with $\square$.
$S=(3) 180$ or $\square$ Simplify.
The sum of the measures of the interior angles of a regular pentagon is $\square$ Step 2 Divide 540 by $\square$, the number of interior angles, to find the measure of one interior angle. So, the measure of one interior angle of a regular pentagon is $\square \div \square$ or $\square$.

## Check Your Progress

DESIGN Michelle is designing a new logo for the math club. She wants to use a regular nonagon as part of the logo. Find the measure of an interior angle of a nonagon.


## 6-4 Congruent Polygons

## Main Idea

- Identify congruent polygons.


## BUILD YOUR VOGABULARY (pages 144-145)

Polygons that have the same $\square$ and $\square$ are called congruent polygons.

## EXAMPLE Identify Congruent Polygons

1 Determine whether the trapezoids shown are congruent. If so, name the corresponding parts and write a congruence statement.



The arcs indicate that $\angle S \cong \angle G, \angle T \cong \angle H, \angle Q \cong \angle E$, and
$\square$. The side measures indicate that $\overline{S T} \cong \overline{G H}$,
$\overline{T Q} \cong \overline{H E}, \overline{Q R} \cong \overline{E F}$, and $\square$
Since $\square$ pairs of corresponding angles and sides are
$\square$
One congruence statement is
trapezoid $E F G H \cong$ trapezoid $\square$

## Check Your Progress

Determine whether the triangles shown are congruent. If so, name the corresponding parts and write a congruence statement.


EXAMPLES Find Missing Measures
In the figures, $\triangle F G H \cong \triangle Q R S$.


## 2 Find $m \angle S$.

According to the congruence statement, $\angle H$ and $\angle S$ are corresponding angles. So, $\square \cong \square$.
Since $m \angle H=\square, m \angle S=\square$.

## 3 Find $Q R$.

$\overline{F G}$ corresponds to $\square$ So,

$\square$ Since $F G=\square$ centimeters, $Q R=\square$ centimeters.

Check Your Progress
In the figure, $\triangle A B C \cong \triangle L M N$.

a. Find $m \angle N$.
b. Find $L N$.


## 6-5 <br> Symmetry

## Main IDEA

- Identify line symmetry and rotational symmetry.

FOLDABLES

## ORGANIZE IT

Use sketches and words to show lines of symmetry and line symmetry. Write this in your Foldable.

```
Line and
Angle
Relationships
```


## BUILD YOUR VOGABULARY (pages 144-145)

A figure has line symmetry if it can be folded over a line so that one half of the figure $\square$ the other half. The $\square$ line is called the line of symmetry.

## EXAMPLES Identify Line Symmetry

Determine whether the figure has line symmetry. If it does, draw all lines of symmetry. If not, write none.


This figure has $\square$ line of symmetry.

## Check Your Progress

Determine whether the leaf has line symmetry. If it does, draw all lines of symmetry. If not, write none.


## BUILD YOUR VOGABULARY (pages 144-145)

A figure has rotational symmetry if it can be rotated about
is the angle of rotation.

## Write It

How many degrees does one complete turn of a figure measure? Why is it this number of degrees?
$\qquad$
$\qquad$


## Check Your Progress

Determine whether each flower design has rotational symmetry. Write yes or no. If yes, name its angle(s) of rotation.
a.

b.



## 6-6 Reflections

## Main Idea

- Graph reflections on a coordinate plane.


## BUILD YOUR VOGABULARY (pages 144-145)

A reflection (sometimes called a flip) is a transformation in which a $\square$ image is produced by $\square$ a figure over a line. The line is called a line of reflection.

## EXAMPLE Draw a Reflection

## Key Concept

Properties of Reflections

1. Every point on a reflection is the same distance from the line of reflection as the corresponding point on the original figure.
2. The image is congruent to the original figure, but the orientation of the image is different from that of the original figure.
(1) Draw the image of trapezoid $S T U V$ after a reflection over the given line.

Step 1 Count the number of units between each vertex and the line of $\square$
Step 2 Plot a point for each vertex the $\square$ distance away from the line on the other side.

Step 3 Connect the new $\square$ to form the image of trapezoid $S T U V$, trapezoid $S^{\prime} T^{\prime} U^{\prime} V^{\prime}$.

## Check Your Progress

Draw the image of trapezoid $T R A P$ after a reflection over the given line.


## FOLDABLES

## ORGANIZE IT

Draw a triangle or simple quadrilateral on graph paper. Reflect your figure over the $x$-axis. Add your work to your Foldable.


## EXAMPLE Reflect a Figure over the $x$-axis

2 Graph quadrilateral $E F G H$ with verticles $E(-4,4)$, $F(3,3), G(4,2)$, and $H(-2,1)$. Then graph the image of $E F G H$ after a reflection over the $x$-axis and write the coordinates of its vertices.


The coordinates of the verticles of the image are $E^{\prime}$ $\square$

$G(4,2)$

$H(-2,1)$

$\square$
Notice that the $y$-coordinate of a point reflected over the $x$-axis is the $\square$ of the $y$-coordinate of the original point.

Check Your Progress Graph quadrilateral $Q U A D$ with vertices $Q(2,4), U(4,1), A(-1,1)$, and $D(-3,3)$. Then graph the image of $Q U A D$ after a reflection over the $x$-axis, and write the coordinates of its vertices.


## EXAMPLE Reflect a Figure over the $y$-axis

3 Graph trapezoid $A B C D$ with vertices $A(1,3), B(4,0)$, $C(3,-4)$, and $D(1,-2)$. Then graph the image of $A B C D$ after a reflection over the $y$-axis, and write the coordinates of its vertices.


The coordinates of the vertices of the image are $A^{\prime}$ $\qquad$

$C(3,-4)$

$D(1,-2)$


Notice that the $x$-coordinate of a point reflected over the $y$-axis is the opposite of the $x$-coordinate of the $\square$ point.

Check Your Progress
Graph quadrilateral $A B C D$ with vertices $A(2,2), B(5,0), C(4,-2)$, and $D(2,-1)$. Then graph the image of ABCD after a reflection over the $y$-axis, and write the coordinates of its vertices.

Homework Assignment

Page(s):
Exercises:


## Main IDEA

- Graph translations on a coordinate plane.


## KEY CONCEPT

Properties of Translations

1. Every point on the original figure is moved the same distance and in the same direction.
2. The image is congruent to the original figure, and the orientation of the image is the same as that of the original figure.

## BUILD YOUR VOGABULARY (pages 144-145)

A translation (sometimes called a slide) is the

$\square$

## EXAMPLE Draw a Translation

1 Draw the image of $\triangle E F G$ after a translation of 3 units right and 2 units up.


Step 1 Move each vertex of the triangle $\square$ units right and $\square$ units up.

Step 2 Connect the new vertices to form the $\square$

Check Your Progress
Draw the image of $\triangle A B C$ after a translation of 2 units right and 4 units down.


FOLDABLES

## ORGANIZE IT

Draw a triangle or simple quadrilateral on graph paper. Then draw a translation. Show how you determined the points needed to graph the translated figure. Put your work in your Foldable.

Line and Angle Relationships

## EXAMPLE Translation in the Coordinate Plane

2 Graph $\triangle A B C$ with vertices $A(-2,2), B(3,4)$, and $C(4,1)$. Then graph the image of $\triangle A B C$ after a translation of 2 units left and 5 units down. Write the coordinates of its vertices.


The coordinates of the vertices of the image are
 these vertices can also be found by adding $\square$ to the $x$-coordinates and $\square$ to the $y$-coordinates, or $(-2,-5)$.

## Original

$$
\text { Add }(-2,-5)
$$

Image
$A(-2,2) \longrightarrow(-2+(-2), 2+(-5)) \longrightarrow \square$
$B(3,4) \longrightarrow(3+(-2), 4+(-5)) \rightarrow \square$
$C(4,1) \longrightarrow(4+(-2), 1+(-5)) \rightarrow \square$

## Check Your Progress Graph $\triangle P Q R$ with vertices $P(-1,3)$,

 $Q(2,4)$, and $R(3,2)$. Then graph the image of $\triangle P Q R$ after a translation of 2 units right and 3 units down. Write the coordinates of its vertices.

## EXAMPL:

3 TEST EXAMPLE If triangle RST is translated 4 units right and 3 units up, what are the coordinates of point $T^{\prime \prime}$ ?
A $(0,3)$
C $(2,1)$
B $(1,2)$
D $(1,1)$


## Read the Item

You are asked to find the coordinates of point $T^{\prime \prime}$ after the original figure has been translated 4 units right and 3 units up.

## Solve the Item

You can answer this question without translating the entire triangle.

The coordinates of point $T$ are


The $x$-coordinate of $T^{\prime}$ is

or $\square$
The $y$-coordinate of $T$ is
 so the $y$-coordinate of $T^{\prime \prime}$ is


Original figure

Translating 4 units right is the as $\square$ to the $x$-coordinate.

Translating 3 units up is the same as adding $\square$ to the $y$-coordinate.

The coordinates of $T^{\prime}$ are $\square$
The answer is $\square$

## Check Your Progress

MULTIPLE CHOICE If triangle $L M N$ is translated 4 units left and 2 units up, what are the coordinates of point $L^{\prime}$ ?
$\mathbf{F}(0,-1)$
$\mathbf{H}(-1,-4)$
G ( $-3,2$ )
J ( $-2,3$ )


## STUDY GUIDE

## FOLDABLES

Use your Chapter 6 Foldable to help you study for your chapter test.

## Vocabulary

 PUZZLEMAKERTo make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 6, go to:
glencoe.com

## BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (pages 144-145) to help you solve the puzzle.

## 6-1 <br> Line and Angle Relationships

## For Questions 1-4, use the figure at the right.

1. Classify the relationship between $\angle 5$ and $\angle 6$.

2. Classify the relationship between $\angle 5$ and $\angle 8$.

3. Find $m \angle 3$ if $m \angle 2=60^{\circ}$. $\square$

4. Find $m \angle 4$ if $m \angle 2=60^{\circ}$. $\square$

## 6-2

## Problem-Solving Investigation: Use Logical Reasoning

5. BASKETBALL Juan, Dallas, and Scott play guard, forward, and center on a team, but not necessarily in that order. Juan and the center drove Scott to practice on Saturday. Juan does not play guard. Who is the guard?

6-3
Polygons and Angles
Find the sum of the measures of the interior angles of each polygon.
6. heptagon

7. nonagon

8. 15-gon


Find the measure of one interior angle in each regular polygon.
9. hexagon
$\square$
10. decagon
$\square$
11. 18-gon


## 6-4 <br> Congruent Polygons

12. Complete the sentence. Two polygons are congruent if their

$\triangle A B C \cong \triangle E D F . m \angle A=40^{\circ}$ and $m \angle B=50^{\circ}$.

## $\angle E \cong \angle A$ and $\angle F \cong \angle C$.

13. What is $m \angle C$ ?


## 6-5

Symmetry
Write whether each sentence is true or false. If false, replace the underlined words to make a true sentence.
15. A figure has line symmetry if it can be folded over a line so that one half of the figure matches the other half.
16. To rotate a figure means to turn the figure from its center.
17. A figure has rotational symmetry if it first matches
$\square$
$\square$
$\square$ itself after being rotated exactly $360^{\circ}$.

6-6
Reflections
18. Complete. A reflection is a $\square$ image of a figure produced by flipping the figure over a line.
19. If you graphed quadrilateral HIJK reflected over the $y$-axis, what would be the coordinates of these vertices:


## 6-7

## Translations

20. Complete. A translation is the movement of a figure from one position to another $\square$ turning it.
21. If you graphed the image of quadrilateral $D E F G$ after a translation 3 units right and 4 units down, what would be the coordinates of these vertices?


## ARE YOU READY FOR THE CHAPTER TEST?

## Checklist

## Math Online

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 6.

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want take the Chapter 6 Practice Test on page 347 of your textbook as a final check.

I used my Foldable or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 6 Study Guide and Review on pages 342-346 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 6 Practice Test on page 347.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 6 Foldable.
- Then complete the Chapter 6 Study Guide and Review on pages 342-346 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 6 Practice Test on page 347.


Student Signature


Parent/Guardian Signature


Teacher Signature

## Measurement: Area and Volume

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.

| Begin with a plain sheet of $8 \frac{1}{2}{ }^{\prime \prime} \times 11^{\prime \prime}$ paper. |  |  |
| :---: | :---: | :---: |
| STEP 1 | Fold in half widthwise. |  |
| STEP 1 | Open and fold the bottom to form a pocket. Glue edges. |  |
| STEP 3 | Label each pocket. Place several index cards in each pocket. |  |

NOTE-TAKING TIP: As you read and learn a new concept, such as how to measure area or volume, write examples and explanations showing the main ideas of the concept.

## BUILD YOUR VOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 7.
As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

| Vocabulary Term | Found <br> on Page | Definition | Description or <br> Example |
| :--- | :--- | :--- | :--- |
| base |  |  |  |
| center |  |  |  |
| circumference |  |  |  |
| chord |  |  |  |
| complex figure |  |  |  |
| cone |  |  |  |
| cylinder |  |  |  |
| diameter |  |  |  |
| edge |  |  |  |
| face |  |  |  |
| lateral face |  |  |  |


| Vocabulary Term | Found <br> on Page | Definition | Description or <br> Example |
| :--- | :--- | :--- | :--- |
| net |  |  |  |
| pi |  |  |  |
| plane |  |  |  |
| prism |  |  |  |
| pyramid |  |  |  |
| radius |  |  |  |
| regular pyramid |  |  |  |
| similar solids |  |  |  |
| slant height |  |  |  |
| vertex surface area |  |  |  |

## 7-1 Circumference and Area of Circles

## Main Idea

- Find the circumference and the area of circles.


## EXAMPLES Find the Circumferences of Circles

## Key Concepts

Circumference of a Circle The circumference $C$ of a circle is equal to its diameter $d$ times $\pi$, or 2 times its radius $r$ times $\pi$.

Area of a Circle The area A of a circle is equal to $\pi$ times the square of the radius $r$.

Find the circumference of each circle. Round to the nearest tenth.


The circumference is about


The circumference is about $\square$

## FOLDABLES

## ORGANIZE IT

On index cards, write the formulas for finding the circumference and area of a circle. Sketch a circle and label its parts. Place your cards in the "Area" pocket of your Foldable.


## Homework

 Assignment

Check Your Progress
Find the circumference of each circle. Round to the nearest tenth.
a.

b.



## EXAMPLES Find the Areas of Circles

## Find the area of each circle. Round to the nearest tenth.



The area is about $\square$

| $A=\pi r^{2}$ | Area of a circle |
| :--- | :--- |
| $A=\pi \cdot \square a^{2}$ | $A=\frac{1}{2}$ of 10  <br> $A$ $\approx \quad$ Evaluate $5^{2}$. |
| Use a calculator. |  |

The area is about $\square$

Check Your Progress
Find the area of each circle.
Round to the nearest tenth.
a.

b.



## 7-2 Problem-Solving Investigation: Solve a Simpler Problem

## EXAMPLE

## MAIN IDEA

- Solve a simpler problem.

GARDENS A series of gardens framed by tiles is arranged such that each successive garden is one tile longer than the previous garden. The width of the gardens is four tiles. The first three gardens are shown below. How many tiles surround Garden 10?


Garden 1


Garden 2


Garden 3

UNDERSTAND You know how many tiles surround the first three gardens. Use this information to predict how many tiles will surround Garden 10.

PLAN It would take a long time to draw each of the gardens 1 through 10. Instead, find the number of tiles surrounding the smaller gardens and look for a pattern.

SOLVE

| Garden | 1 | 2 | 3 | 4 |
| :--- | :---: | :---: | :---: | :---: |
| Surrounding Tiles | 10 | 12 | 14 | 16 |
| $+2+2$ |  |  |  |  |

For each successive garden, $\square$ additional tiles
are needed to surround it. The 10th garden will
have $16+2+2+2+2+2+2$ or $\square$ tiles.
CHECK Check your answer by drawing Garden 10.

Check Your Progress GAMES The figures below show the number of tiles on a game board after the first 4 rounds of the game. Each round, the same number of tiles are added to the board. How many tiles will be on the board after the 12th round?


Round 1


Round 3


Round 4


## 7-3 Area of Composite Figures

## BUILD YOUR VOGABULARY (pages 167-168)

## MAIN IDEA

- Find the area of composite figures.

A composite figure is made up of $\square$ shapes.

EXAMPLES Find the Areas of a Composite Figure
1 Find the area of the composite figure. Round to the nearest tenth if necessary.


The figure can be separated into two $\square$ and
$\square$

Area of one semicircle
$A=\frac{1}{2} \pi r^{2}$

## Area of triangle

$A=\ell w$

$A=$ $\square$
$A=$


$$
A=\square
$$

The area of the garden is $14.1+$ $\square$ $+$ $\square$ or 100.3 square centimeters.

Check Your Progress
Find the area of the composite figure. Round to the nearest tenth if necessary.


2 GARDENING The dimensions of a flower garden are shown. What is the area of the garden?


The garden can be separated into a $\square$ and two congruent $\square$

## Area of rectangle

## Area of one triangle

$A=\ell w$
$A=\frac{1}{2} b h$

$A=\square$
$A=\square$
$A=\square$
The area of the garden is $\square$
$\square$
$\square$ or $\square$ square feet.

## Check Your Progress

GARDENING The dimensions of a flower garden are shown. What is the area of the garden?


## 7-4 Three-Dimensional Figures

## MAIN IDEA

- Identify and draw three-dimensional figures.


## Key Concept

Common Polyhedrons

triangular prism

rectangular prism

triangular pyramid

rectangular pyramid

## BUILD YOUR VOGABULARY (pages 167-168)

Coplanar lines lie in the same $\square$. Parallel lines never
$\square$ Three-dimensional figures are called
solids. A polyhedron is a solid with $\square$ surfaces that are $\square$
An edge is where two planes
 in a line. A face is a $\square$ surface.

A vertex is where three or more planes $\square$ a point.

A diagonal is a line segment whose endpoints are vertices that are neither $\square$ nor on the same $\square$ Lines that do not intersect and are not $\square$ are skew lines.

EXAMPLES Identify Relationships
Use the figure at the right to identify the following.

1) a plane that is parallel to plane GKJ
 Plane $\square$ is parallel to plane $G K J$.
2 a segment that is skew to $\overline{J N}$
$\overline{J N}$ and $\square$ are skew because they do not $\square$ and are not coplanar.

3 two sets of points between which a diagonal can be drawn Lines drawn between points $G$ and $\square$ and points $\square$ and $J$ would form diagonals.

## Check Your Progress <br> Use the

figure at the right to identify the following.
a. a plane that is parallel to plane QUXT

b. a segment that is skew to $\overline{X W}$
c. two sets of points between which a diagonal can be drawn

## BUILD YOUR VOCABULARY (pages 167-168)

A prism is a polyhedron with two $\square$ faces, or bases.

A pyramid is a polyhedron with one base that is a
$\square$

## EXAMPLES Identify Prisms and Pyramids

4) Identify the solid. Name the number and shapes of the faces. Then name the number of edges and vertices.


The figure has two parallel
 bases that are

prism. The other faces are rectangles.
It has a total of $\square$ faces, $\square$ edges, and $\square$ vertices.

## Homework Assignment

Page(s):
Exercises:

Check Your Progress Identify the solid. Name the number and shapes of the faces. Then name the number of edges and vertices.


## EXAMPLES Analyze Real-Life Drawings

ARCHITECTURE The plans for a hotel fireplace are shown at the right.

5 Draw and label the top, front, and side views.

view

view

Check Your Progress
The plans for a building are shown to the right. Draw and label the top, front, and side views.


## 7-5 Volume of Prisms and Cylinders

## Main IDEA <br> Find the volumes of prisms and cylinders.

## BUILD YOUR VOGABULARY (pages 167-168) <br> Volume is the measure of the <br> $\square$ occupied by a solid. Volume is measured in cubic units.

## EXAMPLE Find the Volume of a Rectangular Prism

(1) Find the volume of the rectangular prism.

## Key Concept

Volume of a Prism The volume $V$ of a prism is the area of the base $B$ times the height $h$.

| $V=B h$ | Volume of a prism |
| :--- | :--- |
| $V=\square$ | The base is a rectan <br> so $B=\square$ |
| $V=(5 \cdot 7) 11$ | $\ell=5, w=7, h=11$ |
| $V=\square$ | Simplify. |

The volume is 385 $\square$ inches.

## EXAMPLE Find the Volume of a Triangular Prism

2 Find the volume of the triangular prism.

$$
\begin{array}{ll}
V=B h & \text { Volume of a prism } \\
V=\left(\frac{1}{2} \cdot 9 \cdot 15\right) h & \text { The base is a } \\
& \begin{array}{l} 
\\
\\
\\
B=\frac{1}{2} \cdot 9 \cdot 15 .
\end{array}
\end{array}
$$


$V=\left(\frac{1}{2} \cdot 9 \cdot 15\right) 4 \quad$ The height of the prism is $\square$.
$\square$ Simplify.

The volume is $\square$ cubic inches.

## Key Concept

Volume of a Cylinder The volume $V$ of a cylinder with radius $r$ is the area of the base $B$ times the height $h$.

## FOLDABLES

## Organize It

On index cards, write the formula for the volume of a rectangular prism, a triangular prism, and a cylinder. Sketch each figure and label its parts. Place your cards in the "Volume" pocket of your Foldable.


Find the volume of each prism.
a.

b.


## BUILD YOUR VOGABULARY (pages 167-168)

A cylinder is a solid whose bases are congruent, parallel, $\square$, connected with a $\square$ side.

## EXAMPLE Find the Volumes of Cylinders

3 Find the volume of the cylinder. Round to the nearest tenth if necessary.


The volume is about 339.3 $\square$ centimeters.

## Check Your Progress

 Find the volume of the cylinder. Round to the nearest tenth if necessary.

## BUILD YOUR VOGABULARY (pages 167-168)

Objects that are made up of more than one type of
$\square$ are called composite solids.

## EXAMPLE Find the Volume of a Composite Solid

4) TOYS A wooden block has a single hole drilled entirely though it. What is the volume of the block? Round to the nearest hundredth.


The block is a rectangular prism with a cylindrical hole.
To find the volume of the block, $\square$ the volume of the $\square$ from the volume of the $\square$.

## Rectangular Prism

$V=\square$
$V=(6 \cdot 3) 4$ or 72
Cylinder

The volume of the box is about $\square$ -

$\square$ cubic centimeters.

## Check Your Progress

A small wooden cube has been glued to a larger wooden block for a whittling project. What is the volume of the wood to be whittled?


## 7-6 Volume of Pyramids and Cones

EXAMPLE Find the Volume of the Pyramid.

## Main Idea

- Find the volumes of pyramids and cones.


## KEY CONCEPT

Volume of a Pyramid The volume $V$ of a pyramid is one-third the area of the base $B$ times the height $h$.

1) Find the volume of the pyramid.
$V=\frac{1}{3} B h$
Volume of a pyramid
$V=\frac{1}{3}(\square \cdot \square) \square$

$h=\square$
$V=140$
Simplify.

The volume is $\square$

## Check Your Progress

Find the volume of the pyramid.


## EXAMPLE Use Volume to Solve a Problem

2 SOUVENIRS A novelty souvenir company wants to make snow "globes" shaped like pyramids. It decides that the most cost-effective maximum volume of water for the pyramids is 12 cubic inches. If a pyramid globe measures 4 inches in height, find the area of its base.

$$
V=\frac{1}{3} B h \quad \text { Volume of a pyramid }
$$

$$
\square=\frac{1}{3} \cdot B \cdot 4
$$

Replace $V$ with $\square$ and $h$ with


$$
12=\frac{4}{3} \cdot B
$$

Simplify.


$$
\square=B
$$

The area of the base of the snow globe is $\square$

## KEY CONCEPT

Volume of a Cone The volume $V$ of a cone with radius $r$ is one-third the area of the base $B$ times the height $h$.

## FOLDABLES

## ORGANIZE IT

On index cards, write the formula for the volume of a pyramid and a cone. Sketch each figure and label its parts. Place your cards in the "Volume" pocket of your Foldable.


## Homework

 AssignmentPage(s):
Exercises:

Check Your Progress
A company is designing pyramid shaped building blocks with a square base. They want the volume of the blocks to be 18 cubic inches. If the length of the side of the base is 3 inches, what should be the height of the blocks?

## BUILD YOUR VOGABULARY (pages 167-168)

A cone is a three-dimensional figure with one $\square$ base. A curved surface connects the base and the $\square$

## EXAMPLE Find the Volume of a Cone

3 Find the volume of the cone. Round to the nearest tenth.
$V=\frac{1}{3} \pi r^{2} h$
$V=\frac{1}{3} \cdot \pi$.

$V \approx$


Volume of a cone
 and $h$ with
 Simplify.


The volume is $\square$

## Check Your Progress

Find the volume of the cone. Round to the nearest tenth.


## 7-7 Surface Area of Prisms and Cylinders

## Main IDEA

- Find the lateral and total surface areas of prisms and cylinders.


## BUILD YOUR VOCABULARY (pages 167-168)

A lateral face of a solid is any $\square$ surface that is not a $\square$.

The lateral surface area is the $\square$ of the areas of its lateral $\square$
The total surface area is the sum of the $\square$ of all its surfaces.

## EXAMPLE Surface Area of a Rectangular Prism

## Key Concept

Surface Area of a Rectangular Prism The surface area $S$ of a rectangular prism with length $\ell$, width $w$, and height $h$ is the sum of the areas of the faces.
(1) Find the lateral and total surface area of the rectangular prism.


## Perimeter of Base

## Area of Base

$P=2 \ell+2 w$
$P=2 \square+2 \square$ or $\square$
$B=\ell w$


Use this information to find the lateral and total surface area.

Lateral Surface Area
$L=P h$
Total Surface Area
$L=48 \square$ or $\square$
$S=L+2 B$


The lateral surface area is $\square$ and
the total surface area is $\square$

## Check Your Progress

Find the lateral and total surface area of the rectangular prism.


## EXAMPLE Surface Area of a Triangular Prism

## Review IT

What is the formula for finding the area of a triangle? How does this relate to finding the surface area of a triangular prism? (Lesson 7-1)

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

2 CAMPING A family wants to reinforce the fabric of their tent with a waterproofing treatment. Find the total surface area, including the floor, of the tent below.


A triangular prism consists of two congruent $\square$ faces and three $\square$ faces.

Draw and label a net of this prism. Find the area of each face.


The surface area of the tent is $29+36.54+36.54+29$, or about $\square$.
5.8 ft


## FOLDABLES

## Organize IT

On index cards, write these formulas for finding surface area. Then sketch and label each figure. Place the cards in the "Area" pocket of your Foldable.


## KEY CONCEPT

## Surface Area of a

 Cylinder The surface area $S$ of a cylinder with height $h$ and radius $r$ is the area of the two bases plus the area of the curved surface.
## Homework Assignment



## Check Your Progress Julia is painting triangular

 prisms to use as decoration in her garden. Find the surface area of the prism.

## EXAMPLE Surface Area of a Cylinder

3 Find the lateral area and the surface area of the cylinder. Round to the nearest tenth.


## Lateral Surface Area

## Total Surface Area

$L=2 \pi r h$
$S=L+2 \pi r^{2}$
$L=2 \pi \square$

$L=\square$
$S \approx$


The lateral surface area is about $\square$ and the total surface area is about $\square$

Check Your Progress
Find the lateral and total surface area of the cylinder. Round to the nearest tenth.


## 7-8 Surface Area of Pyramids

## MAIN IDEA

- Find the lateral and total surface areas of pyramids.


## FOLDABLES

## Organize IT

On a card, write the formula for finding the surface area of a pyramid. Then sketch a pyramid and label the parts. Place the card in the "Area" pocket of your Foldable.

## BUILD YOUR VOCABULARY (pages 167-168)

A regular pyramid is a pyramid with a $\square$ that is a regular $\square$
$\square$ called the slant height.

## EXAMPLE Surface Area of a Pyramid

(1) Find the lateral and total surface areas of the triangular pyramid.

Find the lateral area and the area of the base.


## Area of each lateral face



Area of a triangle


There are 3 faces, so the lateral area is $3(\square)$ or
$\square$ square inches.

## Area of base

$\square$
The total surface area of the pyramid is

$\square$
or square inches.

Check Your Progress
Find the total surface area of the square pyramid.


## EXAMPLE

2 TOYS A toy block has the shape of a regular pyramid with a square base. The manufacturer wants to paint the lateral surface green. How many square centimeters
 will be painted green?
$L=\frac{1}{2} P \ell$
Lateral surface area of a pyramid
$L=\frac{1}{2} \square$ $P=\square$ and $\ell=8$
$L=\square$
Simplify.
The lateral surface area is $\square$

Check Your Progress
TOYS A toy block has the shape of a regular pyramid with a triangular base. The manufacturer wants to paint the lateral surface green. How many square centimeters will
 be painted green?

Homework Assignment

Page(s):
Exercises:



## 7-9 Similar Solids

## MAIN IDEA

Find dimensions, surface area, and volume of similar solids.

## BUILD YoUR Vocabulary (pages 167-168)

Similar solids have the same $\square$, their corresponding linear measures are $\square$, and their corresponding faces are $\square$ polygons.

## EXAMPLE Find Missing Linear Measures

## Key Concept

If the scale factor of the linear measures of two similar solids is $\frac{a}{b}$, then the scale factor of their surface areas is $\left(\frac{a}{b}\right)^{2}$ and the scale factor of their volumes is $\left(\frac{a}{b}\right)^{3}$.
(1) These cones are similar.

What is the radius of Cone $A$ to the nearest tenth?

Since the two cones are similar, the ratios of their corresponding linear measures are proportional.

Cone A

$\frac{\text { radius cone } A}{\text { radius cone } B}$ is proportional to $\frac{\text { height cone } A}{\text { height cone } B}$.


The radius of cone A is about $\square$

## Check Your Progress

These cones are similar. What is the height of Cone $B$ to the nearest tenth?


Cone A


Cone B


## EXAMPLE Find Surface Area of a Similar Solid

2) These rectangular prisms are similar. Find the total surface area of Prism A.

The ratio of the measures of Prism A to Prism B is $\frac{12}{8}$ or $\frac{3}{2}$.


Prism B

$\frac{\text { surface area of prism A }}{\text { surface area of prism B }}=\left(\frac{a}{b}\right)^{2}$


Write a proportion.
Substitute the known values.


Simplify.
 Find the cross products.


Divide each side


Simplify.

The surface area of Prism A is $\square$

## Check Your Progress

These square pyramids are similar. Find the total surface area of Prism A.


## EXAMPLE

(3) TEST EXAMPLE A triangular prism has a volume of 12 cubic centimeters. Suppose the dimensions are tripled. What is the volume of the new prism?

A $36 \mathrm{~cm}^{3}$
C $324 \mathrm{~cm}^{3}$
B $96 \mathrm{~cm}^{3}$
D $1,728 \mathrm{~cm}^{3}$

## Read the Item

You know that the prisms are similar, the ratio of the side lengths $\square$ is $\square$, and the volume of the smaller prism is 12 cubic centimeters.

## Solve the Item

Since the volumes of similar solids have a ratio of $\left(\frac{a}{b}\right)^{3}$ and $\frac{a}{b}=\frac{1}{3}$, replace $a$ with $\square$ and $b$ with $\square$ in $\left(\frac{a}{b}\right)^{3}$. $\frac{\text { volume of smaller prism }}{\text { volume of larger prism }}=\left(\frac{a}{b}\right)^{3} \quad$ Write a proportion.


So, the volume of the larger prism is $\square$
The answer is $\square$

## Check Your Progress

MULTIPLE CHOICE A hexagonal prism has a volume of 25 cubic inches. Suppose the dimensions are tripled. What is the volume of the new prism?
F 75 in $^{3}$
H 200 in $^{3}$
G 120 in $^{3}$
J 675 in $^{3}$

## BRINGING IT ALL TOGETHER

## STUDY GUIDE

Use your Chapter 7 Foldable to help you study for your chapter test.

## VOCABULARY <br> PUZZLEMAKER

To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 7, go to:
glencoe.com

## BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (pages 167-168) to help you solve the puzzle.

## 7-1 <br> Circumference and Area of Circles

## Complete.

1. The distance from the center of a circle to any point on the circle is called the $\square$, while the distance around the circle is called the $\square$
Find the circumference and area of each circle. Round to the nearest tenth.
2. The radius is 14 miles.

3. The diameter is $17.4 \mathrm{in}^{2}$.


## 7-2

## Problem-Solving Investigation: Solve a Simpler Problem

4. LANDSCAPING Laura is helping her father make a circular walkway around a flower bed as shown. What is the area, in square feet, of the walkway?


7-3

## Area of Composite Figures

5. What is a composite figure?

6. What is the first step in finding the area of a composite figure?

7. Explain how to divide up the figure shown.


## 7-4

Three-Dimensional Figures

## Match each description with the word it describes.

8. a flat surface $\square$
9. a polyhedron with one base that is a polygon and faces that are triangles $\square$
10. where three or more planes intersect at a point $\square$
11. where two planes intersect in a line $\square$
12. a polyhedron with two parallel, congruent faces
a. vertex
b. edge
c. face
d. base
e. prism
f. pyramid

7-5
Volume of Prisms and Cylinders
Find the volume of each solid. Round to the nearest tenth if necessary.
13.

14.

$\square$
15.


## 7-6

## Volume of Pyramids and Cones

16. Fill in the table about what you know from the diagram. Then complete the volume of the pyramid.


| length of rectangle | $\square$ |
| :--- | :--- |
| width of rectangle |  |
| area of base |  |
| height of pyramid |  |
| volume of pyramid |  |

## 7-7

## Surface Area of Prisms and Cylinders

17. Complete the sentence with the correct numbers. When you draw a net of a triangular prism, there are $\square$ congruent triangular faces and $\square$ rectangular faces.
18. If you unroll a cylinder, what does the net look like?
$\square$
19. Find the surface area of the cylinder. Round the nearest tenth.


7-8

## Surface Area of Pyramids

20. Complete the steps in finding the surface area of a square pyramid.

Area of each lateral face
$A=\frac{1}{2} b h$ $\square$
$A=\frac{1}{2}(9)(16)$

$A=72$


There are $\square$ faces, so the lateral area is $4(72)=$ $\square$ square inches.

Area of base
$A=s^{2}$ $\square$
$A=9^{2}$ or 81 $\square$
The surface area of the square pyramid is $\square$ $+$ $\square$ or $\square$ square inches.
21. What two areas are needed to calculate the surface area of a cone?


## 7-9

## Similar Solids

Find the missing measure for each pair of similar solids. Round to the nearest tenth if necessary.
22.

$\square$
23.


## ARE YOU READY FOR THE CHAPTER TEST?

## Checklist

## Math Online

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 7.

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 7 Practice Test on page 409 of your textbook as a final check.

I used my Foldable or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 7 Study Guide and Review on pages 405-408 of your textbook.
- If you are unsure of any concepts or skills, refer to the specific lesson(s).
- You may also want to take the Chapter 7 Practice Test on page 409.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 7 Foldable.
- Then complete the Chapter 7 Study Guide and Review on pages 405-408 of your textbook.
- If you are unsure of any concepts or skills, refer to the specific lesson(s).
- You may also want to take the Chapter 7 Practice Test on page 409.



## Algebra: More Equations and Inequalities

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.


NOTE-TAKING TIP: When you take notes, define new terms and write about the new concepts you are learning in your own words. Write your own examples that use the new terms and concepts.

## BUILD YOUR VOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 8.
As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

| Vocabulary Term | Found <br> on Page | Definition | Description or <br> Example |
| :--- | :--- | :--- | :--- |
| coefficient |  |  |  |
| constant |  |  |  |
| equivalent expressions |  |  |  |
| like terms |  |  |  |
| simplest form |  |  |  |
| simplifying the |  |  |  |
| expression |  |  |  |
| term |  |  |  |

## 8-1 Simplifying Algebraic Expressions

## Main IdeA

- Use the Distributive Property to simplify algebraic expressions.


## BUILD YOUR VOGABULARY (page 196)

Equivalent expressions are expressions that have the regardless of the value of the variable.

## EXAMPLE Write Equivalent Expressions

1) Use the Distributive Property to rewrite $3(x+5)$.

$$
\begin{aligned}
3(x+5) & =3(x)+3(5) \\
& =3 x+\square \quad \text { Simplify } .
\end{aligned}
$$

Check Your Progress Use the Distributive Property to rewrite each expression.
a. $2(x+6)$
b. $(a+6) 3$


## EXAMPLES Write Expressions with Subtraction

Use the Distributive Property to rewrite each expression.

## $2(q-3) 9$

$(q-3) 9=[q+(-3)] 9$

$3-3(z-7)$

$$
\begin{aligned}
-3(z-7) & =-3[z+(-7)] & & \text { Rewrite } z-7 \text { as } z+ \\
& =-3(z)+(-3)(-7) & & \text { Distributive Property } \\
& =-3 z+\square & & \text { Simplify. }
\end{aligned}
$$

Check Your Progress rewrite each expression.
a. $(q-2) 8$
b. $-2(z-4)$


## BUILD YOUR YOCABULARY (page 196)

When a plus sign separates an algebraic expression into parts, each part is called a term.
The numeric factor of a term that contains a is called the coefficient of the variable.
Like terms are terms that contain the $\square$ variable. A term without a $\square$ is called a constant.

## EXAMPLE Identify Parts of an Expression

Identify the terms, like terms, coefficients, and constants in $3 x-5+2 x-x$.
$3 x-5+2 x-x$

$$
\begin{array}{ll}
=3 x+(\square)+2 x+(\square) & \text { Definition of Subtraction } \\
=3 x+(-5)+2 x+(-1 x) & \text { Identity Property; }-x=-1 x
\end{array}
$$

The terms are $3 x, \square, 2 x$, and $-x$. The like terms are $3 x$, $2 x$, and $\square$. The coefficients are $3, \square$, and -1 . The constant is $\square$

## Check Your Progress

Identify the terms, like terms, coefficients, and constants in $6 x-2+x-4 x$.


## BUILD YOUR VOGABULARY (page 196)

An algebraic expression is in simplest form if it has no
$\square$
When you use properties to $\square$ like terms, you are simplifying the expression.

## EXAMPLES Simplify Algebraic Expressions

## Simplify each expression.

(5) $6 n-n$
$6 n$ and $n$ are $\square$ terms.

$$
\begin{aligned}
6 n-n & =6 n-\square & & \text { Identity Property; } n=\square \\
& =(6-1) n & & \text { Distributive Property } \\
& =\square & & \text { Simplify. }
\end{aligned}
$$

6) $8 z+z-5-9 z+2$
$8 z+z-5-9 z+2$

$$
=8 z+z+(\square)+(\square)+2 \text { Definition of subtraction. }
$$

$$
=8 z+z+(-9 z)+(-5)+2 \quad \text { Commutative Property }
$$

$$
=[8+1+(-9)] \square+[(-5)+2] \quad \text { Distributive Property }
$$

$$
=0 z+\square \quad \text { Simplify. }
$$

$$
=\square
$$

## Homework ASSIGNMENT

Page(s):
Exercises:

Check Your Progress

## Simplify each expression.

a. $7 n+n$
$\square$
b. $6 z+z-2-8 z+2$
$\square$

## 8-2 Solving Two-Step Equations

## MAIN IDEA

- Solve two-step equations.


## BUILD YOUR VOCABULARY (page 196)

A two-step equation contains $\square$

## EXAMPLES Solve Two-Step Equations

## Remember It

Two-step equations can also be solved using models. Refer to page 534 of your textbook.

Solve $5 y+1=26$.
Use the Subtraction Property of Equality.
$5 y+1=26 \quad$ Write the equation.


Use the Division Property of Equality.

$$
\begin{array}{rlr}
5 y & =25 \\
\frac{5 y}{\square \square} & =\frac{25}{\square} & \text { Divide ea } \\
y & =\square & \text { Simplify. }
\end{array}
$$

2 Solve $-4=\frac{1}{3} z+2$.

| -4 | $=\frac{1}{3} z+2$ |  | Write the equation. |
| ---: | :--- | ---: | :--- |
| $-4-\square$ | $=\frac{1}{3} z+2-\square$ |  | Subtract $\square$ from each side. |
| $\square$ | $=\frac{1}{3} z$ |  | Simplify. |
| $\square(-6)$ | $=\square \cdot \frac{1}{3} z$ |  | Multiply each side by $\square$. |
| $\square$ | $=z$ |  | Simplify. |

FOLDABLES

## ORGANIZE IT

Under the "Equations" tab, include examples of how to solve a two step equation. You can use your notes later to tell someone else what you learned in this lesson.


## Remember It

When you are solving an equation, watch for the negative signs. In Example 3, the coefficient of the variable, $x$, is -3 , not +3 . So, divide each side by -3 to solve for $x$.

Check Your Progress Solve each equation.
a. $3 x+2=20$

b. $-5=\frac{1}{2} z+8$


## EXAMPLE Equations with Negative Coefficients

(3) Solve $8-3 x=14$.

$$
\begin{aligned}
8-3 x & =14 & & \text { Write the equation. } \\
8+(\square) & =14 & & \text { Definition of subtraction. } \\
8-8+(\square) & =14-8 & & \text { Subtract 8 from each side. } \\
-3 x & =6 & & \text { Simplify. } \\
\frac{-3 x}{\square} & =\frac{6}{\square} & & \text { Divide each side by } \square . \\
x & =-2 & & \text { Simplify }
\end{aligned}
$$

Check Your Progress
Solve $5-2 x=11$.

## Review It

Simplify $-c+4 c$.
$\qquad$

## EXAMPLE Combine Like Terms First

4 Solve $14=-k+3 k-2$.

$$
\begin{array}{ll}
14=-k+3 k-2 & \text { Write the equation. } \\
14=-1 k+3 k-2 & \square \text { Property; }-k=1 k \\
14=\square-2 & \begin{array}{l}
\text { Combine like terms; } \\
-1 k+3 k=(-1+3) k \text { or } 2 k .
\end{array}
\end{array}
$$

$14+\square=2 k-2+\square \quad$ Add $\square$ to each side.

$8=k$

Simplify.
Divide each side by $\qquad$

Simplify.

Check Your Progress Solve $10=-n+4 n-5$.

Homework Assignment

Page(s):
Exercises:

Solve $10=-n+4 n-5$.

## 8-3 Writing Two-Step Equations

## EXAMPLES Translate Sentences Into Equations

## MAIN IDEA

- Write two-step equations that represent real-life situations.


## ReVIew IT

What are at least two words that will tell you that a sentence can be written as an equation? (Lesson 1-7)

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc. $\square$

Translate each sentence into an equation.

## Sentence

(1) Three more than half a number is 15 .

2 Nineteen is two more than five times a number.

3 Eight less that twice a number is -35 .

## EXAMPLE Write and Solve a Two-Step Equation

4 TRANSPORTATION A taxi ride costs $\$ 3.50$ plus $\$ 2$ for each mile traveled. If Jan pays $\mathbf{\$ 1 1 . 5 0}$ for the ride, how many miles did she travel?

$\$ 3.50$ plus $\$ 2$ per mile equals $\$ 11.50$.

Let $m$ represent the miles driven.

$$
3.50+2 m=11.50
$$



$$
2 m=8
$$



Jan traveled $\square$ miles.

Write the equation.

Subtract $\square$ from each side.

Simplify.

Divide each side by $\qquad$

Simplify.

Check Your Progress
Translate each sentence into an equation.
a. Five more than one third a number is 7 .
$\square$
b. Fifteen is three more than six times a number.
$\square$
c. Six less that three times a number is -22 .
$\square$
d. A rental car costs $\$ 100$ plus $\$ 0.25$ for each mile traveled. If Kaya pays $\$ 162.50$ for the car, how many miles did she travel?

## EXAMPLE

(5) DINING You and your friend spent a total of $\$ 33$ for dinner. Your dinner cost $\$ 5$ less than your friend's. How much did you spend for dinner?

| Words | Your friend's dinner plus your dinner <br> equals $\$ 33$. |
| :--- | :--- |
| Variables | Let $f$ represent the cost of your friend's dinner.  <br>  $f+f-5=33$ |
| $\square-5$ $=33$  Write the equation. <br> $\square$  Combine like terms.  <br> $2 f-5+5$ $=33+5$  Add 5 to both sides. <br> $2 f$ $=\square$  Simplify. |  |

## 8-4 <br> Solving Equations with Variables on Each Side

## EXAMPLE Equations with Variables on Each Side

## MAIN IDEA

- Solve equations with variables on each side.


## FOLDABLES

## Organize It

Describe in your own words the steps to follow when you solve an equation with variables on both sides. Write an example of such an equation and solve it.

(1) Solve $7 x+4=9 x$.

$$
7 x+4=9 x
$$



Check Your Progress
Solve $3 x+6=x$.

## EXAMPLE Equations with Variables on Each Side

2 Solve $3 x-2=8 x+13$.

| $3 x-2$ | $=8 x+13$ |  | Write the equation. |
| ---: | :--- | ---: | :--- |
| $3 x-\square-2$ | $=8 x-\square+13$ | Subtract $\square$ <br> side. <br> Simplify. |  |
| $-5 x-2$ | $=13$ |  | from each |
| $-5 x-2+\square$ | $=13+\square$ |  | Add $\square$ to each side. |
| $\square$ | $=\square$ |  | Simplify. |
| $x$ | $=\square$ |  | Divide each side by $\square$. |

Check Your Progress
Solve $4 x-3=5 x+7$.

## EXAMPLE

(3) MEASUREMENT The measure of an angle is $\mathbf{8}$ degrees more than its complement. If $\boldsymbol{x}$ represents the measure of the angle and $90-x$ represents the measure of its complement, what is the measure of the angle?


8 less than the measure of an angle equals the measure of its complement.

Let $x$ and $90-x$ represent the measures of the angles.

Equation

$$
x-8=90-x
$$



Write the equation.


Simplify.


Add $\square$ to each side.

$x=\square$
The measure of the angle is $\square$

## Check Your Progress

MEASUREMENT The measure of an angle is 12 degrees less than its complement. If $x$ represents the measure of the angle and $90-x$ represents the measure of its complement, what is the measure of the angle?

## 8-5 Problem-Solving Investigation: Guess and Check

## EXAMPLE

## Main IDEA

- Guess and check to solve problems.


## HoMEWORK ASSIGNMENT



THEATER 120 tickets were sold for the school play. Adult tickets cost $\$ 8$ each and child tickets cost $\$ 5$ each. The total earned from ticket sales was $\mathbf{\$ 8 4 0}$. How many tickets of each type were sold?

UNDERSTAND You know the cost of each type of ticket, the total number of tickets sold, and the total income from ticket sales.

PLAN Use a systematic guess and check method to find the number of each type of ticket.

SOLVE Find the combination that gives 120 total tickets and $\$ 840$ in sales. In the list, a represents adult tickets sold, and $c$ represents child tickets sold.

| $\boldsymbol{a}$ | $\boldsymbol{c}$ | $\mathbf{8 a + 5} \mathbf{c}$ | Check |
| :---: | :---: | :---: | :---: |
| 50 | 70 | $8(50)+5(70)=750$ | too low |
| 60 |  | $8(60)+\square=\square$ |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |

CHECK

$$
\begin{aligned}
& \text { So } \square \text { adult tickets and } \square \text { child tickets } \\
& \text { were sold. }
\end{aligned}
$$

## Check Your Progress

THEATER 150 tickets were sold for the school play. Adult tickets were sold for $\$ 7.50$ each, and child tickets were sold for $\$ 4$ each. The total earned from ticket sales was $\$ 915$. How many tickets of each type were sold?


## 8-6 Inequalities

EXAMPLES Write Inequalities with $<$ or $>$.

## Main Idea

- Write and graph inequalities.

Write an inequality for each sentence.

1) SPORTS Members of the little league team must be under 14 years old.

Let $a=$ person's age.


2 CONSTRUCTION The ladder must be over 30 feet tall to reach the top of the building.
Let $h=$ ladder's height.


Check Your Progress
Write an inequality for each sentence.
a. Members of the peewee football team must be
b. The new building must be over 300 feet tall.
under 10 years old.



EXAMPLES Write Inequalities with $\leq$ or $\geq$
Write an equality for each sentence.
3 POLITICS The president of the United States must be at least 35 years old.

Let $a=$ president's age.
$\square$ 35

4 CAPACITY A theater can hold a maximum of 300 people.
Let $p=$ theater's capacity.


## FOLDABLE

## ORGANIZE IT

Record the main ideas about how to write inequalities. Include examples to help you remember. Write your notes under the "Inequalities" tab.


## Write It

Write in words what the symbols $<,>, \leq$, and $\geq$ mean.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Check Your Progress sentence.
a. To vote, you must be at least 18 years old.

b. A football stadium can hold a maximum of 10,000 people.


## EXAMPIES Determine the Truth of an Inequality

For the given value, state whether the inequality is true or false.
$x-4<6, x=0$

$$
x-4<6 \quad \text { Write the inequality. }
$$



Simplify.

Since
 is less than $\square$ $<$ $\square$
$\square$
$3 x \geq 4, x=1$
$3 x \geq 4 \quad$ Write the inequality.

$\square$ $\nsupseteq 4$
Simplify.

Since $\square$ is not greater than or equal to 4 , the sentence is $\square$

Check Your Progress
For the given value, state whether the inequality is true or false.
a. $x-5<8, x=16$

b. $2 x \geq 9, x=5$
$\square$

EXAMPLES Graph an Inequality
Graph each inequality on a number line.
(7) $n \leq-1$

Place a
 circle at -1 . Then draw a line and an arrow to the $\square$.

(8) $n>-1$

Place an $\square$ circle at -1 . Then draw a line and an arrow to the $\square$


## Homework

 AssignmentPage(s):
Exercises:

## 8-7 Solving Inequalities by Adding or Subtracting

## EXAMPLES Solving Inequalities

## Main IDEA

- Solve inequalities by using the Addition or Subtraction Properties of Inequality.
(1) Solve $-21 \geq d-8$.
$-21 \geq d-8 \quad$ Write the inequality.

$\square \geq d$ or $d \leq \square \quad$ Simplify.

2 Solve $y+5>11$.

| $y+5>11$ | Write the inequality. |
| :---: | :--- | :--- |
| $y+5-\square>11-\square$ | Subtract $\square$ from each side. |
| $y>\square$ | Simplify. |

Check Your Progress Solve each inequality.
a. $b-12>4$
b. $9 \leq g+13$


## EXAMPLE

3 TEST EXAMPLE Kayta took $\$ 12$ to the bowling alley. Shoe rental costs $\$ 3.75$. What is the most he could spend on games and snacks?

## Read the Item

Since we want to find the most he could spend, use less than or equal to.

## Solve the Item

Let $x=$ the amount Kayta could spend on games and snacks.
Estimate $\quad \$ 12-\$ 4=\$ \square$

## Homework ASSIGNMENT

Page(s):
Exercises:


$$
\$ 3.75+d \leq \$ 12
$$

$\$ 3.75-\square+d \leq \$ 12-\square$

$$
d \leq \square
$$

Kayta could spend no more than $\square$ on games and snacks.

## Check Your Progress <br> Monique took $\$ 20$ to the

 bookstore. She spent $\$ 2.25$ on a snack at the library café. What is the most she could spend on books?
## 8-8 Solving Inequalities by Multiplying or Dividing

## EXAMPLES Solve Inequalities by Multiplying or Dividing

## MAIN IDEA

Solve inequalities by using the Multiplication or Division Properties of Inequality.
(1)

Solve $6 x<-30$.


Solve $\frac{1}{2} p \geq 9$.

$$
\frac{1}{2} p \geq 9
$$

Write the inequality.

(9)

Multiply each side by $\square$
Write the inequality.

Divide each side by $\square$

Simplify.

Check Your Progress
Solve each inequality.
a. $4 x<-24$
b. $\frac{1}{2} p>5$


EXAMPLES Multiply or Divide by a Negative Number
(3) Solve $\frac{b}{-4} \leq 5$.

$$
\frac{b}{-4} \leq 5 \quad \text { Write the inequality. }
$$



Multiply each side by $\square$
$\square$ and reverse the symbol.

Simplify.


## Homework Assignment

Page(s):
Exercises:
4) Solve $-4 n>-60$.


Check Your Progress

## Solve each inequality.

a. $\frac{x}{-3} \leq 7$ $\square$ b. $-8 b<-56$
$\square$

## EXAMPL

5 PACKAGES A box weighs 1 pound. It is filled with books that weigh 2 pounds each. Jesse can carry at most 20 pounds. Assuming space is not an issue, write and solve an inequality to find how many books he can put in the box and still carry it.
The phrase at most means less than or $\square$ to.

WORDS 1 lb plus 2 lb per book is less than or equal to $\square$ lb. VARIABLE Let $p$ represent the number of $\square$ put in the box. INEQUALITY $1 \quad \square \quad 2 p \leq \square$


Write the inequality.
$1-\square+2 p \leq 20-\square$ Subtract $\square$ from each side. Simplify.

Divide each side by $\square$

Simplify.
Since Jesse can not put half a book in the box, Jesse can put at most books in the box.

Check Your Progress
PACKAGES A box weighs 2 pounds. It is filled with toys that weigh 1 pound each. Danielle can carry at most 30 pounds. How many toys can she put in the box and still carry it?

## BRINGING IT ALL TOGETHER

## STUDY CUIDE

## FOLDABLES

Use your Chapter 8 Foldable to help you study for your chapter test.

## Vocabulary PUZZLEMAKER

To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 8, go to:
glencoe.com

## BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (page 196) to help you solve the puzzle.

## 8-1

## Simplifying Algebraic Expressions

1. Simplify the expression $3 x-4-8 x+2$ by writing the missing information:
$\square$
 are like terms. $\square$ and $\square$ are also like terms.
$3 x-4-8 x+2=3 x+\square+(-8 x)+2 \quad$ Definition of subtraction

$$
\begin{aligned}
& =3 x+\square+(-4)+2 \text { Commutative Property } \\
& =\square x+-4+2 \quad \text { Distributive Property } \\
& =\square \text { Simplify. }
\end{aligned}
$$

## 8-2

## Solving Two-Step Equations

2. Define two-step equation.
$\square$
What is the first step in solving each equation?
3. $3 y-2=16$
4. $5-6 x=-19$
5. $32=4 b+6-b$

$\square$

## 8-3

## Writing Two-Step Equations

## Write each sentence as an algebraic equation.

6. Four less than six times a number is -40 .
7. The quotient of a number and 9 , decreased by 3 is equal to 24 .

8. Jennifer bought 3 CDs , each having the same price. Her total for the purchase was $\$ 51.84$, which included $\$ 3.84$ in sales tax. Find the price of each CD.
Let $p$ represent $\square$
Equation: Price of $3 \mathrm{CDs}+\square=\square$

$$
\square+\square=51.84
$$

$$
3 p+3.84-\square=51.84-\square
$$

$$
\begin{aligned}
\square & =\square \\
\square & =\frac{48}{3} \\
p & =\square
\end{aligned}
$$

## 8-4

Solving Equations with Variables on Each Side
Solve each equation.
9. $3 x+2=2 x+5$
10. $6 x-2=3 x$
11. $7 x-2=9 x+6$


## 8-5

## Problem-Solving Investigation: Guess and Check

12. PROMOTIONS A sports drink company is offering free mountain bikes to people who collect enough points by buying bottles of the drink. You earn 5 points when you buy a 20 -ounce bottle, and you earn 10 points when you buy a 32 -ounce bottle. To get the bike, you need to have 915 points. What is the least number of bottles of sports drink you would have to buy in order to get the bike?
$\square$
13. NUMBER THEORY The product of a number and its next two consecutive whole numbers is 60 . What are the numbers?
$\square$

## 8-6

Inequalities
Write an inequality for each sentence using the symbol $<,>, \leq$, or $\geq$.
14. Children under the age of 2 fly free. $\square$
15. You must be at least 12 years old to go on the rocket ride. $\square$
Write the solution shown by each graph.
16.

17.


## 8-7

## Solving Inequalities by Adding or Subtracting

## Solve each inequality. Check your solution.

18. $8+x>12$

19. $n-3 \leq-5$

20. $1<g-6$


## 8-8

Solving Inequalities by Multiplying or Dividing
Solve each inequality. Check your solution.
21. $7 m \geq 77$

22. $\frac{x}{5}>-3$

23. $-12 b \leq 48$


## ARE YOU READY FOR THE CHAPTER TEST?

## Checklist

## Math Online

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 8.

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 8 Practice Test on page 459 of your textbook as a final check.

I used my Foldable or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 8 Study Guide and Review on pages 454-458 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 8 Practice Test on page 459.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 8 Foldable.
- Then complete the Chapter 8 Study Guide and Review on pages 454-458 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 8 Practice Test on page 459.


Student Signature


Parent/Guardian Signature


Teacher Signature

## 9

## Algebra: Linear Functions

## OLDABLES

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.

## Begin with seven sheets of $8 \frac{1}{2}^{\prime \prime} \times 11^{\prime \prime}$ paper.

STEP 1 Fold a sheet of paper in half lengthwise. Cut a 1 " tab along the left edge through one thickness.


STEP 3 . Glue the 1 " tab down. Write the title of the lesson on the front tab.


STEP 3 3 Repeat Steps 1-2 for the remaining sheets of paper. Staple together to form a booklet.


NOTE-TAKING TIP: When you begin studying a chapter in a textbook, first skim through the chapter to become familiar with the topics. As you skim, write questions about what you don't understand and what you'd like to know. Then, as you read the chapter, write answers to your questions.

## BUILD YOUR VOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 9.
As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

| Vocabulary Term | Found <br> on Page | Definition | Description or <br> Example |
| :--- | :--- | :--- | :--- |
| arithmetic sequence |  |  |  |
| common difference |  |  |  |
| constant of variation |  |  |  |
| direct variation |  |  |  |
| domain |  |  |  |
| function |  |  |  |
| function table |  |  |  |
| line of fit |  |  |  |

(continued on the next page)

| Vocabulary Term | Found <br> on Page | Definition | Description or <br> Example |
| :--- | :--- | :--- | :--- |
| range |  |  |  |
| rise |  |  |  |
| run |  |  |  |
| scatter plot |  |  |  |
| sequence |  |  |  |
| slope |  |  |  |
| slope-intercept form |  |  |  |
| system of equations |  |  |  |
| term inequalities |  |  |  |

## 9-1 Sequences

## MAIN IDEA

- Write algebraic expressions to determine any term in an arithmetic sequence.


## BUILD YOUR VOGABULARY (pages 221-222)

A sequence is an $\square$ of numbers.

Each number in a $\square$ is called a term.

An arithmetic sequence is a sequence in which the
$\square$ between any two consecutive terms is
the same.

The difference between any two $\square$

common difference.

## EXAMPLE Identify Arithmetic Sequences

(1) State whether the sequence $23,15,7,-1,-9, \ldots$ is arithmetic. If it is, state the common difference. Write the next three terms of the sequence.


The terms have a common $\square$
$\square$

Continue the pattern to find the next three terms.
 of -8 , so the sequence

The next three terms are $\square$ , and $\square$

## EXAMPLE Describe an Arithmetic Sequence

2) Write an expression that can be used to find the $n$th term of the sequence $0.6,1.2,1.8,2.4, \ldots$. Then write the next three terms.

Use a table to example the sequence.


The terms have a common difference of 0.6. Also, each term is
$\square$ times its term number.

An expression that can be used to find the $n$th term is $\square$ The next three terms are $\square$
$\square$ , and
$\square$

Check Your Progress Write an expression that can be used to find the $n$th term of the sequence $1.5,3,4.5,6, \ldots$. Then write the next three terms.

## EXAMPL:

3 TRANSPORTATION This arithmetic sequence shows the cost of a taxi ride for $1,2,3$, and 4 miles. What would be the cost of a 9-mile ride?

The common difference between the

| Miles | Cost (\$) |
| :---: | :---: |
| 1 | 5.25 |
| 2 | 7.00 |
| 3 | 8.75 |
| 4 | 10.50 | costs is $\square$ This implies that the expression for the $n$th mile is $\square$ Compare each cost to the value of $\square$ for each number of miles.

Each cost is 3.50 more than
$\square$ So, the expression

is the cost of a
taxi ride for $n$ miles. To find the

| Miles | Cost (\$) | $\mathbf{1 . 7 5 n}$ |
| :---: | :---: | :---: |
| 1 | 5.25 | 1.75 |
| 2 | 7.00 | 3.50 |
| 3 | 8.75 | 5.25 |
| 4 | 10.50 | 7.00 | cost of a 9 -mile ride, let $c$ represent the cost. Then write and solve an equation for $n=9$.

$c=1.75 n+3.50$
$c=1.75 \square+3.50$
$c=\square+3.50$ or $\square$

Write the equation.


Simplify.

It would cost $\square$ for a 9-mile taxi ride.

## Check Your Progress TRANSPORTATION This

 arithmetic sequence shows the cost of a taxi ride for $1,2,3$, and 4 miles. What would be the cost of a 15 -mile ride?| Miles | Cost (\$) |
| :---: | :---: |
| 1 | 6.00 |
| 2 | 7.50 |
| 3 | 9.00 |
| 4 | 10.50 |

## 9-2 Functions

## MaIN IDEA

- Complete function tables.


## BUILD YOUR YOGABULARY (pages 221-222)

A $\square$ where one thing another is called a function.

## EXAMPLE Find a Function Value

## Find each function value.


$f(4)$ if $f(x)=x-8$
$f(x)=x-8 \quad$ Write the function.


So, $f(4)=$ $\square$
$2 f(-6)$ if $f(x)=3 x+4$

$$
f(x)=3 x+4
$$

$f(\square)=3(\square)+4$

 $+4$ $=\square$

So, $f(-6)=$


## ORGANIZE IT

In your Foldable, write how you would find the value of a function. You may wish to include an example.


Substitute $\square$ for $x$ into the function rule.

Simplify.

Write the function.
Substitute $\square$ for $x$ into the function rule.

Multiply.
Simplify.

Find each function value.

b. $f(-2)$ if $f(x)=2 x+6$
a. $f(2)$ if $f(x)=x-7$


## Check Your Progress

BUILD YOUR VOGABULARY (pages 221-222)
The set of $\square$ values in a function is called the domain.

The set of $\square$ values in a function is called the range.

You can use a function table to organize the input,
$\square$

## EXAMPLE Make a Function Table

3 Complete the function
table for $f(x)=4 x-1$.
Then state the domain and the range of the function.
Substitute each value of $x$, or
$\square$ into the function rule.

Then simplify to find the $\square$

| Input <br> $\boldsymbol{x}$ | Rule <br> $\mathbf{4 x}-\mathbf{1}$ | Output <br> $\boldsymbol{f}(\boldsymbol{x})$ |
| :---: | :---: | :---: |
| -3 |  |  |
| -2 |  |  |
| -1 |  |  |
| 0 |  |  |
| 1 |  |  |

$$
\begin{aligned}
f(x) & =4 x-1 \\
f(-3) & =\square \text { or } \square \\
f(-2) & =\square \text { or } \square \\
f(-1) & =\square \text { or } \square \\
f(0) & =\square \text { or } \square \\
f(1) & =\square
\end{aligned}
$$

| Input <br> $\boldsymbol{x}$ | Rule <br> $\mathbf{4 x}-\mathbf{1}$ | Output <br> $\mathbf{f}(\boldsymbol{x})$ |
| :---: | :---: | :---: |
| -3 |  |  |
| -2 |  |  |
| -1 |  |  |
| 0 |  |  |
| 1 |  |  |
|  |  |  |

The domain is
The range is $\square$

## Homework Assignment



## Check Your Progress

Complete the function table for $f(x)=3 x-2$. Then state the domain and the range of the function.
$\square$

| Input <br> $\boldsymbol{x}$ | Rule <br> $\mathbf{3 x}-\mathbf{2}$ | Output <br> $\boldsymbol{f}(\boldsymbol{x})$ |
| :---: | :--- | :--- |
| -3 |  |  |
| -2 |  |  |
| -1 |  |  |
| 0 |  |  |
| 1 |  |  |

## EXAMPLE Functions with Two Variables

4) PARKING FEES The price for parking at a city lot is $\$ 3.00$ plus $\$ 2.00$ per hour. Write a function to represent the price of parking for $h$ hours. Then determine how much would it cost to park at the lot for 2 hours.
Words $\quad$ Cost of parking equals $\$ 3.00$ plus $\$ 2.00$ per hour.


The function $p=\square$ represents the situation.
Substitute $\square$ for $h$ into the function rule.
$p=\square+\square$
$p=3+2 \square$ or $\square$
It will cost $\square$ to park for 2 hours.

## Check Your Progress

TAXI The price of a taxi ride is $\$ 5.00$ plus $\$ 20.00$ per hour. Write a function using two variables to represent the price of riding a taxi for $h$ hours. Then determine how much would it cost for a 3-hour taxi ride.


## 9-3 Representing Linear Functions

## EXAMPLE

## Main Idea

Represent linear functions using function tables and graphs.

## FOLDABLES

## ORGANIZE IT

In your Foldable, include a linear function and its graph.

Linear
Functions
(1) MUSIC During a clearance sale, a music store is selling CDs for $\$ 3$ and tapes for $\$ 1$. Graph the function $3 x+y$ $=6$ to find how many CDs and tapes Bill can buy with $\$ 6$.

First, rewrite the equation by solving for $y$.

$$
\begin{aligned}
3 x+y & =6 & & \text { Write the equation. } \\
3 x-\square+y & =6-\square & \begin{array}{l}
\text { Subtract } \square \\
\\
\\
\text { Simplify }
\end{array} & \text { from each side. }
\end{aligned}
$$

Choose values for $x$ and substitute them to find $y$. Then graph the ordered pairs.

| $\boldsymbol{x}$ | $\boldsymbol{y}=6-3 \boldsymbol{x}$ | $\boldsymbol{y}$ | $(x, y)$ |
| :---: | :---: | :---: | :---: |
| 0 | $y=6-3$ | $\square$ | $\square$ |
| 1 | $y=6-3$ | $\square$ | $\square$ |
| 2 | $y=6-3 \square$ | $\square$ | $\square$ |



He cannot buy negative numbers of CDs or tapes, so the
 tapes, or $\square$ CDs and $\square$ tapes.

Check Your Progress
BAKE SALE During a bake sale, a plate of brownies is sold for $\$ 2$ and a plate of cookies is sold for $\$ 1$. Graph the function $2 x+y=4$ to find how many plates of brownies and cookies Craig can buy with $\$ 4$.

## EXAMPLE Graph a Function

2) Graph $y=x-3$.

Step 1 Choose some values for $x$. Make a function table.
Include a column of ordered pairs of the form $(x, y)$.

| $x$ | $x-3$ | $y$ | $(x, y)$ |
| :---: | :---: | :---: | :---: |
| 0 | $\square-3$ | $\square$ | $\square$ |
| 1 | $\square-3$ | $\square$ | $\square$ |
| 2 | $\square-3$ | $\square$ | $\square$ |
| 3 | $\square-3$ | $\square$ | $\square$ |

Step 2 Graph each ordered pair.
Draw a line that passes through each point. Note that the ordered pair for any point on this line is a solution of $y=x-3$. The line is the complete graph of the function.


Check It appears from the graph that $(-1,-4)$ is also a solution. Check this by substitution.

$$
\begin{array}{ll}
y=x-3 & \text { Write the function. } \\
\square \stackrel{?}{=}-3 & \text { Replace } x \text { and } y . \\
\square=\square & \text { Simplify. }
\end{array}
$$

Check Your Progress Graph $y=x-2$.


BUILD YOUR YOGABULARY (pages 221-222)
A function in which the graph of solutions forms a
$\square$ is called a linear function.

## EXAMPLE

3 TEST EXAMPLE Which line graphed below best represents the table of values for the ordered pairs $(x, y)$ ?

A


C


B


D


## Read the Item

You need to decide which of the four graphs represents the data in the table.

## Solve the Item

The values in the table represent the ordered pairs $\square$ $\square, \square$ and $\square$. Test the ordered pairs with each
graph. Graph $\square$ is the only graph which contains all these ordered pairs. The answer is $\square$
Homework Assignment

Page(s):<br>Exercises:

Check Your Progress
MULTIPLE CHOICE
Which line graphed below best represents the table of values for the ordered pairs $(x, y)$ ?


H


J



## Main Idea

- Find the slope of a line using the slope formula.

BUILD YOUR VOCABULARY (pages 221-222)
Slope is the $\square$ of the rise, or $\square$ change, to the run, or $\square$ change.

## EXAMPLE

(1) ACCESS RAMPS The access ramp from the sidewalk to the door of a hotel rises 8 inches for every horizontal change of 96 inches. What is the slope of the access ramp?


Definition of slope

rise $=\square$ inches, run $=\square$ inches


Simplify.

The slope of the access ramp is


## Check Your Progress

ACCESS RAMPS The access ramp
from the sidewalk to the door of an office building rises 14 inches for every horizontal change of 210 inches. What is the slope of the access ramp?

## EXAMPLE Find Slope Using a Graph

2 Find the slope of the line.
Choose two points on the line. The vertical change is -3 units while the horizontal change is 2 units.


$$
\begin{aligned}
\text { slope } & =\frac{\text { rise }}{\text { run }} & & \text { Definition of slope } \\
& =\square & & \text { rise }=\square, \text { run }=\square
\end{aligned}
$$

The slope of the line is $\square$

## Check Your Progress

Find the slope of the line.


## EXAMPLE Find Slope Using a Table

3 The points given in the table lie on a line. Find the slope of the line. Then graph the line.

| $\boldsymbol{x}$ | -3 | -1 | 1 |
| :---: | :---: | :---: | :---: |
| $\boldsymbol{y}$ | -2 | 1 | 4 |

slope $=\frac{\text { change in } y}{\text { change in } x}$


The slope is



Check Your Progress
The points given in the table below lie on a line. Find the slope of the line. Then graph the line.


| $x$ | $y$ |
| :---: | :---: |
| 2 | 5 |
| 5 | 7 |
| 8 | 9 |
| 11 | 11 |

EXAMPLE Positive Slope
(4) Find the slope of the line that passes through $A(3,3)$ and $B(2,0)$.
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
Definition of slope
$m=\frac{0-3}{2-3}$
$\left(x_{1}, y_{1}\right)=(3,3)$
$m=\frac{3}{1}$ or 3
$\left(x_{2}, y_{2}\right)=(2,0)$
Simplify.


## EXAMPLE Negative Slope

(5) Find the slope of the line that passes through $X(-2,3)$ and $Y(3,0)$.
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad$ Definition of slope
$m=\frac{\square}{\square}$

$$
\left(x_{1}, y_{1}\right)=(-2,3)
$$

$m=\frac{-3}{5}$ or $-\frac{3}{5}$
Simplify.


Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

## Homework

 AssignmentPage(s):
Exercises:

## 9-5 Direct Variation

## Main Idea

- Use direct variation to solve problems.


## BUILD YOUR VOCABULARY (pages 221-222)

When two variable quantities have a $\square$ their relationship is called a direct variation. The constant
$\square$ is called the constant variation.

## EXAMPLE Find a Constant Ratio

(1) EARNINGS The amount of money Serena earns at her job varies directly as the number of hours she works. Determine the amount Serena earns per hour.

Since the graph of the data forms a
line, the rate of change



Use the graph to find $\square$


Serena earns $\square$

## Check Your Progress

EARNINGS The amount of money Elizabeth earns at her job varies directly as the number of hours she works. Determine the amount Elizabeth earns per hour.


## KEY CONCEPT

In a direct variation, the ratio of $y$ to $x$ is constant. This can be stated as $y$ varies directly with x. A direct variation can be represented algebraically as $k=\frac{y}{x}$ or $y=k x$ where $k \neq 0$.

## EXAMPIE Solve a Direct Variation

2 SHOPPING The total cost for cans of soup varies directly as the number of cans purchased. If 4 cans of soup cost $\$ 5$, how much would it cost to buy 8 cans?

METHOD 1 Use an equation.
Write an equation of direct variation. Let $x$ represent the number of cans and let $y$ represent the cost.


Use the equation to find $y$ when $x=8$.
$y=1.25 x$
$y=1.25$
$x=\square$
$y=\square$
Multiply.

METHOD 2 Use a proportion.


It would cost $\square$ to buy 8 cans.

Check Your Progress SHOPPING A grocery store sells 6 apples for $\$ 2.70$. How much would it cost to buy 10 apples?

## EXAMPLES Identify Direct Variation

Determine whether each linear function is a direct variation. If so, state the constant of variation.

| Days, $\boldsymbol{x}$ | 2 | 4 | 6 | 8 |
| :--- | :--- | :---: | :---: | :---: | :---: |
| Hours worked, $\boldsymbol{y}$ | 16 | 32 | 54 | 72 |

Compare the ratios to check for a common ratio.


The ratios are $\square$ , so the function is


| Hours, $\boldsymbol{x}$ | 3 | 6 | 9 | 12 |
| :--- | :---: | :---: | :---: | :---: |
| Miles, $\boldsymbol{y}$ | 25.5 | 51 | 76.5 | 102 |

Compare the ratios to check for a common ratio.


Since the ratios are $\square$, the function is
a direct variation. The constant of variation is


Check Your Progress
Determine whether the linear function is a direct variation. If so, state the constant of variation.

a. | Days, $\boldsymbol{x}$ | 1 | 2 | 3 | 4 |
| :--- | :---: | :---: | :---: | :---: |
| Hours worked, $\boldsymbol{y}$ | 8 | 16 | 24 | 32 |

## Homework

 Assignment```
Page(s):
Exercises:
```

b.

| Hours, $\boldsymbol{x}$ | 2 | 4 | 6 | 8 |
| :--- | :---: | :---: | :---: | :---: |
| Miles, $\boldsymbol{y}$ | 12 | 25 | 35 | 45 |

## 9-6 Slope-Intercept Form

## MAIN IdeA

- Graph linear equations using the slope and $y$-intercept.


## BUILD YOUR VOGABULARY (pages 221-222)

Slope-intercept form is when an equation is written in the form $\square$, where $m$ is the $\square$ and $b$ is the $y$-intercept.

EXAMPLES Find the Slopes and $y$-intercepts of Graphs
State the slope and the $y$-intercept of the graph of each equation.
(1) $y=\frac{3}{4} x-5$
$y=\frac{3}{4} x+\square \quad$ Write the equation in the form $y=m x+b$.
$y=\uparrow_{m x+} \overbrace{b} \quad m=\frac{3}{4}, b=\square$

The slope of the graph is $\square$ , and the $y$-intercept
$\square$
2) $2 x+y=8$

$$
2 x+y=8
$$



Write the original equation.
Subtract $\square$ from each side.
Simplify.
Write the equation in the form $y=m x+b$.
$m=\square, b=\square$

The slope of the graph is $\square$ and the $y$-intercept
is $\square$

## Homework

 AssignmentPage(s):
Exercises:

Check Your Progress
State the slope and the $y$-intercept of the graph of each equation.
a. $y=\frac{1}{4} x-2$
b. $3 x+y=5$


## EXAMPLE Graph an Equation

3) Graph $y=\frac{2}{3} x+2$ using the slope and $y$-intercept.

Step 1 Find the slope and $y$-intercept.


Step 2 Graph the $y$-intercept $\square$
Step 3 Use the slope to locate a second point on the line.



Step 4 Draw a line through the two points.

Check Your Progress
Graph $y=\frac{1}{3} x+3$ using the slope and $y$-intercept.


## 9-7 Systems of Equations

## Main Idea

- Solve systems of equations by graphing.


## BUILD YOUR VOGABULARY (pages 221-222)

A system of equations consists of two $\square$ and two


## EXAMPLE One Solution

(1) Solve the system $y=3 x-2$ and $y=x+1$ by graphing.

Graph each equation on the same coordinate plane.


The graphs appear to intersect at $\square$
Check in both equations by replacing $\square$ with $\square$ and $\square$ with $\square$

## Check

$$
y=3 x-2
$$

$$
y=x+1
$$

$\square$

$$
\stackrel{2}{=} 3
$$

 $-2$
$\square$
$\square$

$2.5=2.5 \checkmark$

$$
2.5=2.5 \checkmark
$$

The solution of the system is $(1.5,2.5)$.

## EXAMPLE No Solution

2) Solve the system $y=2 x-1$ and $y=2 x+1$ by graphing.


The graphs appear to be $\square$ lines. Since there is no coordinate point that is a solution of both questions, there is
$\square$ for the system of equations.

## EXAMPLE Infinitely Many Solutions

3 Solve the system $y=3 x-2$ and $y-2 x=x-2$ by graphing.
Write $y-2 x=x-2$ in slope-intercept form.

$$
y-2 x=x-2 \quad \text { Write the equation. }
$$

$y-2 x+\square=x-2+\square$ Add $\square$ to both sides.
$\square=\square-\square$ Simplify.


The solution of the system is all $\square$ pairs of the $\square$ on the line $y=3 x-2$.

Check Your Progress
Solve each system of equations by graphing.
a. $y=x-4$ and $y=2 x-6$

b. $y=-3 x-2$ and $y=-3 x+4$

c. $y=2 x-5$ and $y+2=2 x-3$


## 9-8 Problem-Solving Investigation: Use a Graph

## EXAMPLE Use a Graph

## Main IDEA

- Solve problems by using a graph.


## Homework ASSIGNMENT

The graph shows how many boxes of cookies were sold by five students for a school fundraiser. How many boxes did the students sell altogether?

UNDERSTAND The graph shows you how many boxes were sold by each of five students. You want to know the total number of boxes sold by the students.

Boxes of Cookies Sold


PLAN Use the graph to add the numbers of boxes sold.

SOLVE


CHECK Look at the numbers at the top of each bar. Double check your sum.

Check Your Progress PETS The graph shows how many dogs Edmond walked each day this week. How many dogs did he walk altogether during the week?


## 9-9 Scatter Plots

## Main Idea

- Construct and interpret scatter plots.


## BUILD YOUR VOGABULARY (pages 221-222)

A scatter plot is a graph that shows the between
$\square$
A line of fit is a line that is very close to $\square$ of the data points in a scatter plot.

## EXAMPLES Identify a Relationship

Explain whether the scatter plot of the data for each of the following shows a positive, negative, or no relationship.
(1) cups of hot chocolate sold at a concession stand and the outside temperature

As the temperature decreases, the number of cups of hot chocolate sold $\square$ Therefore, the scatter plot might
show a $\square$ relationship.

2 birthday and number of sports played
The number of sports played does not depend on your birthday.
Therefore, the scatter plot shows $\square$ relationship.

## Check Your Progress Determine whether a scatter

 plot of the data for the following might show a positive, negative, or no relationship.a. number of cups of lemonade sold at a concession stand and the outside temperature
$\square$
b. age and the color of your hair

## EXAMPLES Line of Fit

ZOOS The table at the right shows the average and maximum longevity of various animals in captivity.
3 Make a scatter plot using the data. Then draw a line that best seems to represent the data.


| Longevity (years) |  |
| :---: | :---: |
| Average | Maximum |
| 12 | 47 |
| 25 | 50 |
| 15 | 40 |
| 8 | 20 |
| 35 | 70 |
| 40 | 77 |
| 41 | 61 |
| 20 | 54 |

Source: Walker's Mammals of the World

## Write an equation for this line of fit.

The line passes through points at $\square$ and $\qquad$
Use these points to find the slope of the line.
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad$ Definition of slope
$m=\square \quad\left(x_{1}, y_{1}\right)=\square,\left(x_{2}, y_{2}\right)=\square$
$m=\square \quad$ Simplify.
The slope is $\square$ and the $y$-intercept is $\qquad$
Use the slope and the $y$-intercept to write the equation.
$y=m x+b$
$y=\square x+\square$
Slope-intercept form

$$
m=\square, b=\square
$$

The equation for the line of fit is $\square$
(5) Use the equation to predict the maximum longevity for an animal with an average longevity of 33 years.
$y=\frac{3}{2} x+17.5$
Equation for the line of fit
$y=\frac{3}{2} \square+17.5$ or $\square$
The maximum longevity is about $\square$

## Check Your Progress

The table shows the average hourly earnings of production workers since 2000.
a. Make a scatter plot using the data.
b. Write an equation for the best-fit line using points $(0,11.43)$ and ( $5,13.76$ ).
c. Use the equation to predict the average hourly earnings of production workers in 2009.

| Production Workers Earnings |  |
| :---: | :---: |
| Year Since <br> $\mathbf{2 0 0 0}$ | Average Hourly <br> Earnings |
| 0 | $\$ 11.43$ |
| 1 | $\$ 11.82$ |
| 2 | $\$ 12.28$ |
| 3 | $\$ 12.78$ |
| 4 | $\$ 13.24$ |
| 5 | $\$ 13.76$ |
| 6 | $\$ 14.32$ |

## Homework ASSIGNMENT

Page(s):
Exercises: $\qquad$


## BRINGING IT ALL TOGETHER

## STUDY GUIDE

## FOLDABLES

Use your Chapter 9 Foldable to help you study for your chapter test.

## VOCABULARY PUZZLEMAKER

To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 9, go to:
glencoe.com

## BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (pages 221-222) to help you solve the puzzle.

## 9-1

## Sequences

State whether each sequence is arithmetic. Write yes or no. If it is, state the common difference. Write the next three terms of the sequence.

## 1. $3,7,11,15,19, \ldots$


2. $5,-15,45,-135,405, \ldots$

3. $5,-1,-7,-13,-19, \ldots$

4. $4 \frac{1}{2}, 3,1 \frac{1}{2}, 0,-1 \frac{1}{2}, \ldots$

## 9-2

## Functions

Match each description with the word it describes.
a. independent variable
5. an output value of a function $\square$
6. the set of values of the dependent variable

7. the underlined letter in $f(x)=2 \underline{x}+5$ $\square$
8. Complete the function table for $f x=2 x+2$. Then give the domain and range.

Domain: $\square$
Range: $\square$
b. dependent variable
c. domain
d. range

| $x$ | $2 x+2$ | $f(x)$ |
| ---: | :---: | :---: |
| -2 |  |  |
| 0 |  |  |
| 1 |  |  |
| 3 |  |  |
|  |  |  |

9-3

## Representing Linear Functions

9. Complete the function table. Then graph $y=-x+2$.

| $x$ | $-x+2$ | $y$ | $(x, y)$ |
| ---: | :---: | :--- | :--- |
| -2 |  |  | $\square$ |
| 0 |  |  | $\square$ |
| 1 |  | $\square$ | $\square$ |
| 3 |  | $\square$ | $\square$ |



## 9-4

Slope
Find the slope of the line that passes through each pair of points.
10. $A(1,-2), B(4,4)$
11. $C(1,2), D(3,-2)$
12. $E(-1,2), F(2,2)$


## 9-5 <br> Direct Variation

Determine whether each linear function is a direct variation. If so, state the constant of variation.
13.

| hours, $\boldsymbol{x}$ | 1 | 2 | 3 | 4 |
| :--- | :---: | :---: | :---: | :---: |
| wages, $\boldsymbol{y}$ | $\$ 6$ | $\$ 12$ | $\$ 18$ | $\$ 24$ |


15.

| hours, $\boldsymbol{x}$ | 5 | 6 | 7 | 8 |
| :--- | :---: | :---: | :---: | :---: |
| miles, $\boldsymbol{y}$ | 480 | 415 | 350 | 285 |

$\square$
14.

| length, $\boldsymbol{x}$ | 1 | 3 | 5 | 7 |
| :--- | :---: | :---: | :---: | :---: |
| width, $\boldsymbol{y}$ | 2 | 6 | 10 | 14 |


16.

| minutes, $\boldsymbol{x}$ | 3 | 6 | 8 | 12 |
| :--- | :---: | :---: | :---: | :---: |
| pages, $\boldsymbol{y}$ | 66 | 132 | 176 | 264 |



9-6
Slope-Intercept Form
State the slope and the $y$-intercept for the graph of each equation.
17. $y=-3 x+4$
18. $y=\frac{2}{3} x-7$
19. $\frac{1}{2} x+y=8$


## 9-7

## Systems of Equations

20. Solve the system $y=2 x-4$ and $y=-x-1$ by graphing.

21. Solve the system $y=4 x-4$ and $y=4 x+3$ by graphing.

|  |  |  | $y$ | 4 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  | $\xrightarrow{\square}$ |
|  |  |  |  | 0 |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  | $\downarrow$ |  |  |  |  |

9-8

## Problem-Solving Investigation: Use a Graph

22. SHOPPING The Buy Online Company charges $\$ 1.50$ per pound plus $\$ 2$ for shipping and handling. The Best Catalog Company charges $\$ 1$ per pound plus $\$ 5$ for shipping and handling. Use a graph to determine the weight at which the shipping and handling will be the same for both companies.


Weight

## 9-9

## Scatter Plots

23. Complete. A scatter plot that shows a negative relationship will have a pattern of data points that go $\square$
Write whether a scatter plot of the data for the following might show a positive, negative, or no relationship.
24. favorite color and type of pet $\square$

## ARE YOU READY FOR THE CHAPTER TEST?

## Checklist

## Math Online

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 9.

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 9 Practice Test on page 523 of your textbook as a final check.

I used my Foldable or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 9 Study Guide and Review on pages 518-522 of your textbook.
- If you are unsure of any concepts or skills, refer to the specific lesson(s).
- You may also want to take the Chapter 9 Practice Test on page 523.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 9 Foldable.
- Then complete the Chapter 9 Study Guide and Review on pages 518-522 of your textbook.
- If you are unsure of any concepts or skills, refer to the specific lesson(s).
- You may also want to take the Chapter 9 Practice Test on page 523.
 10


## Algebra: Nonlinear Functions and Polynomials

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.

## Begin with eight sheets of grid paper.

STEP 1. Cut off one section of the grid paper along both the long and short edges.



NOTE-TAKING TIP: When you take notes, define new terms and write about the new concepts you are learning in your own words. Write your own examples that use the new terms and concepts.

10

## BUILD YOUR VOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 10.
As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

| Vocabulary Term | Found <br> on Page | Definition | Description or <br> Example |
| :--- | :--- | :--- | :--- |
| cube root |  |  |  |
| monomial |  |  |  |
| nonlinear function |  |  |  |
| quadratic function |  |  |  |

## 10-1 Linear and Nonlinear Functions

## MAIN IDEA

- Determine whether a function is linear or nonlinear.


## BUILD YOUR YOGABULARY (page 254)

Nonlinear functions do not have $\square$ rates of change. Therefore, their graphs are not straight lines.

## EXAMPLES Identify Functions Using Tables

Determine whether each table represents a linear or nonlinear function. Explain.


As $x$ increases by $\square$ $y$ increases by a greater amount each time. The rate of change is not $\square$ , so this function



As $x$ increases by
 each time. The rate of change is $\square$ , so this function is $\square$
b.

| $\boldsymbol{x}$ | 3 | 5 | 7 | 9 |
| :---: | :---: | :---: | :---: | :---: |
| $\boldsymbol{y}$ | 1 | 6 | 12 | 20 |

## EXAMPLES Identify Functions Using Graphs

Determine whether each graph represents a linear or nonlinear function. Explain.

3


The graph is a curve, not a straight line. So, it represents


4


The graph is a straight line. So, it represents a $\square$ function.

Check Your Progress
Determine whether each graph represents a linear or nonlinear function. Explain.
a.

b.


EXAMPLES Identify Functions Using Equations
Determine whether each equation represents a linear or nonlinear function. Explain.
(5) $y=5 x^{2}+3$

Since $x$ is raised to the $\square$ power, the equation cannot be written in the form $y=m x+b$. So, this function is
$\square$
6 $y-4=5 x$
Rewrite the equation as $y=\square$. This equation is $\square$ since it is of the form $y=m x+b$.

## Check Your Progress

Determine whether each equation represents a linear or nonlinear function. Explain.
a. $y=x^{2}-1$

b. $-3 x=y+6$

## Homework

 AssignmentPage(s):
Exercises:

## 10-2 Graphing Quadratic Functions

## MAIN IDEA

- Graph quadratic functions.


## BUILD YOUR VOGABULARY (page 254)

A quadratic function is a function in which the $\square$ power of the $\square$ is $\square$

## EXAMPLE Graph Quadratic Functions

## FOLDABLES

## ORGANIZE IT

Record what you learn about graphing quadratic functions and using the graphs to solve problems on the Lesson 10-2 section of your Foldable.

(1) Graph $y=5 x^{2}$.

To graph a quadratic function, make a table of values, plot the ordered pairs, and connect the points with a smooth curve.

| $\boldsymbol{x}$ | $\mathbf{5} \boldsymbol{x}^{2}$ | $\boldsymbol{y}$ | $(x, y)$ |
| :---: | :---: | :---: | :---: |
| -2 | $5(-2)^{2}=\square$ | $\square$ | $(-2, \square)$ |
| -1 | $5(-1)^{2}=\square$ | $\square$ | $(-1, \square)$ |
| 0 | $5(0)^{2}=\square$ | $\square$ | $(0, \square)$ |
| 1 | $5(1)^{2}=\square$ | $\square$ | $(1, \square)$ |
| 2 | $5(2)^{2}=\square$ | $\square$ | $(2, \square)$ |



## EXAMPLE Graph Quadratic Functions

(2) Graph $y=3 x^{2}+1$.

| $\boldsymbol{x}$ | $3 \boldsymbol{x}^{2}+\mathbf{1}$ | $\boldsymbol{y}$ | $(\boldsymbol{x}, \boldsymbol{y})$ |
| ---: | :---: | :---: | ---: |
| -2 | $3(-2)^{2}+1=\square$ |  | $(-2, \square)$ |
| -1 | $3(-1)^{2}+1=4$ | 4 | $(-1,4)$ |
| 0 | $3(0)^{2}+1=\square$ |  | $(0, \square)$ |
| 1 | $3(1)^{2}+1=4$ | 4 | $(1,4)$ |
| 2 | $3(2)^{2}+1=13$ | 13 | $(2,13)$ |



## Homework Assignment

Page(s):
Exercises:

|  |  |  | $A_{y}^{\prime}$ |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  | $\mathbf{O}$ |  |  |  |  |

## 10-3 Problem-Solving Investigation: Make a Model

## EXAMPLE Make a Model

## MAIN IDEA

- Solve problems by making a model.


## HoMEWORK ASSIGNMENT

## Page(s):

Exercises:

DESKS Caitlyn is arranging desks in her classroom. There are 32 desks, and she wants to have twice as many desks in each row as she has in each column. Use a model to determine how many desks she should put in each row and how many rows she will need.

UNDERSTAND You know Caitlyn has 32 desks.
PLAN Experiment by arranging 32 tiles into different rows and columns until you have $\square$ as many tiles in each row as are in each column.

SOLVE


CHECK Check to see if the arrangement meets Caitlyn's original requirements.

Check Your Progress
TABLES Mrs. Wilson wants to arrange tables into a square that is open in the middle and has 8 tables on each side. How many tables will she need altogether?


## 10-4 Graphing Cubic Functions

## EXAMPLE Graph a Cubic Function

## Main IDEA

- Graph cubic functions.
(1) Graph $y=-\frac{x^{3}}{2}$.

Make a table of values.

| $\boldsymbol{X}$ | $y=-\frac{x^{3}}{2}$ | $(x, y)$ |
| :---: | :---: | :---: |
| -2 | $-\left(\frac{(\square)^{3}}{2}\right)=-\left(\frac{\square}{2}\right)=-(\square)=$ |  |
| -1 | $\left.-\left(\frac{\square}{}\right)^{3}\right)=-\left(\frac{\square}{2}\right)=\square$ |  |
| 0 | $\left.-\left(\frac{(\square)}{}\right)^{3}\right)=-\left(\frac{\square}{2}\right)=\square$ |  |
| 1 | $\left.\left.-\left(\frac{\square}{}\right)^{3}\right)^{3}\right)=-\left(\frac{\square}{2}\right)=\square$ |  |
| 2 | $-\left(\frac{(\square)^{3}}{2}\right)=-\left(\frac{\square}{2}\right)=\square$ |  |

Graph the function.


Check Your Progress
Graph $y=2 x^{3}$.


## EXAMPL

2 GEOMETRY Write a function for the volume $V$ of the triangular prism. Graph the function. Then estimate the dimensions of the prism that would give a volume of approximately
 40 cubic meters.
$V=B h$
$V=\frac{1}{2} \cdot x \cdot x \cdot(\square)$


Replace $B$ with $\frac{1}{2} \cdot x \cdot x$ and $h$ with

$V=\square(2 x+8)$
$\frac{1}{2} \cdot x \cdot x=$

$V=x \square+4 x \square$
Distributive Property
The function for the volume $V$ of the box is $V=$ $\square$
Make a table of values to graph this function. You do not need to include negative values of $x$ since the side length of the prism cannot be negative.

| $\boldsymbol{x}$ | $\boldsymbol{V}=\boldsymbol{x}^{\mathbf{3}}+\mathbf{4 \boldsymbol { x } ^ { 2 }}$ | $(\boldsymbol{x}, \boldsymbol{V})$ |
| :---: | :---: | :---: |
| 0 | $(0)^{3}+4(0)^{2}=\square$ | $\square$ |
| 0.5 | $(0.5)^{3}+4(0.5)^{2} \approx \square$ |  |
| 1 | $(1)^{3}+4(1)^{2}=\square$ | $\square$ |
| 1.5 | $(1.5)^{3}+4(1.5)^{2} \approx \square$ | $\square$ |
| 2 | $(2)^{3}+4(2)^{2}=\square$ | $\square$ |
| 2.5 | $(2.5)^{3}+4(2.5)^{2} \approx \square$ |  |



To obtain a volume of about 40 cubic meters, the legs of the base are about $\square$ meters, and the height is $(2 \cdot \square+8)$ or about $\square$ meters.

Check Your Progress
A rectangular prism has a square base of side length $x$ and a height of $(x-4)$ feet. Use a graph of this function to estimate the dimensions of the prism that would give a volume of about 70 cubic feet.

## 10-5 Multiplying Monomials

## Main IDEA

- Multiply monomials.


## Key Concept

Product of Powers To multiply powers with the same base, add their exponents.

FOLDABLES In the Lesson 10-5 section of your Foldable, record the product of powers rule.

BUILD YOUR YOGABULARY (page 254)
A monomial is a $\square$
 of a number and one or more variables.

## EXAMPLE Multiply Powers

(1) Find $7^{6} \cdot \boldsymbol{7}^{2}$. Express using exponents. $7^{6} \cdot 7^{2}=7^{6+2} \quad$ The common base is $\qquad$ $=\square$ the exponents.

Check $7^{6} \cdot 7^{2}=(7 \cdot 7 \cdot 7 \cdot 7 \cdot 7 \cdot 7) \cdot(7 \cdot 7)$

$$
=7 \cdot 7 \cdot 7 \cdot 7 \cdot 7 \cdot 7 \cdot 7 \cdot 7
$$

$$
=\square
$$

Check Your Progress
Find $2^{5} \cdot 2^{4}$. Express using exponents.


## EXAMPLE Multiply Monomials

2 Find $7 x^{2}\left(11 x^{4}\right)$. Express using exponents.


Check Your Progress
Find $3 x^{2}\left(-5 x^{5}\right)$. Express using exponents.
$\square$

## EXAMPLE Multiply Negative Powers

3 Find $4^{-8} \cdot 4^{3}$. Express using positive exponents.

## METHOD 1



The common base is $\square$

$$
=4
$$

$\square$
$=$ $\square$$\square$ the exponents.

Simplify.

## METHOD 2

$$
\begin{array}{ll}
4^{-8} \cdot 4^{3}=\square \cdot 4 \square & \text { Write } 4^{-8} \text { as } \frac{1}{4^{8}} . \\
=\frac{1}{4 \times 4 \times 4 \times 4 \times 4 \times 4 \times 4 \times 4} \times 4 \times 4 \times 4 & \begin{array}{l}
\text { Cancel common } \\
\text { values }
\end{array} \\
=\square & \text { Simplify. }
\end{array}
$$

Check Your Progress exponents.

## 10-6 Dividing Monomials

## EXAMPIES Divide Powers

## Main IDEA

Divide monomials.

## Key Concept

Quotient of Powers To divide powers with the same base, subtract their exponents.

## Simplify. Express using exponents.

(1) $\frac{6^{12}}{6^{2}}$

$$
\begin{aligned}
\frac{6^{12}}{6^{2}} & =6^{12-2} & & \text { The common base is } \square . \\
& =\square & & \text { Simplify. }
\end{aligned}
$$

2 $\frac{a^{14}}{a^{8}}$

| $\frac{a^{14}}{a^{8}}$ | $=a^{14-8}$ |  | The common base is $\square$. |
| ---: | :--- | ---: | :--- |
|  | $=\square$ |  | Simplify. |

## Check Your Progress Simplify. Express using

 exponents.a. $\frac{3^{10}}{3^{4}}$

b. $\frac{x^{11}}{x^{3}}$


EXAMPLES Use Negative Exponents
Simplify. Express using positive exponents.
(3) $\frac{8^{-5}}{8^{2}}$

$$
\frac{8^{-5}}{8^{2}}=8 \square \quad \text { Quotient of Powers }
$$

$$
=8 \square \text { or } \square \quad \text { Simplify. }
$$

4. $\frac{x^{-9}}{x^{-1}}$

$$
\begin{aligned}
\frac{x^{-9}}{x^{-1}} & =x \square & & \text { Quotient of Powers } \\
& =x \square & & \text { Subtraction of a negative number } \\
& =x \square \text { or } \square & & \text { Simplify. }
\end{aligned}
$$

Check Your Progress exponents.
a. $\frac{5^{8}}{5^{-3}}$

b. $\frac{n^{-3}}{n^{-1}}$

## EXAMPL:

5 TEST EXAMPLE Simplify $\frac{8 y^{3}}{16 y^{9}}$. Express using positive
exponents.
A $2 y^{6}$
B $\frac{1}{2 y^{6}}$
C $\frac{1}{2 y^{3}}$
D $\frac{y^{6}}{8}$

## Read the Item

You are asked to simplify the monomial.

Solve the Item

$$
\begin{array}{rlrl}
\frac{8 y^{3}}{16 y^{9}} & =\left(\frac{8}{16}\right) \\
& =\frac{1}{2} \cdot y \square & & \text { Group terms } \\
& =\frac{1}{2} \cdot y \square \text { or } & & \text { Quotient of Powers. } \\
& & \text { Simplify. }
\end{array}
$$

The correct answer choice is $\square$

## Check Your Progress

MULTIPLE CHOICE Simplify $\frac{2 b^{8}}{12 b^{3}}$. Express using positive
exponents.
F $\frac{b^{5}}{6}$
G $\frac{1}{6 b^{5}}$
H $6 b^{11}$
J $\frac{1}{6 b^{11}}$

## Homework Assignment

Page(s):
Exercises:


## 10-7 Powers of Monomials

## EXAMPLES Find the Power of a Power

## MAIN IDEA

- Find powers of monomials.


## Key Concept

Power of a Power To find the power of a power, multiply the exponents.

Foldables In the Lesson 10-7 section of your Foldable, record the power of a power rule.
(1) Simplify $\left(5^{2}\right)^{8}$.

| $\left(5^{2}\right)^{8}$ | $=5 \square$ |  | Power of a Power |
| ---: | :--- | ---: | :--- |
|  | $=\square$ | Simplify. |  |

2 Simplify $\left(a^{3}\right)^{7}$.
$\left(a^{3}\right)^{7}=a \square$
Power of a Power
$=\square$
Simplify.

## Check Your Progress

a. $\left(3^{4}\right)^{5}$


## EXAMPLES Power of a Product

(3) Simplify $\left(3 c^{4}\right)^{3}$.


Power of a Product
Simplify.

4 Simplify $\left(-4 p^{5} q\right)^{2}$.

$$
\begin{aligned}
\left(-4 p^{5} q\right)^{2} & =(-4) \square \cdot p \square \cdot q \square & & \text { Power of a Product } \\
& =\square & & \text { Simplify. }
\end{aligned}
$$



## 10-8 Roots of Monomials

## MAIN IDEA

- Find roots of monomials.


## BUILD YOUR YOGABULARY (page 254)

The cube root of a monomial is one of the $\square$ equal factors of the monomial.

## EXAMPLES Simplify Square Roots

(1) Simplify $\sqrt{9 \boldsymbol{k}^{4}}$.

$$
\begin{array}{rlr}
\sqrt{9 k^{4}} & =\sqrt{9} \cdot \sqrt{\square} \quad \text { Product Property of Square Roots } \\
& =\square & 3 \cdot 3=\square ; p^{2} \cdot p^{2}=\square
\end{array}
$$

2 Simplify $\sqrt{400 w^{8} x^{2}}$.

$$
\sqrt{400 w^{8} x^{2}}
$$

$$
=\sqrt{\square} \cdot \sqrt{w^{8}} \cdot \sqrt{x^{2}} \quad \text { Product Property of Square Roots }
$$

$$
=20 \cdot \square \cdot|x|
$$

$$
20 \cdot 20=\square ; w^{4} \cdot w^{4}=w \square ;
$$

$$
x \cdot x=x^{2}
$$

$$
=\square
$$

Use absolute value to indicate the positive value of $x$.

## Check Your Progress Simplify.

a. $\sqrt{16 e^{2}}$

b. $\sqrt{81 a^{4} b^{2}}$


## EXAMPLES Simplify Cube Roots

(3) Simplify $\sqrt[3]{a^{6}}$.
$\sqrt[3]{a^{6}}=$ $\square$
$\left(a^{2}\right)^{3}=$ $\square$

## FOLDABLES In the

 Lesson 10-8 section of your Foldable, record the Product Property of Square Roots and the Product Property of Cube Roots.
## Homework

 Assignment
## BRINGING IT ALL TOGETHER

## STUDY GUIDE

## FOLDABLES

Use your Chapter 10 Foldable to help you study for your chapter test.

## Vocabulary

PUZZLEMAKER
To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 10, go to:
glencoe.com

## BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (page 254) to help you solve the puzzle.

## Write linear or nonlinear to name the kind of function described.

3. power of $x$ may be greater than one
$\qquad$
4. constant rate change
$\square$
5. graph that is a curve
$\square$
6. equation has the form $y=m x+b$
$\square$
7. Name the kind of function represented. Explain your reasoning.

| $x$ | -3 | 0 | 3 | 6 |
| :---: | :---: | :---: | :---: | :---: |
| $\boldsymbol{y}$ | 10 | 1 | 10 | 37 |

## 10-2

Graphing Quadratic Functions
Determine whether each equation represents a quadratic function. Write yes or no.
6. $y=3 x-5$

7. $y=6-x^{2}$

8.

9. Explain how to graph a quadratic function.
$\square$

## 10-3

## Problem-Solving Investigation: Make a Model

10. DESIGN Edu-Toys is designing a new package to hold a set of 30 alphabet blocks. Each block is a cube with each side of the cube being 2 inches long. Give two possible dimensions for the package.

## 10-4

## Graphing Cubic Functions

Determine whether each equation represents a cubic function. Write yes or no.
11. $y=-3 x^{2}$
12. $y=\frac{1}{3} x^{3}$
13. $y=-x^{3}+5$

14. Explain the difference in the graph of a quadratic function and the graph of a cubic function.


## 10-5

Multiplying Monomials
Complete each sentence.
15. To multiply powers with the same base, $\square$ their exponents.

Simplify. Express using exponents.
16. $5^{2} \cdot 5^{6}$
17. $2 x^{2} \cdot 4 x^{3}$

18. $\left(8 x^{3}\right)\left(-3 x^{9}\right)$


## 10-6

## Dividing Monomials

19. To divide powers with the same base, $\square$ their exponents.

Simplify. Express using positive exponents.
20. $\frac{2^{5}}{2^{2}}$
21. $\frac{w^{3}}{w^{8}}$
22. $\frac{18 a^{7}}{6 a^{3}}$


## 10-7

## Powers of Monomials

23. To find the power of a power, $\square$ the exponents.

## Simplify.

24. $\left(8^{2}\right)^{3}$

25. $\left(k^{4}\right)^{5}$

26. $\left(4 a^{2} b^{4}\right)^{4}$


## 10-8

## Roots of Monomials

## Simplify.

27. $\sqrt{n^{4}}$

28. $\sqrt{36 x^{2} y^{8}}$

29. $\sqrt[3]{27 d^{9}}$

30. To find the length of one side of a square when given its area, find the $\square$ root of the area.

## ARE YOU READY FOR THE CHAPTER TEST?

## Checklist

## Math Online

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 10.

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 10 Practice Test on page 567 of your textbook as a final check.

I used my Foldable or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 10 Study Guide and Review on pages 563-566 of your textbook.
- If you are unsure of any concepts or skills, refer to the specific lesson(s).
- You may also want to take the Chapter 10 Practice Test on page 567.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 10 Foldable.
- Then complete the Chapter 10 Study Guide and Review on pages 563-566 of your textbook.
- If you are unsure of any concepts or skills, refer to the specific lesson(s).
- You may also want to take the Chapter 10 Practice Test on page 567.


Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.

Begin with five sheets of $8 \frac{1}{2}^{\prime \prime} \times 11^{\prime \prime}$ paper.

STEP 1 Place 4 sheets of paper $\frac{3}{4}$ inch apart.


STEP 1 Roll up bottom edges.
All tabs should be the same size.


STEP 3) Crease and staple along the fold.


STEP 4 Label the tabs
with the topics from the chapter. Label the last tab Vocabulary.


NOTE-TAKING TIP: As you take notes on a topic, it helps to write how the subject relates to your life. For example, as you learn about different kinds of statistical measures and graphs, you will understand how to evaluate statistical information presented in such places as advertisements and persuasive articles in magazines.

## BUILD YOUR VOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 11.
As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

| Vocabulary Term | Found <br> on Page | Definition | Description or <br> Example |
| :--- | :--- | :--- | :--- |
| back-to-back stem-and- <br> leaf plot |  |  |  |
| box-and-whisker plot |  |  |  |
| circle graph |  |  |  |
| histogram |  |  |  |
| interquartile range |  |  |  |
| leaves |  |  |  |
| mean quartile |  |  |  |


| Vocabulary Term | Found on Page | Definition | Description or Example |
| :---: | :---: | :---: | :---: |
| measures of central tendency |  |  |  |
| measures of variation |  |  |  |
| median |  |  |  |
| mode |  |  |  |
| outlier |  |  |  |
| quartiles |  |  |  |
| range |  |  |  |
| stem-and-leaf plot |  |  |  |
| stems |  |  |  |
| upper quartile |  |  |  |

## 11-1 Problem-Solving Investigation: Make a Table

EXAMPLE Make a Table

## MAIN IDEA

- Solve problems by making a table.


## Homework Assignment

Exercises:

## MAIN IDEA

- Display and interpret data in a histogram.



## EXAMPLE Construct a Histogram

(1) FOOD The list shows the number of grams of caffeine in certain types of tea. Use intervals 1-20, 21-40, 41-60, 61-80, and 81-100 to make a frequency table. Then

| 8 | 47 | 19 | 34 | 30 |
| :---: | :---: | :---: | :---: | :---: |
| 10 | 58 | 20 | 39 | 32 |
| 12 | 4 | 22 | 40 | 92 |
| 18 | 85 | 26 | 27 |  | construct a histogram.

Place a tally mark for each value in the appropriate interval. Then add up the tally marks to find the frequency for each interval.


To construct a histogram, follow these steps.
Step 1 Draw and label a horizontal and vertical axis. Include a title.

Step 2 Show the
 from the frequency table on the $\square$ axis.

Step 3 For each caffeine interval, draw a bar whose height is given by the frequencies.


Check Your Progress
The frequency table below shows the amount of caffeine in certain drinks. Draw a histogram to represent the data.

| Caffeine Content of Certain Types of Drink |  |  |
| :---: | :--- | :---: |
| Caffeine (mg) | Tally | Frequency |
| $0-50$ | $\\|\\|$ | 3 |
| $51-100$ | \||II | 4 |
| $101-150$ | HH \| | 6 |
| $151-200$ | HY I | 7 |

## EXAMPLES Analyze and Interpret Data

(2) WEATHER How many months had 6 or more days of rain?

Three months had $\square$ days of rain, and one month had
$\square$ days of rain.


Therefore, $\square$ $+$ $\square$ or $\square$ months had 6 or more days of rain.
(3) WEATHER How many months had exactly 2 days of rain?

This cannot be determined from the data presented in this graph. The histogram indicates that there were $\square$ that had 2 or 3 days of rain, but it is impossible to tell how many months had $\square$ days of rain.

## Check Your Progress

a. How many months had 6 or more days of snow?


Days of Snow Each Month

b. How many months had exactly 6 days of snow?

## 11-3 Circle Graphs

## MAIN IDEA

- Construct and interpret circle graphs.


## FOLDABLES

## ORGANIZE IT

Under the tab for Lesson 11-3, find an example of a circle graph from a newspaper or magazine. Explain what the graph shows.


## BUILD YOUR VOGABULARY (pages 278-279)

A circle graph is used to compare parts of a $\square$ The entire $\square$ represents that whole.

## EXAMPLE Construct a Circle Graph from Percents

(1) TORNADOES The table shows when tornadoes occurred in the United States from 1999 to 2001. Make a circle graph using this information.

| Tornadoes in the United States, 1999-2001 |  |
| :---: | :---: |
| January-March | $15 \%$ |
| April-June | $53 \%$ |
| July-September | $21 \%$ |
| October-December | $11 \%$ |

Source: NOAA
Step 1 There are $\square$ in a circle. So, multiply each percent by 360 to find the number of degrees for each
$\square$ of the graph.

Jan-Mar:


Apr-Jun:
$53 \%$ of $360=\square \cdot 360$ or about $\square$
Jul-Sept:


Oct-Dec:

Step 2 Use a compass to draw a circle and a radius. Then use a protractor to draw a $\square$ angle. This section represents January-March. From the new radius, draw the next angle. Repeat for each of the remaining angles. Label each $\square$. Then give the graph $\mathrm{a} \square$.

## Check Your Progress

HURRICANES The table shows when hurricanes or tropical storms occurred in the Atlantic Ocean during the hurricane season of 2002. Make a circle graph using this information.

| Hurricanes in the <br> United States, 2002 |  |
| :--- | :---: |
| Month | Percent |
| July | $7 \%$ |
| August | $21 \%$ |
| September | $64 \%$ |
| October | $8 \%$ |

Source: NOAA

## EXAMPLES Construct a Circle Graph from Data

2 BASKETBALL Construct a circle graph using the information in the histogram below.

Average Points Per Basketball Game for Top 25 Scorers


Step 1 Find the total number of players.

$$
6+\square+1+\square+2=\square
$$

Step 2 Find the ratio that compares the number in each point range to the total number of players. Round to the nearest hundredth.
11.1 to $13: 6 \div 25=\square$
13.1 to $15: 12 \div 25=\square$
15.1 to $17: 1 \div 25=\square$
17.1 to $19: 4 \div 25=\square$
19.1 to $21: 2 \div 25=\square$

Step 3 Use these ratios to find the number of degrees of each section. Round to the nearest degree if necessary.

13.1 to $15: \square \cdot 360=\square$ or about 173

19.1 to 21 : $\square$
$\square$ or about 29

Step 4 Use a compass and protractor to draw a circle and the appropriate sections. Label each section and give the graph a title. Write the ratios as percents.


3 Use the circle graph from Example 2 to describe the makeup of the average game scores of the 25 top-scoring basketball players.
Almost $\frac{3}{4}$ of the players had average game scores between 11.1 and 15 points. Fewer than $\frac{1}{4}$ had average game scores greater than $\square$ points.

## Check Your Progress

a. Construct a circle graph using the information in the histogram at right.

## Average Points per Football Game

 for Top 10 Scorers

## Homework

 AssignmentPage(s):
Exercises:
b. Use the graph to describe the makeup of the average game scores of the 10 top-scoring football players.

## 11-4 Measures of Central Tendency and Range

## MAIN IDEA

- Find the mean, median, mode, and range of a set of data.


## Write It

The words central and middle have similar definitions. If mean, median, and mode are measures of central tendency, what do they measure?
$\qquad$
$\qquad$
$\qquad$

## BUILD YOUR VOGABULARY (pages 278-279)

Measures of central tendency are numbers that $\square$ a set of data.
The mean of a set of data is the $\square$ of the data the number of items in the data set.

The median of a set of data is the $\square$ number of the data ordered from least to greatest, or the mean of the
$\square$ numbers.

The mode of a set of data is the number or numbers that occur $\square$ often.

The range of a set of data is $\square$ between the greatest and least numbers in a set of data.

## EXAMPLE Find Measures of Central Tendency

(1) The ages, in years, of the actors in a play are $4,16,32$, 19, 27, 32. Find the mean, median, mode, and range of the data.


Median Arrange the numbers in order from $\square$


Mode The data has a mode of $\square$

Range $\square$

Check Your Progress
The ages, in years, of the children at a daycare center are $3,5,3,7,6,4$. Find the mean, median, mode, and range of the set of data.

## EXAMPLE Using Appropriate Measures

2 OLYMPICS Select the appropriate measure of central tendency or range to describe the data in the table. Justify your reasoning.

| Gold Medals Won by the United States at the <br> Winter Olympics, 1924-2002 |  |  |  |
| :--- | :---: | :--- | :---: |
| Event | Gold <br> Medals | Event | Gold <br> Medals |
| Alpine skiing | 10 | Luge | 2 |
| Bobsleigh | 6 | Short track speed skating | 3 |
| Cross country | 0 | Skeleton | 3 |
| Figure skating | 13 | Ski jumping | 0 |
| Freestyle skiing | 4 | Snowboarding | 2 |
| Ice hockey | 3 | Speed skating | 26 |

Find the mean, median, mode, and range of the data.

Mean


Median Arrange the numbers from least to greatest.

$$
0,0,2,2,3,3,3,4,6,10,13,26
$$

The median is the middle number, or $\square$ medals.


## Homework Assignment

Page(s):<br>Exercises:



## MAIN IDEA

Find the measures of variation of a set of data.

## Key Concepts

Range The range of a set of data is the difference between the greatest and the least numbers in the set.

Interquartile Range The interquartile range is the range of the middle half of the data. It is the difference between the upper quartile and the lower quartile.

## BUILD YOUR VOGABULARY (pages 278-279)

Measures of variation are used to describe the $\square$ of a set of data.

Quartiles are the values that divide the data into $\square$ equal parts.

The $\square$ of the lower half of a set of data is the lower quartile.

The median of the $\square$ of the set of data is the upper quartile.

Data that are more than $\square$ times the value of the interquartile range beyond the quartiles are called outliers.

## EXAMPLE Find Measures of Variation

(1) BASKETBALL Find the measures of variation for the data in the table.

The range is $109-91.3$ or


| Average Points per Game Scored <br> by Top Ten Teams During the <br> NBA Playoffs, 2002 |  |
| :--- | :---: |
| Team |  |
| Dallas | 109 |
| Minnesota | 102 |
| Sacramento | 101.1 |
| L.A. Lakers | 97.8 |
| Charlotte | 96.1 |
| New Jersey | 95.4 |
| Orlando | 93.8 |
| Indiana | 91.6 |
| Boston | 91.3 |
| Portland | 91.3 |

Source: NBA

## Remember It

A small interquartile range means that the data in the middle of the set are close in value. A large interquartile range means that the data in the middle are spread out.

## Median, Upper Quartile, and Lower Quartile

Arrange the numbers in order from least to greatest.


The median is $\square$, the lower quartile is $\square$, and the upper quartile is $\square$
Interquartile Range $=$ upper quartile - lower quartile
$=$ $\square$

Check Your Progress
BASEBALL Find the measures of variation for the data in the table.

| Giants Batting Average <br> Against Anaheim in the <br> 2002 World Series |  |
| :--- | :---: |
| Player | Batting <br> Average |
| Rueter | 0.500 |
| Bonds | 0.471 |
| Snow | 0.407 |
| Bell | 0.304 |
| Lofton | 0.290 |
| Kent | 0.276 |
| Aurilia | 0.250 |
| Sanders | 0.238 |
| Santiago | 0.231 |

Source: MLB


Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

## EXAMPLE Find Outliers

2 CONCESSION SALES Find any outliers for the data in the table at the right.
First arrange the numbers in order from least to greatest. Then find the median, upper quartile, and lower quartile.

| Item Sold at Football Game <br> Concession Stand |  |
| :--- | :---: |
| Item | Number Sold |
| Colas | 196 |
| Diet colas | 32 |
| Water | 46 |
| Coffee | 18 |
| Candy bars | 39 |
| Hotdogs | 23 |
| Hamburgers | 16 |
| Chips | 41 |
| Popcorn | 24 |

Interquartile Range $=\square-\square$ or 23
Multiply the interquartile range, 23 , by 1.5 .


Find the limits for the outliers.
Subtract 34.5 from the lower quartile.


Add 34.5 to the upper quartile.


The limits for the outliers are $\square$ and
 The only outlier is $\square$

Check Your Progress
Find any outliers for the data in the table at right.


| Items Sold at School Bookstore |  |
| :--- | :---: |
| Item | Number Sold |
| Pens | 35 |
| Pencils | 15 |
| Erasers | 20 |
| Candy bars | 93 |
| Folders | 17 |
| School pennants | 18 |
| Calculators | 2 |

## MAIN IDEA

- Display and interpret data in a box-andwhisker plot.


## OLDABLES

## ORGANIZE IT

Under the tab for Lesson 11-6, collect data from the Internet, such as number of home runs hit by the players of a baseball team. Draw a box-and-whisker plot to display the data.


## BUILD YOUR VOCABULARY (pages 278-279)



## EXAMPLE Draw a Box-and-Whisker Plot

(1) POPULATION Use the data in the table at the right to construct a box-and-whisker plot.

| World's Most Populous Cities |  |
| :--- | :---: |
| City | Population <br> (millions) |
| Tokyo | 34.8 |
| New York | 20.2 |
| Seoul | 19.9 |
| Mexico City | 19.8 |
| Sao Paulo | 17.9 |
| Bombay | 17.9 |
| Osaka | 17.9 |
| Los Angeles | 16.2 |
| Cairo | 14.4 |
| Manila | 13.5 |

Source: Time Almanac

Step 1 Draw a
 that includes the least and greatest number in the data.

Step 2 Mark the extremes, the $\square$ and the upper and lower $\square$ above the number line. Since the data have an outlier, mark the greatest value that is not an $\square$
Step 3 Draw the box and whiskers.


## Check Your Progress

Use the data in the table at the right to draw a box-and-whisker plot.

| Most Populous U.S. Cities <br> in a Recent Year |  |
| :--- | :---: |
| City | Population <br> (in millions) |
| New York | 8.0 |
| Los Angeles | 3.7 |
| Chicago | 2.9 |
| Houston | 2.0 |
| Philadelphia | 1.5 |
| Phoenix | 1.3 |
| San Diego | 1.2 |
| Dallas | 1.2 |

## EXAMPLE Interpret Data

2 WATERFALLS What do the lengths of the parts of the box-and-whisker plot below tell you about the data?

Highest Waterfalls in the World (thousands of feet)


Source: Time Almanac
 the data in the $\square$ quartile. You can see that data in the $\square$ quartile are the most spread out because the whisker is $\square$ than other parts of the plot.


## Homework Assignment

Page(s):
Exercises:

## 11-7 Stem-and-Leaf Plots

## Main IdeA

- Display data in stem-and-leaf plots. Interpret data in stem-and-leaf plots.


## BUILD YOUR VOGABULARY (pages 278-279)

The numerical data are listed in ascending or descending order in a stem-and-leaf plot. The $\square$ place value of the data are used for the stems. The leaves form the $\square$ place value.

## EXAMPLE Draw a Stem-and-Leaf Plot

## (1) FOOD Display the data in

 the table in a stem-and-leaf plot with or without the use of technology.Step 1 Find the least and greatest number. Then identify the greatest place-value digit in each number.

- The least number,
 the thousands place.

| Peanuts Harvested, 2005 |  |
| :--- | :---: |
| State | Amount <br> (lb/acre) |
| Alabama | 2,800 |
| Florida | 2,900 |
| Georgia | 3,000 |
| New Mexico | 3,200 |
| North Carolina | 3,100 |
| Oklahoma | 3,200 |
| South Carolina | 3,200 |
| Texas | 3,500 |
| Virginia | 2,800 |

- The greatest number, $\square$, has 3 in the thousands place.

Step 2 Draw a vertical line and write the stems, 2 and 3, to the $\square$ of the line.

Step 3 Write the leaves to the $\square$ of the line, with the corresponding stem. For example, for 2,800 , write 8 to the right of $\square$

| Stem | Leaf |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 8 | 8 | 9 |  |  |  |
| 3 | 0 | 1 | 2 | 2 | 2 | 5 |
|  |  |  |  |  | $2 \mid 8=2,800 l b$ |  |

## Check Your Progress

BASEBALL Display the data in the table in a stem-and-leaf plot with or without the use of technology.

| Stem | Leaf |  |  |  |  |  |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- |
| 5 | 8 | 9 |  |  |  |  |
| 6 | 0 | 1 | 3 | 4 | 5 | 6 |
| 7 | 0 | 3 |  |  |  |  |
|  | $5 \mid 8$ | $=58$ | home runs |  |  |  |


| Most Home Runs in a <br> Single Season |  |
| :--- | :---: |
| Player | Home Runs |
| Barry Bonds | 73 |
| Jimmie Foxx | 58 |
| Roger Maris | 61 |
| Mark McGwire | 65 |
| Mark McGwire | 70 |
| Babe Ruth | 59 |
| Babe Ruth | 60 |
| Sammy Sosa | 63 |
| Sammy Sosa | 64 |
| Sammy Sosa | 66 |

## EXAMPLE Interpret Data

2 MEXICO The stem-and-leaf plot lists the percent of people in each state in 2004 that were born in Mexico, rounded to the nearest whole number.

| Stem | Leaf |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 1 | 1 | 2 | 2 | 3 | 4 | 4 | 5 | 5 | 5 | 6 | 6 | 8 | 8 | 8 |
| 1 | 0 | 1 | 4 | 4 | 7 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2 | 1 | 2 | 3 | 8 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3 | 1 | 2 | 3 | 5 | 5 | 9 | 9 |  |  |  |  |  |  |  |  |  |  |  |
| 4 | 0 | 1 | 2 | 3 | 3 | 3 | 4 | 6 | 8 |  |  |  |  |  |  |  |  |  |
| 5 | 2 | 6 | 6 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 6 | 4 | 6 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 7 | 4 |  |  |  |  | $3 \mid 1=31 \%$ |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

a. Which interval contains the most percentages?

Most of the percentages occur in the $\square$ interval.
b. What is the greatest percent of people living in one U.S. state that were born in Mexico?

The greatest percent of people living in one U.S. state born in Mexico is $\square$

## c. What is the median percent of people living in one

 U.S. state that were born in Mexico?The median percent of people living in one U.S. state born in Mexico is


## Check Your Progress

Refer to the stem-and-leaf plot in
Example 2.
a. What is the range of the data? $\square$
b. What is the least percent of people living in one U.S. state that were born in Mexico? $\square$
c. What percentages occur most often? $\square$

## BUILD YOUR VOGABULARY (pages 278-279)

A back-to-back stem-and-leaf plot can be used to compare sets of data.

## EXAMPLE Compare Data

3 AGRICULTURE The yearly production of honey in California and Florida is shown for the years 2000 to 2004, in millions of pounds.

| California | Stem | Florida |  |
| ---: | :---: | :--- | :--- |
| 7 | 1 | 4 |  |
| 8 | 4 | 2 | 0 |
| 0 | 0 | 2 | 4 |
| 2 | 1 | 3 |  |
|  |  |  |  |
| $2 \mid 3=32$ million $l b$ |  | $2 \mid 0=20$ million $l b$ |  |

a. What state produces the most honey?

California: $17+24+28+31+33=\square$ million lb
Florida: $14+20+20+22+24=\square$ million lb
produces the most honey.

## Homework Assignment

Page(s):
Exercises:

## 11-8 Select an Appropriate Display

## EXAMPLES Choose an Appropriate Display

## Main Idea

- Select an appropriate display for a set of data.


## FOLDABLES

## ORGANIZE IT

Under the tab for Lesson 11-8, make a table of data from your science or social studies textbook. Draw a circle graph and bar graph displaying the data. Discuss which graph is most appropriate.


Choose an appropriate type of display for each situation. Then make a display.
(1) FARMS Select an appropriate display to show the acreage of farms in Maine. Justify your answer.

| Farms in Maine by Size |  |
| :--- | ---: |
| $1-99$ acres | $46.8 \%$ |
| $100-499$ acres | $43.8 \%$ |
| $500-999$ acres | $6.9 \%$ |
| 1,000 or more acres | $2.5 \%$ |

Source: USDA
This data deals with percents that have a sum of $\square$
$\square$ would be a good way to show percents.

Farms in Maine by Size


2 SCHOOLS Select an appropriate display to show students' favorite school subjects. Justify your reasoning. Then construct the display.

| Favorite School Subject |  |
| :---: | :---: |
| math | HH HH H |
| history | H\| ||I |
| science | HH HI |
| English | H ${ }^{\prime \prime}$ |
| other | H I |

In this case, there are specific categories. If you want to show the specific number, use a
$\qquad$


## Remember IT

There are many ways to display the same data. However, often one of those ways makes the data easier to understand than do the other ways.

## Homework Assignment



Check Your Progress
a. Select an appropriate display to show favorite types of television programs. Justify your answer. Then construct the display.

| Favorite Type of Television Program |  |
| :--- | ---: |
| sitcom | $54 \%$ |
| reality | $22 \%$ |
| news | $10 \%$ |
| game show | $8 \%$ |
| cartoon | $6 \%$ |

b. Select an appropriate display to show students' favorite hobbies. Then construct the display.

| Hobby | Number of Students |
| :--- | :---: |
| reading | 10 |
| sports | 5 |
| listening to music | 10 |
| photography | 7 |
| other | 18 |

11

## BRINGING IT ALL TOGETHER

## STUDY GUIDE

## FOLDABLES

Use your Chapter 11 Foldable to help you study for your chapter test.

## VOCABULARY <br> PUZZLEMAKER

To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 11, go to:
glencoe.com

## BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (pages 278-279) to help you solve the puzzle.

## 11-1

## Problem-Solving Investigation: Make a Table

1. MONEY The list shows weekly allowances for a group of 13- and 14 -year-olds. Organize the data in a table using intervals \$2.01-\$3.00, $\$ 3.01-\$ 4.00, \$ 4.01-\$ 5.00$, and so on. What is the most common interval of allowance amounts?

| $\$ 2.50$ | $\$ 3.00$ | $\$ 3.75$ | $\$ 4.25$ | $\$ 4.25$ |
| ---: | ---: | ---: | ---: | ---: |
| $\$ 4.50$ | $\$ 4.75$ | $\$ 4.75$ | $\$ 5.00$ | $\$ 5.00$ |
| $\$ 5.00$ | $\$ 5.00$ | $\$ 5.50$ | $\$ 5.50$ | $\$ 5.75$ |
| $\$ 5.80$ | $\$ 6.00$ | $\$ 6.00$ | $\$ 6.00$ | $\$ 6.50$ |
| $\$ 6.75$ | $\$ 7.00$ | $\$ 8.50$ | $\$ 10.00$ | $\$ 10.00$ |
| $\$ 12.00$ | $\$ 15.00$ |  |  |  |

$\square$

## 11-2

## Histograms

## Use the histogram at the right.

2. How many months have less than two days of rain? $\square$
3. How many months had between two and seven days of rain? $\square$

## Days of Rain Each Month



## 11-3

## Circle Graphs

## Use the circle graph at the right.

4. What percent of her time does Luisa spend studying? $\square$
5. How many degrees are in the section that represents sports?


## 11-4

Measures of Central Tendency and Range
6. Name the three most common measures of central tendency.
$\square$
7. Which measure of central tendency best represents the data? Why? 9, 9, 20, 22, 25, 27
$\square$

## 11-5

Measures of Variation

## Complete.

8. Measures of variation describe the $\square$ of data.
9. The $\square$ of a set of data is the difference between the greatest and the least numbers in the set.
10. The $\square$ range is the difference between the upper and lower quartiles.

11-6
Box-and-Whisker Plots
11. Draw a box-and-whisker plot for the data. $1,1,1,2,3,3,4,5,5$


11-7
Stem-and-Leaf Plots

FOOTBALL For Exercises 12-14, use the all-time interception leaders data shown at the right.
12. What is the most
interceptions by an NFL player through 2005 ?

13. How many NFL players have 57 interceptions through 2005?
$\square$

| All-Time NFL Interception |
| :--- |
| Leaders (through 2005) |

Stem Leaf
$6 \mid 2=62$ interceptions
14. What is the median number of interceptions among the leaders represented in the stem-and-leaf plot?
$\square$

## 11-8

Select an Appropriate Display
Choose the letter that best matches the type of display to its use.
15. Line Graph $\square$ a. shows the frequency of data that has been organized into equal intervals
16. Bar Graph

b. shows the number of items in specific categories in the data using bars
17. Histogram

c. shows change over a period of time
18. Line Plot $\square$ d. shows how many times each number occurs in the data

11

## ARE YOU READY FOR THE CHAPTER TEST?

## Checklist

## Math Online

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 11.

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 11 Practice Test on page 627 of your textbook as a final check.

I used my Foldable or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 11 Study Guide and Review on pages 622-626 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 11 Practice Test on page 627.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 11 Foldable.
- Then complete the Chapter 11 Study Guide and Review on pages 622-626 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 11 Practice Test on page 627.


12

## Probability

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.

## Begin with a plain sheet of $11^{\prime \prime} \times 17^{\prime \prime}$ paper.

STEP 1
Fold the sheet in half lengthwise. Cut along the fold.


STEP 3 . Fold each half in quarters along the width.


STEP 31 Unfold each piece and tape to form one long piece.


STEP 4 Label each page with a key topic as shown. Refold to form a booklet.


NOTE-TAKING TIP: It helps to take notes as you progress through studying a subject. New concepts often build upon concepts you have just learned in a previous lesson. If you take notes as you go, you will know what you need to know for the concept you are now learning.

## BUILD YOUR VOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 12.
As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

| Vocabulary Term | Found <br> on Page | Definition | Description or <br> Example |
| :--- | :--- | :--- | :--- |
| biased sample |  |  |  |
| composite experiment |  |  |  |
| convenience sample |  |  |  |
| dependent events |  |  |  |
| event |  |  |  |
| experimental <br> probability |  |  |  |
| Fundamental Counting <br> Principle |  |  |  |
| independent events |  |  |  |
| outcome |  |  |  |


| Vocabulary Term | Found on Page | Definition | Description or Example |
| :---: | :---: | :---: | :---: |
| population |  |  |  |
| probability |  |  |  |
| random |  |  |  |
| sample |  |  |  |
| sample space |  |  |  |
| simple random sample |  |  |  |
| stratified random sample |  |  |  |
| systematic random sample |  |  |  |
| theoretical probability |  |  |  |
| tree diagram |  |  |  |
| unbiased sample |  |  |  |
| voluntary response sample |  |  |  |

## 12-1 Counting Outcomes

## MAIN IDEA

- Count outcomes by using a tree diagram or the Fundamental Counting Principle.


## WRITE IT

How is using a tree diagram to find total number of outcomes like using a factor tree to find prime factors? (see factor trees in Prerequisite Skills page 664)
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## EXAMPLE Use a Tree Diagram

1) BOOKS A flea market vendor sells new and used books for adults and teens. Today she has fantasy novels and poetry collections to choose from. Draw a tree diagram to determine the number of categories of books.


There are $\square$ different categories.

## Key Concept

Fundamental Counting Principle If event $M$ an occur in $m$ ways and is followed by event $N$ that can occur in $n$ ways, then the event $M$ followed by the event $N$ can occur in $m \cdot n$ ways.

## Check Your Progress

A store has spring outfits on sale. You can choose either striped or solid pants. You can also choose green, pink, or orange shirts. Finally, you can choose either long-sleeved shirts or short-sleeved shirts. Draw a tree diagram to determine the number of possible outfits.


## BUILD YOUR VOCABULARY (pages 308-309)

The Fundamental Counting Principle uses $\square$ to
$\square$

## EXAMPLE Use the Fundamental Counting Principle

2 RESTAURANTS A manager assigns different codes to all the tables in a restaurant to make it easier for the wait staff to identify them. Each code consists of the vowel A, E, I, O, or U, followed by two digits from 0 through 9. How many codes could the manager assign using this method?


There are $\square$ possible codes.

## FOLDABLES

## Organize IT

Under Tree Diagram and Fundamental Counting Principle, write notes on what you learned about counting outcomes by using a tree diagram and by using the Counting Principle. Include examples of each.


Check Your Progress
A middle school assigns each student a code to use for scheduling. Each code consists of a letter, followed by two digits from 0 though 9 . How many codes are possible?

## BUILD YOUR VOGABULARY (pages 308-309)

Outcomes are random if each outcome is $\square$ likely to occur. Probability is the of outcomes of an event to the total number of outcomes.

## EXAMPLE Find Probability

## 3 COMPUTERS What is the probability that Liana will

 guess her friend's computer password on the first try if all she knows is that it consists of three letters?Find the number of possible outcomes. Use the Fundamental Counting Principle.


There are $\square$ possible outcomes. There is $\square$ correct password. So, the probability of guessing on the first


## Check Your Progress

 What is the probability that Shauna will guess her friend's locker combination on the first try if all she knows is that it consists of three digits from 0 through 9 ?

## 12-2 Probability of Compound Events

## Main Idea

- Find the probability of independent and dependent events.


## Key Concept

Probability of Two Independent Events The probability of two independent events can be found by multiplying the probability of the first event by the probability of the second event.

## BUILD YOUR Vocasulary (pages 308-309)

A compound event consists of $\square$ simple events.

Independent events are $\square$ events in which the outcome of one event $\square$ affect the outcome of the other events.

## EXAMPLE Probability of Independent Events

(1) The two spinners below are spun. What is the probability that both spinners will show a number greater than 6 ?

$P($ first spinner is greater than 6$)=$

$P($ second spinner is greater than 6$)=$

$P($ both spinners are greater than 6$)=\frac{3}{10} \cdot \frac{3}{10}$ or

## Check Your Progress

 The two spinners below are spun.What is the probability that both spinners will show a number less than 4 ?


## Key Concept

Probability of Two Dependent Events If two events, $A$ and $B$, are dependent, then the probability of both events occurring is the product of the probability of $A$ and the probability of $B$ after $A$ occurs.

## EXAMPL:

2 TEST EXAMPLE A red number cube and a white number cube are rolled. The faces of both cubes are numbered from 1 to 6 . What is the probability of rolling a 3 on the red number cube and rolling the number 3 or less on the white number cube?
A $\frac{1}{2}$
B $\frac{1}{6}$
C $\frac{1}{9}$
D $\frac{1}{12}$

## Read the Item

You are asked to find the probability of rolling a 3 on the red number cube and rolling a number 3 or less on the white number cube. The events are $\square$ because rolling one number cube $\square$ affect rolling the other cube.

## Solve the Item

First, find the probability of each event.
$P($ rolling a 3 on the red number cube $)=$ $\square$
$P($ rolling 3 or less on the white number cube $)=$


Then, find the probability of both events occurring.
$P(3$ red and 3 or less white $)=\square \cdot \square \begin{aligned} & P(A \text { and } B) \\ & =P(A) \cdot P(B)\end{aligned}$


The probability is


## Check Your Progress

MULTIPLE CHOICE A white number cube and a green number cube are rolled. The faces of both cubes are numbered from 1 to 6 . What is the probability of rolling an even number on the white number cube and rolling a 3 or a 5 on the green number cube?
F $\frac{1}{12}$
G $\frac{1}{6}$
H $\frac{1}{3}$
J $\frac{1}{2}$

## BUILD YOUR VOCABULARY (pages 308-309)

If the outcome of one event does $\square$ the outcome of another event, the compound events are called dependent events.

## FOLDABLES

## ORGANIZE IT

Under Independent Events and Dependent Events, write what you learned about how to find the probability of independent and dependent events.


## EXAMPLE Probability of Dependent Events

3 There are 4 red, 8 yellow, and 6 blue socks mixed up in a drawer. Once a sock is selected, it is not replaced. Find the probability of reaching into the drawer without looking and choosing 2 blue socks.

Since the first sock $\square$ replaced, the first event affects the second event. These are dependent events.


## Homework Assignment

Page(s):
Exercises:

## 12-3 Experimental and Theoretical Probability

## Main Idea

- Find experimental and theoretical probabilities and use them to make predictions.

BUILD YOUR VOGABULARY (pages 308-309)
A probability that is based on $\square$ obtained by conducting an $\square$ is called an experimental probability.

A probabililty that is based on $\square$
$\square$ is called a theoretical probability.

## EXAMPIES Experimental Probability

Nikki is conducting an experiment to find the probability of getting various results when three coins are tossed. The results of her experiment are given in the table.

| Result | Number of <br> Tosses |
| :---: | :---: |
| all heads | 6 |
| two heads | 32 |
| one head | 30 |
| no heads | 12 |

(1) What is the theoretical probability of tossing all heads on the next turn?

The theoretical probability is


2 According to the experimental probability, is Nikki more

Based on the results so far, $\square$ heads is more likely.
Check Your Progress
Marcus is conducting an experiment to find the probability of getting various results when four coins are tossed. The results of his experiment are given in the table.

| Result | Number of <br> Tosses |
| :--- | :---: |
| all heads | 6 |
| three heads | 12 |
| two heads | 20 |
| one head | 7 |
| no heads | 5 |

a. What is the theoretical probability of tossing all tails on the next turn?
$\square$
b. According to the experiment probability, is Marcus more likely to get all heads or no heads on the next toss?

## EXAMPLE Experimental Probability

## FOLDABLES

ORGANIZE IT
Under Experimental Probability, write a few words to compare and contrast experimental and theoretical probabilities.


3 MARKETING Eight hundred adults were asked whether they were planning to stay home for winter vacation. Of those surveyed, 560 said that they were. What is the experimental probability that an adult planned to stay home for winter vacation?

There were $\square$ people surveyed and $\square$ said that they were staying home.

The experimental probability is


## ReVIEW IT

Explain what a proportion is and how you can solve a proportion. (Lesson 4-3)
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Check Your Progress
Five hundred adults were asked whether they were planning to stay home for New Year's Eve. Of those surveyed, 300 said that they were. What is the experimental probability that an adult planned to stay home for New Year's Eve?

## EXAMPLE Use Probability to Predict

## 4 MATH TEAM Over the past three years, the probability

 that the school math team would win a meet is $\frac{3}{5}$. Is this probability experimental or theoretical? Explain.This is an experimental probability since it is based on what happened in the $\square$
If the team wants to win 12 more meets in the next 3 years, how many meets should the team enter?

This problem can be solved using a proportion.


Solve the proportion.


They should enter $\square$ meets.

## Check Your Progress <br> Over the past three years, the

 probability that the school speech and debate team would win a meet is $\frac{4}{5}$.a. Is this probability experimental or theoretical? Explain.

b. If the team wants to win 20 more meets in the next 3 years, how many meets should the team enter?

## 12-4 Problem-Solving Investigation: Act It Out

## EXAMPLE Act It Out

## Main IDEA

- Solve problems by acting them out.


## Homework ASSIGNMENT

## 12-5 Using Sampling to Predict

## MAIN IDEA

Predict the actions of a larger group by using a sample.

BUILD YOUR YOGABULARY (pages 308-309)
A sample is a $\square$ selected group chosen for the purpose of collecting data. The population is the $\square$ from which the samples under consideration are taken.

An unbiased sample is selected so that it is $\square$ of the entire population.

In a simple random sample, each part of the population is equally likely to be chosen.

In a stratified random sample, the population is divided into $\square$, nonoverlapping groups.

In a systematic random sample, the items or people are selected according to a specific $\square$ or item interval.

## EXAMPLES Determine Validity of Conclusions

Determine whether each conclusion is valid. Justify your answer.
(1) To determine which school lunches students like most, the cafeteria staff surveyed every tenth student who walk into the cafeteria. Out of 40 students surveyed, 19 students stated that they liked the burgers best. The cafeteria staff concludes that about $50 \%$ of the students like burgers best.

The conclusion is $\square$ Since the population is the students of the school, the sample is a
$\square$

## BUILD YOUR Vocasulary (pages 308-309)

In a biased sample, one or more parts of the population are
$\square$ over others. Two types of $\square$ samples
are convenience sample and voluntary response sample.
2 To determine what sports teenagers like, Janet surveyed the student athletes on the girls' field hockey team. Of these, $65 \%$ said that they like field hockey best. Janet concluded that over half of teenagers like field hockey best.
The conclusion is $\square$ The students surveyed probably prefer field hockey. This is $\square$
The sample is $\square$ because the people are easily accessed.

Check Your Progress
Determine whether each conclusion is valid. Justify your answer.
a. To determine what ride is most popular, every tenth person to walk through the gates of a theme park is surveyed. Out of 290 customers, 98 stated that they prefer The Zip. The park manager concludes that about a third of the park's customers prefer The Zip.

b. To determine whether people prefer dogs or cats, a researcher surveys 80 people at a dog park. Of those surveyed, $88 \%$ said that they prefer dogs, so the researcher concludes that most people prefer dogs.


EXAMPLE Using Sampling to Predict
3 BOOKS The student council is trying to decide what types of books to sell at its annual book fair to help raise money for the eighth-grade trip. It surveys 40 students at random. The books they prefer are in the table. If 220 books are to be sold at the book fair, how many should be mysteries?

| Book Type | Number of <br> Students |
| :--- | :---: |
| mystery | 12 |
| adventure <br> novel | 9 |
| sports | 11 |
| short <br> stories | 8 |

First, determine whether the sample method is valid. The sample is $\square$ since the students
were randomly selected. Thus, the sample $\square$

## ORGANIZE IT

Under Sampling, list the different types of samples and how to use them to make predictions. Give prediction
examples.


Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

## FOLDABLES

## Homework <br> Assignment

Page(s):
Exercises:

## BRINGING IT ALL TOGETHER

## STUDY GUIDE

## FOLDABLES

Use your Chapter 12 Foldable to help you study for your chapter test.

## Vocabulary PUZZLEMAKER

To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 12, go to:
glencoe.com

## BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (pages 308-309) to help you solve the puzzle.

12-1

## Counting Outcomes

1. Complete the tree diagram shown below for how many boys and and how many girls are likely to be in a family of three children.

Child 1 Child 2 Child 3 Sample Outcome

2. Use the Fundamental Counting Principle to find the number of possible outcomes if there are 4 true-false questions on a test.


12-2

## Probability of Compound Events

3. What is a compound event?
$\square$
4. Are the events of spinning a spinner and rolling a number cube independent events? Why or why not?


A number cube is rolled and a penny is tossed. Find each probability.
5. $P(4$ and tails $)$
6. $P$ (3 or less, heads)


## 12-3

Experimental and Theoretical Probability
The table at the right shows the results of a survey.
7. How many people bought balloons? $\square$
8. How many people were surveyed? $\square$
9. What is the experimental probability that a person surveyed preferred balloons?


| Item | Number of <br> People |
| :--- | :---: |
| balloons | 75 |
| cards | 15 |
| decorations | 25 |
| cake | 50 |

10. A bag contains 15 red marbles, 25 purple marbles, and 10 yellow marbles. Describe an experiment that you could conduct with the marbles to find an experimental probability.

12-4
Problem-Solving Investigation: Act It Out
11. SPORTS There are 32 tennis players in a tournament. If each losing player is eliminated from the tournament, how many tennis matches will be played during the tournament?

## 12-5

## Using Sampling to Predict

12. When you conduct a survey by asking ten students selected at random from each grade at your school what their favorite class is, what type of random sample have you taken?
$\square$
13. A grocery store owner asks the shoppers in his store where they prefer to shop for groceries. What type of sample has he conducted?
$\square$

## ARE YOU READY FOR THE CHAPTER TEST?

Checklist

## Math Online

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 12.

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 12 Practice Test on page 663 of your textbook as a final check.

I used my Foldables or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 12 Study Guide and Review on pages 659-662 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 12 Practice Test on page 663 of your textbook.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 12 Foldables.
- Then complete the Chapter 12 Study Guide and Review on pages 659-662 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 12 Practice Test on page 663.


Student Signature


Parent/Guardian Signature


Teacher Signature

