## Contributing Author

Dinah Zike

## FOLDABLES

## Consultant

Douglas Fisher, Ph.D.
Professor of Language and Literacy Education
San Diego State University
San Diego, CA

Glencoe

Copyright © by The McGraw-Hill Companies, Inc. All rights reserved. No part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written consent of The McGraw-Hill Companies, Inc., including, but not limited to, network storage or transmission, or broadcast for distance learning.

Send all inquiries to:
The McGraw-Hill Companies
8787 Orion Place
Columbus, OH 43240-4027
Printed in the United States of America.

ISBN: 978-0-07-890237-6
MHID: 0-07-890237-1

Math Connects: Concepts, Skills, and Problem Solving, Course 2 Noteables ${ }^{\text {TM }: ~ I n t e r a c t i v e ~ S t u d y ~ N o t e b o o k ~ w i t h ~ F o l d a b l e s ~}{ }^{\circledR}$

## Contents

## CHAPTER 1

Foldables. ..... 1
Vocabulary Builder ..... 2
1-1 A Plan for Problem Solving ..... 4
1-2 Powers and Exponents ..... 6
1-3 Squares and Square Roots .....  8
1-4 Order of Operations ..... 10
1-5 Problem-Solving Investigation: Guess and Check ..... 12
1-6 Algebra: Variables and Expressions ..... 13
1-7 Algebra: Equations ..... 15
1-8 Algebra: Properties ..... 18
1-9 Algebra: Arithmetic Sequences ..... 20
1-10 Algebra: Equations and Functions ..... 23
Study Guide ..... 26
CHAPTER 2
Foldables. ..... 31
Vocabulary Builder ..... 32
2-1 Integers and Absolute Value ..... 34
2-2 Comparing and Ordering Integers ..... 36
2-3 The Coordinate Plane ..... 38
2-4 Adding Integers ..... 41
2-5 Subtracting Integers ..... 44
2-6 Multiplying Integers ..... 46
2-7 Problem-Solving Investigation: Look for a Pattern ..... 48
2-8 Dividing Integers ..... 49
Study Guide ..... 50
CHAPTER 3
Foldables ..... 54
Vocabulary Builder. ..... 55
3-1 Writing Expressions and Equations ..... 57
3-2 Solving Addition and Subtraction Equations ..... 59
3-3 Solving Multiplication Equations ..... 61
3-4 Problem-Solving Investigation: Work Backward ..... 63
3-5 Solving Two-Step Equations ..... 64
3-6 Measurement: Perimeter and Area ..... 67
3-7 Functions and Graphs ..... 69
Study Guide ..... 72

## CHAPTER 4

Foldables ..... 76
Vocabulary Builder ..... 77
4-1 Prime Factorization ..... 79
4-2 Greatest Common Factor ..... 81
4-3 Problem-Solving Investigation: Make an Organized List ..... 84
4-4 Simplifying Fractions ..... 85
4-5 Fractions and Decimals ..... 87
4-6 Fractions and Percents ..... 90
4-7 Percents and Decimals ..... 92
4-8 Least Common Multiple ..... 94
4-9 Comparing and Ordering Rational Numbers ..... 96
Study Guide ..... 98
CHAPTER 5
Foldables. ..... 102
Vocabulary Builder ..... 103
5-1 Estimating with Fractions ..... 104
5-2 Adding and Subtracting Fractions ..... 106
5-3 Adding and Subtracting Mixed Numbers ..... 108
5-4 Problem-Solving Investigation: Estimate Possibilities. ..... 110
5-5 Multiplying Fractions and Mixed Numbers ..... 111
5-6 Algebra: Solving Equations ..... 113
5-7 Dividing Fractions and Mixed Numbers ..... 115
Study Guide ..... 117
CHAPTER 6
Foldables ..... 120
Vocabulary Builder ..... 121
6-1 Ratios ..... 123
6-2 Rates ..... 125
6-3 Rate of Change and Slope ..... 128
6-4 Measurement: Changing Customary Units ..... 130
6-5 Measurement: Changing Metric Units ..... 133
6-6 Algebra: Solving Proportions. ..... 136
6-7 Problem-Solving Investigation: Draw a Diagram ..... 138
6-8 Scale Drawings ..... 139
6-9 Fractions, Decimals, and Percents ..... 142
Study Guide ..... 144

## Contents

CHAPTER 7
Foldables ..... 148
Vocabulary Builder ..... 149
7-1 Percent of a Number ..... 151
7-2 The Percent Proportion ..... 153
7-3 Percent and Estimation ..... 155
7-4 Algebra: The Percent Equation ..... 157
7-5 Problem-Solving Investigation: Determine Reasonable Answers ..... 159
7-6 Percent of Change ..... 160
7-7 Sales Tax and Discount ..... 162
7-8 Simple Interest ..... 165
Study Guide ..... 167
CHAPTER 8
Foldables ..... 172
Vocabulary Builder ..... 173
8-1 Line Plots ..... 175
8-2 Measures of Central Tendency and Range ..... 177
8-3 Stem-and-Leaf Plots ..... 180
8-4 Bar Graphs and Histograms ..... 184
8-5 Problem-Solving Investigation:
Use a Graph ..... 188
8-6 Using Graphs to Predict ..... 189
8-7 Using Data to Predict ..... 191
8-8 Using Sampling to Predict ..... 193
8-9 Misleading Statistics ..... 195
Study Guide ..... 197
CHAPTER 9
Foldables ..... 201
Vocabulary Builder ..... 202
9-1 Simple Events ..... 204
9-2 Sample Spaces ..... 206
9-3 The Fundamental Counting Principle ..... 209
9-4 Permutations ..... 210
9-5 Combinations ..... 212
9-6 Problem-Solving Investigation:
Act It Out ..... 214
9-7 Thoretical and Experimental Probability. ..... 215
9-8 Compound Events ..... 217
Study Guide ..... 219
CHAPTER 10
Foldables. ..... 224
Vocabulary Builder. ..... 225
10-1 Angle Relationships ..... 227
10-2 Complementary and Supplementary Angles ..... 230
10-3 Statistics: Display Data in a Circle Graph ..... 232
10-4 Triangles ..... 236
10-5 Problem-Solving Investigation: Use Logical Reasoning ..... 238
10-6 Quadrilaterals ..... 239
10-7 Similar Figures ..... 241
10-8 Polygons and Tessellations ..... 243
10-9 Translations ..... 245
10-10 Reflections ..... 247
Study Guide ..... 250
CHAPTER 11
Foldables ..... 254
Vocabulary Builder ..... 255
11-1 Area of Parallelograms ..... 257
11-2 Area of Triangles and Trapezoids ..... 258
11-3 Circles and Circumference ..... 260
11-4 Area of Circles ..... 262
11-5 Problem-Solving Investigation:
Solve a Simpler Problem. ..... 263
11-6 Area of Complex Figures ..... 264
11-7 Three-Dimensional Figures ..... 266
11-8 Drawing Three-Dimensional Figures ..... 268
11-9 Volume of Prisms ..... 270
11-10 Volume of Cylinders ..... 271
Study Guide ..... 273
CHAPTER 12
Foldables. ..... 278
Vocabulary Builder ..... 279
12-1 Estimating Square Roots ..... 280
12-2 The Pythagorean Theorem ..... 282
12-3 Problem-Solving Investigation: Make a Model ..... 285
12-4 Surface Area of Rectangular Prisms ..... 286
12-5 Surface Area of Cylinders ..... 289
Study Guide ..... 291

## Organizing Your Foldables

## FOLDABLES

Have students make this Foldable to help them organize and store their chapter Foldables.
Begin with one sheet of 11 " $\times 17$ " paper.

## STEP 1 Fold

Fold the paper in half lengthwise. Then unfold.


## STEP 2 Fold and Glue

Fold the paper in half widthwise and glue all of the edges.


## STEP 3 Glue and Label

Glue the left, right, and bottom edges of the Foldable to the inside back cover of your Noteables notebook.


Reading and Taking Notes As you read and study each chapter, record notes in your chapter Foldable. Then store your chapter Foldables inside this Foldable organizer.

## Using Your Noteables" Interactive Study Notebook

This note-taking guide is designed to help you succeed in Math Connects, Course 2. Each chapter includes:




## NOTE-TAKING TIPS

Your notes are a reminder of what you learned in class. Taking good notes can help you succeed in mathematics. The following tips will help you take better classroom notes.

- Before class, ask what your teacher will be discussing in class. Review mentally what you already know about the concept.
- Be an active listener. Focus on what your teacher is saying. Listen for important concepts. Pay attention to words, examples, and/or diagrams your teacher emphasizes.
- Write your notes as clear and concise as possible. The following symbols and abbreviations may be helpful in your note-taking.

| Word or Phrase | Symbol or <br> Abbreviation | Word or Phrase | Symbol or <br> Abbreviation |
| :---: | :---: | :---: | :---: |
| for example | e.g. | not equal | $\neq$ |
| such as | i.e. | approximately | $\approx$ |
| with | w/ | therefore | $\therefore$ |
| without | w/o | versus | vs |
| and | + | angle | $\angle$ |

- Use a symbol such as a star ( $\star$ ) or an asterisk (*) to emphasize important concepts. Place a question mark (?) next to anything that you do not understand.
- Ask questions and participate in class discussion.
- Draw and label pictures or diagrams to help clarify a concept.
- When working out an example, write what you are doing to solve the problem next to each step. Be sure to use your own words.
- Review your notes as soon as possible after class. During this time, organize and summarize new concepts and clarify misunderstandings.


## Note-Taking Don'ts

- Don't write every word. Concentrate on the main ideas and concepts.
- Don't use someone else's notes as they may not make sense.
- Don't doodle. It distracts you from listening actively.
- Don't lose focus or you will become lost in your note-taking.

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin this Interactive Study Notebook to help you in taking notes.

Begin with eleven sheets of notebook paper.

STEP 1 Staple the eleven sheets together to form a booklet.

STEP 2 Make each one 2 lines longer than the one before it.


NOTE-TAKING TIP: When taking notes, it is often a good idea to write a summary of the lesson in your own words. Be sure to paraphrase key points.

1

## BUILD YOUR VOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 1.
As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

| Vocabulary Term | Found <br> on Page | Definition | Description or <br> Example |
| :--- | :--- | :--- | :--- |
| algebra |  |  |  |
| algebraic expression <br> [al-juh-BRAY-ihk] |  |  |  |
| arithmetic sequence <br> [air-ith-MEH-tik] |  |  |  |
| base |  |  |  |
| coefficient |  |  |  |
| defining the variable |  |  |  |
| domain |  |  |  |
| equation |  |  |  |
| [ih-KWAY-zhuhn] |  |  |  |
| equivalent expression |  |  |  |
| exponent |  |  |  |


| Vocabulary Term | Found on Page | Definition | Description or Example |
| :---: | :---: | :---: | :---: |
| factors |  |  |  |
| function |  |  |  |
| function rule |  |  |  |
| numerical expression |  |  |  |
| order of operations |  |  |  |
| perfect square |  |  |  |
| powers |  |  |  |
| radical sign |  |  |  |
| range |  |  |  |
| sequence |  |  |  |
| solution |  |  |  |
| square |  |  |  |
| square root |  |  |  |
| term |  |  |  |
| variable |  |  |  |

## 1-1 A Plan for Problem Solving

## EXAMPLE Use the Four-Step Plan

## Main Idea

- Solve problems using the four-step plan.


## FOLDABLES

## ORGANIZE IT

Summarize the four-step problem-solving plan on the Lesson 1-1 page of your Foldable.


1 SPENDING A can of soda holds 12 fluid ounces. A 2-liter bottle holds about 67 fluid ounces. If a pack of six cans costs the same as a 2-liter bottle, which is the better buy?

UNDERSTAND What are you trying to find? You know the number of fluid ounces of soda in one can of soda. You need to know the number of fluid ounces of soda in a pack of six cans.

PLAN You can find the number of fluid ounces of soda in a pack of six cans by $\square$ the number of fluid ounces in one can by $\square$.

SOLVE
$12 \times \square=\square$
There are $\square$ fluid ounces of soda in a pack of six cans. The number of fluid ounces of soda in a 2 -liter bottle is about $\square$. Therefore,
the $\square$ is the better buy because you get more soda for the same price.

CHECK The answer makes sense based on the facts given in the problem.

Check Your Progress FIELD TRIP The sixth-grade class at Meadow Middle School is taking a field trip to the local zoo. There will be 142 students plus 12 adults going on the trip. If each school bus can hold 48 people, how many buses will be needed for the field trip?


## EXAMPL: Use a Strategy in the Four-Step Plan

2 POPULATION For every 100,000 people in the United States, there are 5,750 radios. For every $\mathbf{1 0 0 , 0 0 0}$ people in Canada, there are 323 radios. Suppose Sheamus lives in Des Moines, Iowa, and Alex lives in Windsor, Ontario. Both cities have about 200,000 residents. About how many more radios are there in Sheamus's city than in Alex's city?

## Key Concepts

Problem-Solving Strategies

- guess and check
- look for a pattern
- make an organized list
- draw a diagram
- act it out
- solve a simpler problem
- use a graph
- work backward
- eliminate possibilities
- estimate reasonable
- use logical reasoning
- make a model

UNDERSTAND You know the approximate number of radios per 100,000 people in both Sheamus's city and Alex's city.

PLAN You can find the approximate number of radios in each city by $\square$ the estimate per 100,000 people by two to get an estimate per 200,000 people. Then, $\square$ find how many more radios there are in Des Moines than in Windsor.

SOLVE
Des Moines: $5,750 \times 2=\square$
Windsor: $323 \times 2=$ $\square$


So, Des Moines has about
more radios than Windsor.
CHECK Based on the information given in the problem, the answer seems to be reasonable.

## Check Your Progress READING Ben borrows a 500-page

 book from the library. On the first day, he reads 24 pages. On the second day, he reads 39 pages and on the third day he reads 54 pages. If Ben follows the same pattern of number of pages read for seven days, will he have finished the book at the end of the week?
## 1-2 Powers and Exponents

## Main IDEA

- Use powers and exponents.


## BUILD YOUR VOGABULARY (pages 2-3)

Two or more numbers that are multiplied together to form
a $\square$
The exponent tells how many times the base is used as a $\square$
The base is the common $\square$

Numbers expressed using $\square$ are called powers.

Five to the $\square$ power is five squared.

Four to the $\square$ power is four cubed.

## FOLDABLES

Organize IT
On the Lesson 1-2 page of your Foldable, explain the difference between the terms power and exponent.


## EXAMPLES Write Powers as Products

Write each power as a product of the same factor.
(1) $8^{4}$

Eight is used as a factor $\square$ times. $8^{4}=$ $\square$
$\square$ is used as a factor six times. $4^{6}=$ $\square$

## Check Your Progress

Write each power as a product of the same factor.
a. $3^{6}$
b. $7^{3}$

## BUILD YOUR VOCABULARY (pages 2-3)

You can evaluate, or find the $\square$ of, $\square$ by multiplying the factors.
 standard form.

Numbers written $\square$ are in exponential form.

## Write IT

Explain how you would use a calculator to evaluate a power.
$\qquad$
$\qquad$
$\qquad$
Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

## EXAMPLES Write Powers in Standard Form

Evaluate each expression.
(3) $8^{3}=\square=\square$
(4) $6^{4}=\square=\square$

## Check Your Progress

Evaluate each expression.
a. $4^{4}$
b. $5^{5}$


## EXAMPLE Write Numbers in Exponential Form

(5) Write $9 \cdot 9 \cdot 9 \cdot 9 \cdot 9 \cdot 9$ in exponential form.


So, the exponent is $\square$


Check Your Progress
Write $3 \cdot 3 \cdot 3 \cdot 3 \cdot 3$ in exponential form.

## 1-3 Squares and Square Roots

## MAIN IDEA

- Find squares of numbers and square roots of perfect squares.


## BUILD YOUR VOGABULARY (pages 2-3)

The $\square$ of a number and $\square$ is the square of the number.

Perfect squares like 9, 16, and 225 are squares of $\square$ numbers.

The $\square$ multiplied to form perfect squares are called square roots.

A radical sign, $\sqrt{ }$, is the symbol used to indicate the positive $\square$ of a number.

## EXAMPLES Find Squares of Numbers

## FOLDABLES

## ORGANIZE IT

On the Lesson 1-3 page of your Foldable, explain in words and symbols how you find squares of numbers and square roots of perfect squares.

(1) Find the square of 5 .

$\square \cdot \square=25$


2 Find the square of 19.
METHOD 1 Use paper and pencil.
$\square$
METHOD 2 Use a calculator.


## Check Your Progress

Find the square of each number.

## Key Concept

Square Root A square root of a number is one of its two equal factors.

## EXAMPLES Find Square Roots

## 3 Find $\sqrt{36}$.

What number times itself is 36 ?

$$
\square \cdot \square=36 \text {, so } \sqrt{36}=\square .
$$

(4) Find $\sqrt{676}$.

Use a calculator.


So, $\sqrt{676}=$


## Check Your Progress

Find each square root.
a. $\sqrt{64}$

b. $\sqrt{529}$


5 GAMES A checkerboard is a square with an area of 1,225 square centimeters. What are the dimensions of the checkerboard?

The checkerboard is a square. By finding the square root of the area, 1,225 , you find the length of one side.


The dimensions of the checkerboard are $\square$ cm by


## Check Your Progress

GARDENING Kyle is planting a new garden that is a square with an area of 42.25 square feet. What are the dimensions of Kyle's garden?


## Homework Assignment

Page(s):
Exercises:

## 1-4 Order of Operations

## MAIN IDEA

- Evaluate expressions using the order of operations.


## Key Concept

## Order of Operations

1. Evaluate the expressions inside grouping symbols.
2. Evaluate all powers.
3. Multiply and divide in order from left to right.
4. Add and subtract in order from left to right.

Foldables Be sure to include the order of operations on the Lesson 1-4 page of your Foldable.

## BUILD YOUR VOCABULARY (pages 2-3)

The expressions $4 \cdot 6-(5+7)$ and $8 \cdot(9-3)+4$ are
$\square$ expressions.

Order of operations are $\square$ that ensure that numerical expressions have only one value.

## EXAMPLES Evaluate Expressions

## Evaluate each expression.

1) $27-(18+2)$
$27-(18+2)=27-\square \quad$ Add first since $18+2$ is in parentheses.


Subtract 20 from 27.

2 $15+5 \cdot 3-2$
$15+5 \cdot 3-2=15+\square-2 \quad$ Multiply 5 and 3.
$=\square-2 \quad$ Add 15 and 15.
$=\square \quad$ Subtract 2 from 30.

Check Your Progress
Evaluate each expression.
a. $45-(26+3)$
b. $32-3 \cdot 7+4$


## EXAMPLES Use Order of Operations

## Evaluate each expression.

(3) $12 \times 3-2^{2}$
$12 \times 3-2^{2}=12 \times 3-\square$

$$
\begin{aligned}
& =\square-4 \\
& =\square
\end{aligned}
$$

Find the value of $2^{2}$.
Multiply 12 and 3.
Subtract 4 from 36.

4 $28 \div(3-1)^{2}$

$$
\begin{array}{rlr}
28 \div(3-1)^{2} & =28 \div \square & \\
& =28 \div \square & \begin{array}{l}
\text { Subtract } 1 \text { from } 3 \text { inside the } \\
\text { parentheses. }
\end{array} \\
& =\square &
\end{array}
$$

If an exponent lies outside of grouping symbols, complete the operations within the grouping symbols before applying the power.

## Homework

 AssignMentPage(s):
Exercises:

## EXAMPLE Evaluate an Expression

3 MONEY Julian is buying one box of favors, one box of balloons, and three rolls of crepe paper. What is the total cost?

| Item | Quantity | Unit Cost |
| :--- | :---: | :---: |
| crepe paper | 3 rolls | $\$ 2$ |
| favors | 1 box | $\$ 7$ |
| balloons | 1 box | $\$ 5$ |

$1 \times 7+1 \times 5+3 \times 2=7+\square+6$ or 18
The total cost is $\square$

Check Your Progress What is the total cost of two boxes of favors, two boxes of balloons, and six rolls of crepe paper?

## 1-5 Problem-Solving Investigation: Guess and Check

## EXAMPLE Use Guess and Check Strategy

## Main IDEA

- Solve problems using the guess and check strategy.


## Homework <br> Assignment



CONCESSIONS The concession stand at the school play sold lemonade for $\mathbf{\$ 0 . 5 0}$ and cookies for $\boldsymbol{\$ 0 . 2 5}$. They sold 7 more lemonades than cookies, and they made a total of $\$ 39.50$. How many lemonades and cookies were sold?

UNDERSTAND You know the cost of each lemonade and cookie. You know the total amount made and that they sold $\square$ more lemonades than cookies. You need to know how many lemonades and cookies were sold.

PLAN Make a guess and check it. Adjust the guess until you get the correct answer.

SOLVE Make a guess.
14 cookies, 21 lemonades $\quad 0.25(14)+0.50(21)$


50 cookies, 57 lemonades $0.25(50)+0.50(57)$


48 cookies, 55 lemonades $0.25(48)+0.50(55)$
$=\square$
CHECK $\quad 48$ cookies cost $\$ 12$ and 55 lemonades cost $\$ 27.50$. Since $\$ 12+\$ 27.50=\$ 39.50$ and 55 is 7 more than 48 , the guess is correct.

## Check Your Progress

ZOO A total of 122 adults and children went to the zoo. Adult tickets cost $\$ 6.50$ and children's tickets cost $\$ 3.75$. If the total cost of the tickets was $\$ 597.75$, how many adults and children went to the zoo?


## 1-6 Algebra: Variables and Expressions

## MAIN IdeA

- Evaluate simple algebraic expressions.


## BUILD YOUR VOGABULARY (pages 2-3)

You can use a $\square$, or variable, in an expression.
The expression $7+n$ is called an $\square$ expression.
The branch of mathematics that involves expressions with $\square$ is called algebra. The $\square$ factor of a term that contains a variable is called a coefficient.

## EXAMPLES Evaluate Expressions

(1) Evaluate $t-4$ if $t=6$.
$t-4=6-\square$
Replace $t$ with $\square$
$=\square$
Subtract.
2) Evaluate $5 x+3 y$ if $x=7$ and $y=9$.


$$
\begin{aligned}
5+a^{2} & =5+5^{2} & & \text { Replace a with } \square . \\
& =5+\square . & & \text { Evaluate the } \square \\
& =\square & & \text { Add. }
\end{aligned}
$$

## FOLDABLES

## ORGANIZE IT

Record and evaluate an example of a simple algebraic expression on the Lesson 1-6 page of your Foldable.


## Homework ASSIGNMENT

Page(s):<br>Exercises:

## 1-7 Algebra: Equations

## Main Idea

- Write and solve equations using mental math.


## BUILD YOUR VOCABULARY (pages 2-3)

An equation is a $\square$ in mathematics that contains an equals sign.

The solution of an equation is a number that makes the sentence $\square$
The process of finding a $\square$ is called

## solving an equation.

When you choose a $\square$ to represent one of the unknowns in an equation, you are defining the variable.

## EXAMPLE Solve an Equation Mentally

Solve $p-14=5$ mentally.
of your Foldable, record
and solve an example of of your Foldable, record
and solve an example of an algebraic equations.


## FOLDABLES

OrgANIZE IT
On the Lesson 1-7 page

$$
p-14=5 \quad \text { Write the equation. }
$$

$-14=5$
You know that $19-14$ is $\square$
$\square$

The solution is $\square$

Check Your Progress Solve $p-6=11$ mentally.

## EXAMPLE

2 TEST EXAMPLE A store sells pumpkins for $\$ 2$ per pound. Paul has $\$ 18$. Use the equation $2 x=18$ to find how large a pumpkin Paul can buy with $\$ 18$.
A 6 lb
B 7 lb
C 8 lb
D 9 lb

## Read the Item

Solve $\square$ to find how many pounds the pumpkin can weigh.

## Solve the Item

$\square$ Write the equation.
$2 \cdot \square=18$
You know that $2 \cdot 9$ is 18.
Paul can buy a pumpkin as large as $\square$ pounds.

The answer is $\square$

Check Your Progress A store sells notebooks for $\$ 3$ each. Stephanie has $\$ 15$. Use the equation $3 x=15$ to find how many notebooks she can buy with $\$ 15$.

| F 4 | G 5 | H 6 | J 7 |
| :--- | :--- | :--- | :--- |

$\square$

## EXAMPLE Write an Equation to Solve a Problem

## ReVIew IT

Explain how to add a decimal and a whole number. (Prerequisite Skill)
$\qquad$
$\qquad$
$\qquad$
3 ENTERTAINMENT An adult paid $\mathbf{\$ 1 8 . 5 0}$ for herself and two students to see a movie. If the two student tickets cost $\$ 11$ together, what is the cost of the adult ticket?


The cost of one adult ticket and two student tickets is $\$ 18.50$.

Equation $\quad a+11=18.50$
Let $a$ represent the cost of an adult movie ticket.

$$
a+11=18.50
$$



The number $\square$ is the solution of the equation. So, the cost of an adult movie ticket is $\square$

## Check Your Progress

ICE CREAM Julie spends $\$ 9.50$ at the ice cream parlor. She buys a hot fudge sundae for herself and ice cream cones for each of the three friends who are with her. Find the cost of Julie's sundae if the three ice cream cones together cost $\$ 6.30$.

## Homework Assignment

Page(s):
Exercises:

## 1-8 Algebra: Properties

## MAIN IDEA

- Use Commutative, Associative, Identity, and Distributive properties to solve problems.


## BUILD YOUR VOCABULARY (pages 2-3)

The expressions $5(\$ 9+\$ 2)$ and $5(\$ 9)+5(\$ 2)$ are equivalent expressions because they have the $\square$ value.

## EXAMPLES Use the Distributive Property

Use the Distributive Property to rewrite each expression. Then evaluate it.
(1) $8(5+7)$

$6(9)+6(2)$

| $6(9)+6(2)$ | $=\square+\square \quad$ Multiply. |
| ---: | :--- | ---: |
|  | $=\square \quad$ Add. |

## Check Your Progress

Use the Distributive Property to evaluate each expression.
a. $4(6+3)$

b. $(5+3) 7$


## KEY Concepts

Commutative Property The order in which two numbers are added or multiplied does not change their sum or product.

Associative Property The way in which three numbers are grouped when they are added or multiplied does not change their sum or product.

Identity Property The sum of an addend and zero is the addend. The product of a factor and one is the factor.

## EXAMPLE

(3) VACATIONS Mr. Harmon has budgeted $\mathbf{\$ 1 5 0}$ per day for his hotel and meals during his vacation. If he plans to spend six days on vacation, how much will he spend?

$$
\begin{array}{rlr}
6(150) & =6(100+\square) & \\
& 150=100+50 . \\
& =\square(100)+\square(50) & \\
\text { Distributive Property } \\
& =600+\square \text { or } 900 & \text { Multiply, then add. }
\end{array}
$$

Mr. Harmon will spend about $\square$ on a six-day vacation.

Check Your Progress COOKIES Heidi sold cookies for $\$ 2.50$ per box for a fundraiser. If she sold 60 boxes of cookies, how much money did she raise?

## BUILD YOUR YOGABULARY (pages 2-3)

Properties are statements that are $\square$ for all numbers.

## EXAMPLE Identify Properties

(4) Find 5•13•20 mentally. Justify each step.
$5 \cdot 13 \cdot 20=5$ - $\square$


Communtative Property of Multiplication

Associative Property of Multiplication

Multiply 100 and 13 Mentally.

## Check Your Progress

Name the property shown by the statement $4+(6+2)=(4+6)+2$.

## 1-9 Algebra: Arithmetic Sequences

## MAIN IDEA

- Describe the relationships and extend terms in arithmetic sequences.

BUILD YOUR VOCABULARY (pages 2-3)


## EXAMPLES Describe Patterns in Sequences

Describe the relationship between the terms in each arithmetic sequence. Then write the next three terms in the sequence.

1) $7,11,15,19, \ldots$

## FOLDABLES

## ORGANIZE IT

Write an example of an arithmetic and a geometric sequence on the Lesson 1-9 page of your Foldable.


Each term is found by $\square$ 4 to the previous term.

Continue the pattern to find the next three terms.
$19+4=\square \quad 23+4=\square \quad 27+4=\square$
The next three terms are 23, 27, and 31.
(2) 0.1, 0.5, 0.9, 1.3, ...


Each term is found by adding $\square$ to the previous term. Continue the pattern to find the next three terms.
$1.3+\square=1.7$
$1.7+\square$ $\square$
$2.1+0.4=$ $\square$

The next three terms are 1.7, 2.1, and 2.5.

Check Your Progress Describe the relationship between the terms in each arithmetic sequence. Then write the next three terms in the sequence.
a. $13,24,35,46, \ldots$

b. $0.6,1.5,2.4,3.3, \ldots$

## Write It

In your own words, explain how to determine the pattern in a sequence.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\longrightarrow$

## EXAMPLE Use a Table

(3) EXERCISE Mehmet started a new exercise routine. The first day, he did 2 sit-ups. Each day after that, he did 2 more sit-ups than the previous day. If he continues this pattern, how many sit-ups will he do on the tenth day?

| Position | Operation | Value of Term |
| :---: | :---: | :---: |
| 1 | $\square$ | 2 |
| 2 | $2 \cdot 2$ | $\square$ |
| $\square$ | $3 \cdot 2$ | 6 |
| $d$ | $d \cdot 2$ | $2 d$ |

(continued on the next page)


## 1-10 Algebra: Equations and Functions

## Main Idea

- Make function tables and write equations.


## Remember It

When $x$ and $y$ are used in an equation, $x$ usually represents the input and $y$ usually represents the output.

## BUILD YOUR VOGABULARY (pages 2-3)

A relationship where one thing depends on another is called a function.

The $\square$ performed on the input is given by the function rule.

You can organize the $\square$ numbers, $\square$ numbers, and the function rule in a function table.

The set of $\square$ values is called the domain. The set of $\square$ values is called the range.

## EXAMPLE Make a Function Table

1) Asha earns \$6.00 an hour working at a grocery store. Make a function table that shows Asha's total earnings for working $1,2,3$, and 4 hours.

| Input | Function | Output |
| :---: | :---: | :---: |
| Number of <br> Hours | Multiply by 6 | Total <br> Earnings (\$) |
| 1 | $\square$ | 6 |
| 2 | $6 \times 2$ | $\square$ |
| $\square$ | $6 \times 3$ | 18 |
| 4 |  | $\square$ |

Check Your Progress MOVIE RENTAL Dave goes to the video store to rent a movie. The cost per movie is $\$ 3.50$. Make a function table that shows the amount Dave would pay for renting $1,2,3$, and 4 movies.

## EXAMPLES

2 READING Melanie read 14 pages of a detective novel each hour. Write an equation using two variables to show how many pages $p$ she read in $h$ hours.

| Input | Function | Output |
| :---: | :---: | :---: |
| Number of <br> Hours ( $\boldsymbol{h})$ | Multiply by 14 | Number of <br> Pages Read ( $\boldsymbol{p})$ |
| 1 | $1 \times 14$ | $\square$ |
| 2 | $\square \times 14$ | 28 |
| $\square$ | $\square$ | $14 h$ |
| $h$ |  |  |



3 READING Use your equation from Example 2 to find how many pages Melanie read in $\mathbf{7}$ hours.

$p=14$

$p=\square$

Write the equation.

Replace $h$ with 7.

Multiply.

Melanie read 98 pages in 7 hours.

## Check Your Progress

a. TRAVEL Derrick drove 55 miles per hour to visit his grandmother. Write an equation using two variables to show how many miles $m$ he drove in $h$ hours.
b. TRAVEL Use your equation from above to find how many miles Derrick drove in 6 hours.

## HOMEWORK AssignMent

Page(s):
Exercises:

## STUDY GUIDE

## OLDABLES

Use your Chapter 1 Foldable to help you study for your chapter test.

## VOCABULARY PUZZLEMAKER

To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 1, go to:
glencoe.com

## BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (pages 2-3) to help you solve the puzzle.

## 1-1

## A Plan for Problem Solving

## Underline the correct term to complete each sentence.

1. The (Plan, Solve) step is the step of the four-step plan in which you decide which strategy you will use to solve the problem.
2. According to the four-step plan, if your answer is not correct, you should (estimate the answer, make a new plan and start again).
3. Once you solve a problem, make sure your solution contains any appropriate (strategies, units or labels).

## 1-2

Powers and Exponents
Identify the exponent in each expression.
4. $5^{8}$ $\square$
5. $8^{3}$ $\square$

## Evaluate each expression.

6. $4^{3}$

7. $8^{5}$ $\square$

## Complete the sentence.

8. Numbers written with exponents are in $\square$ form, whereas numbers written without exponents are in
$\square$

## 1-3

Squares and Square Roots
Complete each sentence.
9. The square of 3 means $\square$ $\times$ $\square$
10. Nine units squared means 9 $\square$ with $\square$ of $\square$ unit each.

Find the square of each number.
11. 16 $\square$ 12. 28 $\square$
Find the square root of each number.
13. $\sqrt{121}$ $\square$
14. $\sqrt{484}$ $\square$

## 1-4

Order of Operations

## Evaluate each expression.

15. $9+18 \div 6$

16. $2 \times 4^{2} \div 4-1$


## 1-5

16. $(7-4)^{2} \div 3$

17. $8+2(9-5)-(2 \cdot 3)$


Problem-Solving Investigation: Guess and Check
Solve using the guess and check strategy.
19. MONEY Gary deposited $\$ 38$ into his savings account every week for eight weeks. At the end of this time, the total amount in his account was $\$ 729$. How much money did Gary have in his account before the deposits?


1-6
Algebra: Variables and Expressions
Evaluate each expression if $a=5$ and $b=6$.
20. $2 a+3 b$ $\square$
21. $\frac{a b}{5}$ $\square$
22. $a^{2}-3 b$ $\square$

## 1-7

## Algebra: Equations

Solve each equation mentally.
23. $5+b=12$
24. $h-6=3$ $\square$
25. $12 \cdot 4=n$ $\square$
26. $2=\frac{x}{4}$ $\square$
27. $9 t=54$ $\square$
28. $35 \div c=7$ $\square$

## 1-8

## Algebra: Properties

Match the statement with the property it shows.
29. $5+(3+6)=(5+3)+6$ $\square$ a. Distributive

Property
30. $8+0=8$

b. Commutative Property of Addition
31. $4(7-2)=4(7)-4(2)$ $\square$ c. Associative Property of Addition
32. $10+9=9+10$ $\square$ d. Identity Property of Addition

## 1-9

## Algebra: Arithmetic Sequences

Complete the sentence.
33. In an arithmetic sequence, each term is found by $\square$ the same number to the previous term.
34. In a geometric sequence, each term is found by the same number by the previous term.

What is the next term in each of the following sequences?
35. $1,5,25, \ldots$ $\square$ 36. $7,10,13, \ldots$ $\square$
1-10

## Algebra: Equations and Functions

37. Complete the function table. Identify the domain and range. Then graph the function.

| $x$ | $2 x-1$ | $y$ |
| :---: | :---: | :---: |
| -1 |  | $\square$ |
| 0 |  | $\square$ |
| 1 |  | $\square$ |
|  |  |  |


Domain $=\square$
Range $=$ $\square$

## ARE YOU READY FOR THE CHAPTER TEST?

## Checklist

## Math Online

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 1.

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 1 Practice Test on page 75 of your textbook as a final check.

I used my Foldables or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 1 Study Guide and Review on pages 70-74 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may want to take the Chapter 1 Practice Test on page 75 of your textbook.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 1 Foldables.
- Then complete the Chapter 1 Study Guide and Review on pages 70-74 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 1 Practice Test on page 75 of your textbook.



## Integers

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.

Begin with two sheets of $8 \frac{1^{\prime \prime}}{2} \times 11^{\prime \prime}$ paper.

STEP 1 Fold one sheet in half from top to bottom. Cut along fold from edges to margin.


STEP 2 Fold the other sheet in half from top to bottom. Cut along fold between margins.


STEP 3 Insert first sheet through second sheet and align folds.


STEP 4 Label each page with a lesson number and title.


NOTE-TAKING TIPS: When you take notes, it is helpful to list ways in which the subject matter relates to daily life.

## BUILD YOUR VOCABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 2.
As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

| Vocabulary Term | Found <br> on Page | Definition | Description or <br> Example |
| :--- | :--- | :--- | :--- |
| absolute value |  |  |  |
| additive inverse |  |  |  |
| coordinate plane |  |  |  |
| graph |  |  |  |
| integer |  |  |  |
| [IHN-tih-juhr] |  |  |  |
| negative integer |  |  |  |


| Vocabulary Term | Found on Page | Definition | Description or Example |
| :---: | :---: | :---: | :---: |
| ordered pair |  |  |  |
| origin |  |  |  |
| positive integer |  |  |  |
| quadrant |  |  |  |
| $x$-axis |  |  |  |
| $x$-coordinate |  |  |  |
| $y$-axis |  |  |  |
| $y$-coordinate |  |  |  |

## 2-1 Integers and Absolute Value

## MAIN IdeA

- Read and write integers, and find the absolute value of a number.


## BUILD YOUR VOGABULARY (pages 32-33)

An integer is any $\square$ from the set $\{\ldots,-4, \square,-2$, $-1,0,1, \square, 3,4, \ldots\}$. To graph a $\square$ on the number line, draw a point on the line at its $\square$. Negative integers are integers $\square$ than zero. Positive integers are integers $\square$ than zero.

## EXAMPLES Write Integers for Real-Life Situations

## Write an integer for each situation.

(1) a total rainfall of 2 inches below normal

Because it represents below normal, the integer is $\square$
2 a seasonal snowfall of 3 inches above normal Because it represents $\square$ normal, the integer is $\square$

## Check Your Progress <br> Write an integer for each situation.

a. a total snowfall of 5 inches above normal

b. an average monthly temperature of 4 degrees below normal

## BUILD YOUR VOGABULARY (pages 32-33)

The numbers $\square$ and 5 are the same $\square$ from 0 , so -5 and 5 have the same absolute value.

## EXAMPLE Graph Integers

(3) Graph the set of integers $\{-1,3,-2\}$ on a number line.

Draw a number line. Then draw a $\square$ at the location of each integer.
each integer.
$\square$解
$\square$

Check Your Progress Graph the set of integers $\{-2,1,-4\}$ on a number line.

## EXAMPLES Evaluate Expressions

4 Evaluate the expression $|-5|$.
On the number line, the graph of -5 is 5 units from 0 .


So, $|-5|=\square$.
5 Evaluate the expression $|-4|-|-3|$.

## Homework Assignment

Page(s): Exercises:

$$
\begin{aligned}
|-4|-|-3| & =\square-\square & & |-4|=\square,|-3|=\square \\
& =\square & & \text { Subtract. }
\end{aligned}
$$

Evaluate each expression.
a. $|-9|$ $\square$ b. $|8|-|-5|$ $\square$

## 2-2 Comparing and Ordering Integers

## EXAMPLE Compare Integers

## MAIN IDEA

- Compare and order integers
(1) Replace the with $<$ or $>$ to make -9 -5 a true sentence.

Graph each integer on a number line.


Since $\square$ is to the $\square$ of $-5,-9$ $\square$ -5 .

Check Your Progress
Replace the with < or > to make $-3-6$ a true sentence.

## EXAMPLE Order Integers

2 TEST EXAMPLE The lowest temperatures in Europe, Greenland, Oceania, and Antarctica are listed in the table. Which list shows the temperatures in order from coolest to warmest?

| Continent | Record Low <br> Temperature $\left({ }^{( } \mathrm{F}\right)$ |
| :--- | :---: |
| Europe | -67 |
| Greenland | -87 |
| Oceania | 14 |
| Antarctica | -129 |

Source: The World Almanac
A - 67, - 87, 14, -129
C - 129, -87, -67, 14
B 14, -67, -87, -129
D $-67,-87,-129,14$

## FOLDABLES

## ORGANIZE IT

Under Lesson 2-2 in your Foldable, explain how to compare integers. Be sure to include examples.

Integers and -Absolute Value

## Read the Item

To order the integers, graph them on a number line.

## Solve the Item



Order the integers from least to greatest by reading from left to right. The order from least to greatest is $\square$
$\square$

## Check Your Progress

MULTIPLE CHOICE The lowest temperatures on a given day in four cities in the United States are listed in the table. Which of the following lists the temperatures in order from coolest to warmest?

| City | Low Temperature |
| :--- | :---: |
| Portland, OR | -12 |
| New York City, NY | -6 |
| Denver, CO | 7 |
| Newport, RI | -3 |

F $-3,-6,7,12$
$\mathbf{H}-12,7,-6,-3$
G $-12,-6,-3,7$
J $-3,-6,7,-12$

## Homework

 AssignmentPage(s):
Exercises:

## 2-3 The Coordinate Plane

## Main Idea

- Graph points on a coordinate plane.


## ORGANIZE IT

Under Lesson 2-3 in your Foldable, record and define key terms about the coordinate system and give examples of each.


## BUILD YOUR VOGABULARY (pages 32-33)

A coordinate plane is a plane in which a $\square$ number line and a vertical number line intersect at their zero points.

The $\square$ number line of a coordinate plane is called the $\boldsymbol{x}$-axis.

The $\square$ number line of a coordinate plane is called the $\boldsymbol{y}$-axis.

The origin is the point at which the number lines intersect in a coordinate grid.

An ordered pair is a pair of numbers such as $(5,-2)$ used to locate a point in the coordinate plane. The $x$-coordinate is the $\square$ number. The $y$-coordinate is the $\square$ number.

## EXAMPLE Naming Points Using Ordered Pairs

(1) Write the ordered pair that corresponds to point $\boldsymbol{R}$. Then state the quadrant in which the point is located.

- Start at the origin.
- Move $\square$ to find the $x$-coordinate of point $R$, which is

- Move up to find the


So, the ordered pair for point $R$ is $\square$ Point $R$ is located in Quadrant $\square$

## WRITE IT

When no numbers are shown on the $x$ - or $y$-axis, how long is each interval?
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Check Your Progress

Write the ordered pair that names point $M$. Then name the quadrant in which the point is located.



## EXAMPLES Graph an Ordered Pair

2 Graph and label the point $M(3,5)$.

- Draw a coordinate plane.
- Start at the $\square$
- Move $\square$ units to the right.


Then move 5 units $\square$

- Draw a dot and label it $M$ $\square$

Check Your Progress Graph and label the point $G(-2,-4)$.


## BUILD YOUR VOGABULARY (pages 32-33)

The coordinate plane is separated into $\square$ sections called quadrants.


## 2-3

EXAMPLES Identify Quadrants
(3) GEOGRAPHY Use the map of Utah shown below.


In which quadrant is Vernal located?
Vernal is located in the $\square$ right quadrant.
Quadrant $\square$
(4) Which of the cities labeled on the map of Utah is located in quadrant IV?

Quadrant
 is the bottom right quadrant. So, $\square$ in Quadrant IV.

Check Your Progress
Refer to the map of Utah shown above.
a. In which quadrant is Tremonton located?


Homework Assignment
Page(s):
Exercises:
b. Which of the cities labeled on the map of Utah shown above is located in Quadrant III?


## 2-4. Adding Integers

## EXAMPLES Add Integers with the Same Sign

## Main IDEA

Add integers.
(1) Find $-6+(-3)$.

Use a number line.

- Start at

- Move 6 units $\square$ to show -6.
- From there, move $\square$ units left to show $\square$.


$$
\text { So },-6+(-3)=\square \text {. }
$$

## Key Concepts

Adding Integers with the Same Sign The sum of two positive integers is positive. The sum of two negative integers is negative.
Additive Inverse
Property The sum of any number and its additive inverse is 0 .

2 Find $-34+(-21)$.
$-34+(-21)=\square$
Both integers are negative, so the sum is


## Check Your Progress

Find each sum.
a. $-5+(-2)$

b. $-27+(-19)$

## BUILD YOUR VOGABULARY (pages 32-33)

The integers 5 and -5 are called opposites of each other because they are the same distance from 0 , but on
$\square$ sides of 0 .


## Key Concept

Adding Integers with Different Signs To add integers with different signs, subtract their absolute values. The sum is:

- positive if the positive integer has the greater absolute value.
- negative if the negative integer has the greater absolute value.


## FOLDABLES

## Organize IT

Summarize the steps for adding integers. Be sure to include examples.

2-1
Integers and
Absolute Value

## EXAMPLES Add Integers with Different Signs

(3) Find $8+(-7)$.

Use a number line.
Start at


Move
 units right.

Then move $\square$ units left.


So, $8+(-7)=\square$.
4 Find $-5+4$.
Use a number line.

Start at


Move $\square$ units left.

Then move 4 units


So,$-5+\square=-1$

## Check Your Progress

Add.
a. $6+(-2)$

b. $-3+5$


## EXAMPLES Add Integers with Different Signs

5 Find $2+(-7)$.
$2+(-7)=\square$
Subtract absolute values;
$7-2=5$. Since $\square$ has the greater absolute value, the sum is


5 Find $-9+6$.

$$
-9+6=\square
$$


the absolute values;
$9-6=3$. Since -9 has the

sum is negative.
$\square$

Compare the absolute value of the addends when determining the sign of the sums.

## Remember It

Check Your Progress
Add.
a. $5+(-9)$
b. $7+(-3)$


## EXAMPLE Use the Additive Inverse Property

7 Find $11+(-4)+(-11)$.

$$
\left.\left.\begin{array}{rl}
11+(-4)+(-11) & =11+(-11)+(-4) \\
& =\square+(-4) \\
& =-4
\end{array} \begin{array}{l}
\text { Commutative } \\
\text { Property }(+)
\end{array}\right\} \begin{array}{l}
\text { Additive Inverse } \\
\text { Property }
\end{array}\right\} \begin{aligned}
& \text { Identity Property } \\
& (+)
\end{aligned}
$$

## Homework ASSIGNMENT

Page(s):
Exercises:

## 2-5 Subtracting Integers

## EXAMPLES Subtract Positive Integers

Main IDEA

- Subtract integers.

1) Find 2-15.

$$
\begin{aligned}
2-15 & =2+(-15) \\
& =-13
\end{aligned}
$$

To subtract 15, add $\square$
Simplify.

2 Find - $13-8$.

$$
-13-8=-13+\square
$$

To subtract 8, add $\square$

$$
=-21
$$

Simplify.

Check Your Progress
Subtract.
a. $13-21$
b. $-9-11$


## KEY Concept

Subtracting Integers To subtract an integer, add its opposite.

FOLDABLES Write this concept in your Foldable. Be sure to include examples.

## EXAMPLES Subtract Negative Integers

(3) Find 12 - (-6).


4 Find -21 - (-8).

$$
\begin{aligned}
-21-(-8) & =-21+8 \\
& =-13
\end{aligned}
$$

To subtract
 , add
 Simplify.

## Check Your Progress

Subtract.
a. $9-(-4)$
b. $17-(-6)$


## EXAMPLE Evaluate an Expression

5 ALGEBRA Evaluate $g-h$ if $g=-2$ and $h=-7$.
$g-h=\square-\square$

$$
=-2+\square
$$

$$
=\square
$$

Replace $\square$ with -2 and $h$ with
 Subtract -7, add Simplify.

Check Your Progress
Evaluate $m-n$ if $m=-6$ and $n=4$.

## Write IT

Explain how you can use a number line to check the results of subtracting integers.
Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

## Homework

 ASSIGNMENTPage(s):
Exercises:

## EXAMPLE

6 GEOGRAPHY In Mongolia, the temperature can fall to $-45^{\circ} \mathrm{C}$ in January. The temperature in July may reach $40^{\circ} \mathrm{C}$. What is the difference between these two temperatures in Mongolia?
To find the difference in temperatures, subtract the lower temperature from the higher temperature.
$40-(-45)=40 \square$ 45
To subtract $-45, \square$
$\square$ Simplify. 45.

So, the difference between the temperatures is $\square$

## Check Your Progress

On a particular day in Anchorage,
Alaska, the high temperature was $15^{\circ} \mathrm{F}$ and the low temperature was $-11^{\circ} \mathrm{F}$. What is the difference between these two temperatures for that day?

## 2-6 Multiplying Integers

## EXAMPLES Multiply Integers with Different Signs

Main IDEA

- Multiply integers.

1 Find 5(-4).


The product is


2 Find -3(9).


The integers have $\square$ signs.

The product is $\square$

## Check Your Progress

## Multiply.

a. 3(-5)

b. $-5(7)$


## KEy CONCEPTS

## Multiplying Integers

 with Different Signs The product of two integers with different signs is negative.
## Multiply Integers with

 the Same Sign The product of two integers with the same sign is positive.FFoldabies include these concepts on the Lesson 2-6 tab of your Foldable

## EXAMPIES Multiply Integers with the Same Sign

(3) Find $-6(-8)$.
$-6(-8)=\square$


The product is

(4) Find $(-8)^{2}$.


5 Find -2(-5)(-6).

## Multiply.

a. $-4(-7)$

b. $(-5)^{2}$

c. $-7(-3)(-4)$


## EXAMPLE

## Remember It

When three variables are written without an operations sign, it means multiplication.

## Homework AssignMent

Page(s):
Exercises:

6 MINES A mine elevator descends at a rate of 300 feet per minute. How far below the earth's surface will the elevator be after 5 minutes?

If the elevator descends $\square$ feet per minute, then after 5 minutes, the elevator will be $-300(\square)$ or $-1,500$ feet below the surface. Thus, the elevator will descend to $\square$ feet.

Check Your Progress
RETIREMENT Mr. Rodriguez has $\$ 78$ deducted from his pay every month and placed in a savings account for his retirement. What integer represents a change in his savings account for these deductions after six months?

## EXAMPLE Evaluate Expressions

(1) ALGEBRA Evaluate $a b c$ if $a=-3, b=5$, and $c=-8$.
$a b c=(-3)(5)(-8)$

$$
=(-15)(-8)
$$

$$
=\square
$$

Replace $\square$ with $-3, b$


Multiply -15 and -8.

## Check Your Progress

Evaluate $x y z$ if $x=-6, y=-2$, and $z=4$.

## 2-7 Problem-Solving Investigation: Look for a Pattern

## EXAMPLE Use the Look for a Pattern Strategy

HAIR Lelani wants to grow an 11-inch ponytail. She has a 3-inch ponytail now, and her hair grows about one inch every two months. How long will it take for her ponytail to reach 11 inches?

UNDERSTAND You know the length of Lelani's ponytail now.
You know how long Lelani wants her ponytail to grow and you know how fast her hair grows. You need to know how long it will take for her ponytail to reach $\square$ inches.

PLAN Look for a pattern. Then extend the pattern to find the solution.

SOLVE After the first two months, Lelani's ponytail will be 3 inches $+\square$ inch, or 4 inches. Every $\square$ months, her hair grows according to the pattern below.
3 in. 4 in. 5 in. 6 in. 7 in. 8 in. 10 in. 11 in.


It will take eight sets of two months, or 16 months total, for Lelani's ponytail to reach

inches.
CHECK Lelani's ponytail grew from 3 inches to 11 inches, a difference of eight inches, in
$\square$ months. Since one inch of growth
requires two months and $8 \times \square=16$, the answer is correct.

## Check Your Progress RUNNING Samuel ran 2 miles

 on his first day of training to run a marathon. On the third day, Samuel increased the length of his run by 1.5 miles. If
## Homework

 AssignmentPage(s):<br>Exercises:

## 2-8 Dividing Integers

## EXAMPLES Dividing Integers with Different Signs

## Main IDEA

- Divide integers.


## Key Concepts

Dividing Integers with Different Signs The quotient of two integers with different signs is negative.

Dividing Integers with the Same Sign The quotient of two integers with the same sign is positive.

## Homework ASSIGNMENT

Page(s):
Exercises:
(1) Find $51 \div(-3)$.
$51 \div(-3)=\square$ The integers have $\square$ signs. The
 is negative.

2 Find $\frac{-121}{11}$.

$$
\frac{-121}{11}=\square
$$

The quotient is $\square$

## EXAMPL: Dividing Integers with the Same Sign

(3) Find $-12 \div(-2)$.


Check Your Progress Find each quotient.
a. $36 \div(-9)$
b. $\frac{45}{-9}$
c. $-24 \div(-8)$


## EXAMPLE

(4) ALGEBRA Evaluate $-18 \div x$ if $x=-2$.


## Check Your Progress

ALGEBRA Evaluate $g \div h$ if $g=21$ and $h=-3$.
$\square$

## STUDY GUIDE

## FOLDABLES

Use your Chapter 2 Foldable to help you study for your chapter test.

## VOCABULARY PUZZLEMAKER

To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 2, go to:
glencoe.com

## BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (pages 32-33) to help you solve the puzzle.

## 2-1

Integers and Absolute Value

## Express each of the following in words.

1. +7 $\square$
2. -7 $\square$
3. $|7|$ $\square$
4. On the following number line, draw an oval around the negative integers and label them negative. Draw a rectangle around the positive integers and label them positive.


## 2-2

Comparing and Ordering Integers
Write each expression in words.
5. $-1<0$ $\square$
6. $3>-2$ $\square$

## 2-3

## The Coordinate Plane

Look at the coordinate plane at the right. Name the ordered pair for each point graphed.
7. $A$

8. $B$

9. $C$



In the coordinate plane above, identify the quadrant in which each lies.
10. $A$ $\square$
11. $B$ $\square$
12. $C$ $\square$

## 2-4

## Adding Integers

Tell how you would solve each of the following on a number line, then add.
13. $-7+(-9)$

14. $-7+9$

15. How many units away from 0 is the number 17 ?

16. How many units away from 0 is the number -17 ? $\square$
17. What are 17 and -17 called?

## 2-5

## Subtracting Integers

Find each difference. Write an equivalent addition sentence for each.
18. $1-5$ $\square$
19. $-2-1$ $\square$
20. $-3-4$ $\square$

## 2-6

## Multiplying Integers

Choose the correct term to complete each sentence.
21. The product of two integers with different signs is (positive, negative).
22. The product of two integers with the same sign is (positive, negative).

Find each product.
23. (-6)(-4) $\square$ 24. $-8(5)$ $\square$
25. $-2(3)(-4)$ $\square$

## 2-7

Problem-Solving Investigation: Look for a Pattern
26. CANS A display of soup cans at the end of a store aisle contains 1 can in the top row and 2 cans in each additional row beneath it. If there are 6 rows in the display, how many cans are in the sixth row?
$\square$

## 2-8

## Dividing Integers

Write two division sentences for each of the following multiplication sentences.
27. $6(-3)=18$ $\square$
$\square$
28. $-21(-2)=42$ $\square$
$\square$

## ARE YOU READY FOR THE CHAPTER TEST?

## Checklist

## Math Online

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 2.

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 2 Practice Test on page 123 of your textbook as a final check.

I used my Foldables or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 2 Study Guide and Review on pages 119-122 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may want to take the Chapter 2 Practice Test on page 123 of your textbook.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 2 Foldables.
- Then complete the Chapter 2 Study Guide and Review on pages 119-122 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 2 Practice Test on page 123 of your textbook.


Student Signature


Parent/Guardian Signature


Teacher Signature

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.


NOTE-TAKING TIP: When you take notes, listen or read for main ideas. Then record those ideas in a simplified form for future reference.

## BUILD YOUR VOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 3. As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

| Vocabulary Term | Found <br> on Page | Definition | Description or <br> Example |
| :--- | :--- | :--- | :--- |
| Addition Property <br> of Equality |  |  |  |
| Division Property <br> of Equality |  |  |  |
| formula |  |  |  |
| linear equation |  |  |  |

(continued on the next page)

| Vocabulary Term | Found <br> on Page | Definition | Description or <br> Example |
| :--- | :--- | :--- | :--- |
| Subtraction Property <br> of Equality |  |  |  |
| two-step equation |  |  |  |

## 3-1 Writing Expressions and Equations

EXAMPLE Write a Phrase as an Expression

## MAIN IDEA

- Write verbal phrases and sentences as simple algebraic expressions and equations.


## FOLDABLES

ORGANIZE IT
Write two phrases and their algebraic expressions under the Expressions tab.


1) Write the phrase twenty dollars less the price of a movie ticket as an algebraic expression.

twenty dollars less the price of a movie ticket

Let $\square$ $=$ the price of a movie ticket.
$\square$

Check Your Progress
Write the phrase five more inches of snow than last year's snowfall as an algebraic expression.
$\square$

## EXAMPLES Write Sentences as Equations

Write each sentence as an algebraic equation.
(2) A number less 4 is 12 .

(3) Twice a number is 18 .


## Homework Assignment

## 3-2 Solving Addition and Subtraction Equations

## EXAMPLES Solve an Addition Equation

## Main Idea

- Solve addition and subtraction equations.


## Key Concepts

Subtraction Property of Equality If you subtract the same number from each side of an equation, the two sides remain equal.

## Addition Property of

 Equality If you add the same number to each side of an equation, the two sides remain equal.FOLDABLES Write these properties in your own words under the Equations tab.
(1) Solve $14+y=20$. Check your solution.


## Check

$$
14+y=20
$$

$$
14+\square \stackrel{?}{=} 20
$$

$$
\square=20 \checkmark
$$

Write the original equation.
Replace $y$ with $\square$

The solution is $\square$
2) Solve $a+7=6$. Check your solution.
$a+7=6$

Write the equation.
Subtract $\square$ from each side.
Simplify.

## Check



## Check Your Progress

Solve each equation.
a. $-6=x+4$
b. $m+9=22$



## EXAMPLE

(3) FRUIT A grapefruit weighs 11 ounces, which is 6 ounces more than an apple. How much does the apple weigh?


The apple weighs $\square$ ounces.

## Check Your Progress EXERCISE Cedric ran 17 miles

 this week, which is 9 more miles than he ran last week. How many miles did he run last week?
## EXAMPLE Solve a Subtraction Equation

(4) Solve $12=z-8$.

| $12=z-8$ | Write the equation. |
| :---: | :---: |
| +8 | Add 8 to each side. |
| $=z$ | Simplify. |
| The solution is |  |

## Homework Assignment


$\square$

Check Your Progress
Solve $w-5=27$.
$\square$

## 3-3 Solving Multiplication Equations

## EXAMPLES Solving Multiplication Equations

## Main Idea

- Solve multiplication equations.


## Key Concept

Division Property of Equality If you divide each side of an equation by the same nonzero number, the two sides remain equal.

FoldABLES Record the Division Property of Equality in your own words under the Equation tab.
(1) Solve $39=3 y$. Check your solution.
$39=3 y$
$\square=\square$
$\square$
Check
$39=3 y$
Write the equation.
$39 \stackrel{?}{=} 3$ $\square$
$39=$ $\square$
So, the solution is $\square$
2) Solve $-4 z=60$. Check your solution.

$$
-4 z=60
$$



$$
z=\square
$$

Write the equation.

Divide each side of the equation by $\square$
$60 \div(-4)=$ $\square$

## Check

$-4 z=60 \quad$ Write the equation.
$-4(\square) \stackrel{?}{=} 60$
Replace $z$ with $\square$ Is this sentence true?

$$
\square=60 \checkmark
$$

So, the solution is $\qquad$

Check Your Progress solution.
a. $6 m=42$
b. $-64=-16 b$


## BUILD YOUR VOGABULARY (pages 55-56)

A formula is an equation that shows the relationship among certain quantities.

## EXAMPLE

3 SWIMMING Ms. Wang swims at a speed of 0.6 mph . At this rate, how long will it take her to swim 3 miles?

You are asked to find the time $t$ it will take to swim a distance $d$ of 3 miles at a rate $r$ of 0.6 mph .

$\frac{3}{0.6}=\frac{0.6 t}{0.6} \quad$ Divide each side by 0.6 .
$\square=t \quad 3 \div 0.6=5$
It would take Ms. Wang $\square$ hours to swim 3 miles.

Check Your Progress COOKIES Debbie spends $\$ 6.85$ on cookies at the bakery. The cookies are priced at $\$ 2.74$ per pound. How many pounds of cookies did Debbie buy?

## Homework Assignment



## 3-4 Problem-Solving Investigation: Work Backward

## EXAMPLE Use the Work Backward Strategy

## Main IDEA

- Solve problems using the work backward strategy.


## Homework ASSIGNMENT

Page(s):
Exercises:

SHOPPING Lucy and Elena went to the mall. Each girl bought a CD for $\$ 16.50$, a popcorn for $\$ 3.50$, and a drink for $\$ 2.50$. Altogether, they had $\$ 5.00$ left over. How much money did they take to the mall?

UNDERSTAND You know that they had $\square$ left over and how much they spent on each item. You need to know how much they took to the mall.

PLAN Start with the end result and work backward.
SOLVE They had $\$ 5.00$ left.
Undo the two drinks for $\$ 2.50$ each. $\$ 5+2(\$ 2.50)=\square$ Undo the two popcorns $\$ 10+2(\$ 3.50)=\square$
 each.
Undo the two CDs for $\$ 17+2(\$ 16.50)=\square$
$\$ 16.50$ each.
So, they took $\square$ to the mall.
CHECK Assume they started with $\$ 50$. After buying two CDs, they had $\$ 50-2(\$ 16.50)$ or $\square$
After buying two popcorns, they had
$\$ 17-2(\square)$ or $\$ 10$. After buying two
drinks, they had $\$ 10-2(\$ 2.50)$ or $\$ 5$. So, the answer is correct.

## Check Your Progress

AIRPORT Jack needs to go home from work to pack before heading to the airport. He wants to be at the airport by $1: 15$ P.M. It takes him 20 minutes to drive home from work, 30 minutes to pack, and 45 minutes to get to the airport from home. What time should he leave work?

## 3-5 Solving Two-Step Equations

## MAIN IDEA

- Solve two-step equations.


## BUILD YOUR VOCABULARY (pages 55-56)

 A two-step equation has $\square$ different
## EXAMPLES Solve Two-Step Equations

(1) Solve $4 x+3=19$. Check your solution.


## Check



Write the original equation.
Replace $x$ with


Simplify.

What is the name of the property that allows you to subtract the same number from each side of an equation?
$\qquad$
$\qquad$
$\qquad$

Solve $6+5 y=26$.


Write the equation.

$5 y=20$
Simplify.
$\frac{5 y}{5}=\frac{20}{5}$

$$
y=\square
$$

Divide each side by $\square$


## Check Your Progress

Solve each equation.
a. $3 t-7=14$

c. $-8 k+7=31$

b. $4+2 w=18$

d. $0=-4 x+32$


## EXAMPLE

PARKS There are 76 thousand acres of state parkland in Georgia. This is 4 thousand acres more than three times the number of acres of state parkland in Mississippi. How many acres of state parkland are there in Mississippi?


$+4,000=76,000$


Write the equation.
 each side.

Simplify.


Simplify.

There are $\square$ acres of state parkland in Mississippi.

## Check Your Progress BASEBALL Matthew had 64 hits

 during last year's baseball season. This was 8 less than twice the number of hits Gregory had. How many hits did Gregory have during last year's baseball season?

## 3-6 Measurement: Perimeter and Area

## MAIN IDEA

- Find the perimeters and areas of figures.


## BUILD YOUR VOCABULARY (pages 55-56)

The $\square$ around a geometric figure is called the perimeter.

## EXAMPLE Find the Perimeter of a Rectangle

(1) Find the perimeter of the rectangle. $\square$ 8 ft
$P=2 \ell+2 w \quad$ Perimeter of a rectangle
$P=2(18)+2(2)$
$P=\square+\square$
$P=\square$
The perimeter is 40 $\square$

Check Your Progress Find the perimeter of a rectangle with a length of 2.35 centimeters and a width of 11.9 centimeters.

## EXAMPLE

2 ART A painting has a perimeter of 68 inches. If the width of the painting is 13 inches, what is its length?

$68-26=2 \ell+26-26 \quad$ Subtract 26 from each side.

$21=\ell$

Simplify.
Divide each side by 2.

Check Your Progress
GARDENS A tomato garden has a perimeter of 22.2 feet. If the length of the garden is 6.3 feet, find the width.

## BUILD YOUR VOGABULARY (pages 55-56)

The area is the measure of the $\square$ enclosed by a figure.

## EXAMPLE Find The Area of a Rectangle

## Key Concept

Area of a Rectangle The area $A$ of a rectangle is the product of the length $\ell$ and width $w$.

3
FRESHWATER Find the area of the surface of the reservoir shown below.


4 mi
$A=\ell \cdot w$


Replace $\ell$ with 4 and $w$ with
$\square$

The area is 2.5 $\square$

## Check Your Progress

PAINTING Sue is painting a wall that measures 18.25 feet long and 8 feet high. Find the area of the surface Sue will be painting.

18.25 ft

## 3-7 Functions and Graphs

## EXAMPLE

## Main Idea

- Graph linear equations.


## Remember It

When $x$ and $y$ are used in an equation, $x$ usually represents the input and $y$ usually represents the output.

1) WORK The table shows the number of hours Abby worked and her corresponding earnings. Make a graph of the data to show the relationship between the number of hours Abby worked and her earnings.

The ordered pairs $(1,6),(\square, 12),(3, \square)$, and $(4,24)$ represent the function. Graph the ordered pairs.

Hours Worked and Earnings


| Number of <br> Hours | Earnings (\$) |
| :---: | :---: |
| 1 | 6 |
| 2 | 12 |
| 3 | 18 |
| 4 | 24 |

VIDEOS Make a graph of the data
Check Your Progress in the table that shows the relationship between the amount David would pay and the number of movies he rents.

| Number of <br> Videos | Amount (\$) |
| :---: | :---: |
| 1 | $\$ 3.50$ |
| 2 | $\$ 7.00$ |
| 3 | $\$ 10.50$ |
| 4 | $\$ 14.00$ |



## 3-7

## BUILD YOUR VOCABULARY (pages 55-56)

An equation like $y=2 x+1$ is a linear equation because the $\square$ is a $\square$ line.

## Write IT

How many points are needed to graph a line? Why is it a good idea to graph more?
$\qquad$
$\qquad$

## EXAMPLE Graph Solutions of Linear Equations

2) Graph $y=x+3$.

Select any four values for the input $x$. We chose $2,1,0$, and -1 . Substitute these values for $x$ to find the output $y$.

| $\boldsymbol{x}$ | $\boldsymbol{x}+\mathbf{3}$ | $\boldsymbol{y}$ | $(x, y)$ |
| :---: | :---: | :---: | :---: |
| 2 | $\square+3$ | $\square$ | $(2,5)$ |
| 1 | $\square+3$ | 4 | $\square$ |
| 0 | $0+3$ | $\square$ | $\square$ |
| -1 | $\square+3$ | 2 | $\square$ |



Four solutions are

and


Check Your Progress
Graph $y=3 x-2$.


## EXAMPLE Represent Real-World Functions

(3) ANIMALS Blue whales can reach a speed of $\mathbf{3 0}$ miles per hour. The equation $d=30 t$ describes the distance $d$ that a whale swimming at that speed can travel in time $t$. Assuming that a whale can maintain that speed, represent the function with a graph.
Step 1 Select four values for $t$. Select only positive numbers since $t$ represents time. Make a function table.

| $\boldsymbol{t}$ | $\mathbf{3 0 t}$ | $\boldsymbol{d}$ | $(\boldsymbol{t}, \boldsymbol{d})$ |
| :---: | :---: | :---: | :---: |
| 2 | $30(2)$ | $\square$ | $(2,60)$ |
| 3 | $30(3)$ | 90 | $\square$ |
| 5 | $30(5)$ | $\square$ | $\square$ |
| 6 | 30 | 180 | $\square$ |

Step 2 Graph the ordered pairs and draw a line through the points.


## Check Your Progress

TRAVEL Susie takes a car trip traveling at an average speed of 55 miles per hour. The equation $d=55 t$ describes the distance $d$ that Susie travels in time $t$. Represent this function with a graph.

## Homework ASSIGNMENT

Page(s):
Exercises:


## BRINGING IT ALL TOGETHER

## STUDY GUIDE

## FOLDABLES

Use your Chapter 3 Foldable to help you study for your chapter test.

## VOCABULARY PUZZLEMAKER

To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 3, go to:
glencoe.com

## BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (pages 55-56) to help you solve the puzzle.

3-1

## Writing Expressions and Equations

Match the phrases with the algebraic expressions that represent them.

1. seven plus a number $\square$ a. $7-n$
2. seven less a number $\square$ b. $7 \cdot n$
c. $n-7$
3. seven divided by a number

d. $\frac{n}{7}$
4. seven less than a number $\square$
Write each sentence as an algebraic equation.
5. The product of 4 and a number is 12 .
6. Twenty divided by $y$ is equal to -10 .

$\square$

## 3-2

## Solving Addition and Subtraction Equations

7. Explain in words how to solve $a-10=3$.
$\square$

Solve each equation. Check your solution.
8. $w+23=-11$

9. $35=z-15$


## 3-3

## Solving Multiplication Equations

10. To solve $-27=-3 d$, divide each side by $\square$
Solve each equation. Check your solution.
11. $36=6 k$

12. $-7 z=28$


## 3-4

Problem-Solving Investigation: Work Backward
13. AGE Bradley is four years older than his brother Philip. Philip is 7 years younger than Kailey, who is 2 years older than Taneesha. If Taneesha is 11 years old, how old is Bradley?

## 3-5

Solving Two-Step Equations
14. Describe in words each step shown for solving $12+7 s=-9$.

$$
\begin{aligned}
12+7 s & =-9 \\
-12 & -12 \\
\hline 7 s & =-21 \\
\frac{7 s}{7} & =\frac{-21}{7} \\
s & =-3
\end{aligned}
$$

$\square$
$\square$
$\square$
$\square$
15. Number the steps in the correct order for solving the equation $-4 v+11=-5$.


## 3-6

Measurement: Perimeter and Area
Find the perimeter and area of each rectangle.
16.

17.


18. FRAMING Marcia wants to frame her favorite painting. If the frame is 3.25 feet wide and the perimeter is 15.7 feet, find the width of the frame.


## 3-7

## Functions and Graphs

19. Complete the function table. Then graph the function.

| $x$ | $2 x-1$ | $y$ |
| :---: | :---: | :---: |
| -1 |  |  |
| 0 |  |  |
| 1 |  |  |



## ARE YOU READY FOR THE CHAPTER TEST?

## Checklist

## Math Online

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 3.

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 3 Practice Test on page 173 of your textbook as a final check.

I used my Foldables or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 3 Study Guide and Review on pages 169-172 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may want to take the Chapter 3 Practice Test on page 173.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 3 Foldable.
- Then complete the Chapter 3 Study Guide and Review on pages 169-172 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 3 Practice Test on page 173.



## Fractions, Decimals, and Percents

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin this Interactive Study Notebook to help you in taking notes.

## Begin with five sheets of $8 \frac{1}{2} \times 11^{\prime \prime}$ paper.

STEP 1 Stack five sheets of paper $\frac{3}{4}$ inch apart.


STEP 2 Roll up bottom edges so that all tabs are the same size.

STEP 3 Crease and staple along the fold.

## BUILD YOUR VOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 4. As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

| Vocabulary Term | Found <br> on Page | Definition | Description or <br> Example |
| :--- | :--- | :--- | :--- |
| bar notation |  |  |  |
| common denominator |  |  |  |
| composite number <br> [kahm-PAH-zuht] |  |  |  |
| equivalent <br> [ih-KWIH-vuh-luhnt] <br> fractions |  |  |  |
| factor tree |  |  |  |
| greatest common factor <br> (GCF) |  |  |  |
| least common <br> denominator (LCD) |  |  |  |
| least common multiple |  |  |  |
| (LCM) |  |  |  |

(continued on the next page)

| Vocabulary Term | Found <br> on Page | Definition | Description or <br> Example |
| :--- | :--- | :--- | :--- |
| percent |  |  |  |
| prime factorization |  |  |  |
| prime number |  |  |  |
| ratio |  |  |  |
| rational number |  |  |  |
| repeating decimal |  |  |  |

## 4-1 Prime Factorization

## Main Idea

- Find the prime factorization of a composite number.


## BUILD YOUR VOGABULARY (pages 77-78)

A prime number is a whole number greater than 1 that has exactly $\square$ factors, $\square$ and $\square$.

A composite number is a whole number greater than
$\square$ that has more than $\square$ factors.

Every $\square$ number can be written as a product of prime numbers exactly one way called the prime factorization.

A factor tree can be used to find the factorization.

## EXAMPLES Identify Numbers as Prime or Composite

Determine whether each number is prime or composite.
(1) 63

63 has six factors: 1 , $\square$ 7, $\square$ 21, and $\square$ So, it is $\square$
(2) 29

29 has only two factors: $\square$ and $\square$
So, it is $\square$

Check Your Progress
Determine whether each number is prime or composite.
a. 41
b. 24


## EXAMPLE Find the Prime Factorization

## Remember It

Multiplication is commutative, so the order of factors does not matter.

HoMEWORK ASSIGNMENT

Page(s):
Exercises:

## 3 Find the prime factorization of 100.

To find the prime factorization, you can use a factor tree or divide by prime numbers. Let's use a factor tree.

$100=\square \times \square \times \square$.

## EXAMPLE Find an Algebraic Expression

(4) ALGEBRA Factor $21 \boldsymbol{m}^{2} \boldsymbol{n}$.


Check Your Progress
a. Find the prime factorization of 72 .

b. Factor $15 x y^{3}$.
$\square$

## 4-2 Greatest Common Factor

## Main Idea

- Find the greatest common factor of two or more numbers.


## BUILD YOUR VOGABULARY (pages 77-78)

A Venn diagram uses $\square$ to show how elements among sets of numbers or objects are related.

The $\square$ number that is a common $\square$ to two or more numbers is called the greatest common factor (GCF).

## EXAMPLE Find the Greatest Common Factor

## FOLDABLES

## ORGANIZE IT

Under the tab for Lesson 4-2, take notes on finding the greatest common factor of two or more numbers.

(1) Find the GCF of 28 and 42.

METHOD 1 First, list the factors of 28 and 42.
factors of 28: $\square$
factors of 42: $\square$
The common factors are $\square$
So, the GCF is $\square$
METHOD 2 Use prime factorization.


The greatest common factor or GCF is $2 \times 7$ or $\square$

## Check Your Progress

Find the GCF of 18 and 45.

## EXAMPLE Find the GCF of Three Numbers

## Write IT

Which method of finding the GCF of two or more numbers do you prefer using to find the GCF of small numbers? for large numbers?

2 Find the GCF of 21,42 , and 63.
METHOD 1 First, list the factors of 21, 42, and 63.
factors of $21: 1,3,7$, $\square$
factors of $42: 1,2,3,6,7,14,21,42$
factors of 63: 1, 3 , $\square$ 9, 21, 63

The common factors of 21,42 , and 63 are $\square$ and $\qquad$
So, the greatest common factor or GCF is $\square$
METHOD 2 Use prime factorization.
$21=$
$42=2 \times 3 \times 7 \times 7$
$63=3 \times(3 \times 7$
Circle the common factors.

The common prime factors are 3 and 7 .
The GCF is $\square$ $\times$ $\square$ , or $\square$

Check Your Progress
Find the GCF of each set of numbers.

24,48 , and 60

## EXAMPLE

3 ART Searra wants to cut a 15-centimeter by 25-centimeter piece of tag board into squares for an art project. She does not want to waste any of the tag board and she wants the largest squares possible. What is the length of the side of the squares she should use?

The largest length of side possible is the GCF of the dimensions of the tag board.


4 How many squares can she make if the sides are 5 centimeters?
$\square$ $\div 5=5$ squares can fit along the length.
$\square \div 5=3$ squares can fit along the width.
So, $5 \times 3=\square$ squares can be made from the tag board.

## Check Your Progress

CANDY Alice is making candy baskets using chocolate hearts and lollipops. She is tying each piece of candy with either a red piece of string or a green piece

## Homework

 ASSIGNMENTPage(s):
Exercises: of string. She has 64 inches of red string and 56 inches of green string. She wants to cut the pieces of string equal lengths and use all of the string she has.
a. What is the length of the longest piece of string that can be cut?

b. How many pieces of string can be cut if the pieces are 8 inches long?


## 4-3 Problem-Solving Investigation: Make an Organized List

## EXAMPLE Make an Organized List

## Main IdeA

- Solve problems by making an organized list.


## Homework Assignment



PASSWORD In order to log on to the computer at school, Miranda must use a password. The password is 2 characters. The first character is the letter $A$ or $B$ followed by a single numeric digit. How many passwords does Miranda have to choose from?

UNDERSTAND You know that the password has $\square$ characters and that the first character is either the letter $\square$ or B. You know that the second character is a numeric digit. You need to know how many passwords can be created.

PLAN Make an organized list.
SOLVE

| A | B | A | B | A | B |  | B | A | B |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 |  | 1 | 2 | 2 | 3 | 3 | 4 | 4 |


| A | B | A | B | A |  | A | B | A | B |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | 5 |  | 6 | 7 | 7 | 8 | 8 | 9 | 9 |

There are $\square$ passwords.

CHECK Draw a tree diagram to check the result.

## Check Your Progress

DELI At a deli, customers can choose from ham or turkey on wheat, rye, or multi-grain bread. How many sandwich possibilities are there?


## 4-4 Simplifying Fractions

FOLDABLES

## ORGANIZE IT

Under the tab for Lesson 4-4, take notes about simplifying fractions. Be sure to include an example.
BUILD YOUR VOGABULARY (pages 77-78)
Fractions having the same $\square$ are called equivalent fractions.
A fraction is in simplest form when the greatest common factor of the $\square$ and the denominator is 1.

## EXAMPLES Write Fractions in Simplest Form

## Write each fraction in simplest form.

## 1 <br> $\frac{12}{45}$

To write a fraction in simplest form, you can divide by common factors or divide by the $\square$ Let's divide by the GCF.

First, find the GCF of the $\square$ and
$\square$
factors of 12 : $\square$
factors of 45 : $\square$

The GCF of 12 and 45 is $\square$
Then, divide the numerator and the denominator by $\square$


So, $\frac{12}{45}$ written in simplest form is $\frac{4}{15}$.
(2) $\frac{40}{64}$
factors of 40: 1, 2 , $\square$ , 5, 8, 10, 20, $\square$ factors of $64: 1,2,4,8, \square, 32,64$

The GCF of 40 and 64 is $\square$


So, $\frac{40}{64}$ written in simplest form is $\square$

## Check Your Progress

Write each fraction in simplest form.
a. $\frac{32}{40}$
b. $\frac{28}{49}$ $\square$

## EXAMPLE

3 MUSIC Two notes form a perfect fifth if the simplified fraction of the frequencies of the notes equals $\frac{3}{4}$. If note $D=294$ Hertz and note $G=392$ Hertz, do they form a perfect fifth?

$$
\begin{aligned}
\frac{\text { frequency of note } \mathrm{D}}{\text { frequency of note G }} & =\square \\
& =\frac{\stackrel{1}{2} \times 3 \times \frac{1}{7} \times \frac{1}{7}}{\frac{1}{2} \times 2 \times 2 \times \underset{1}{7} \times \underset{1}{7}}=\square
\end{aligned}
$$

The fraction of the frequency of the notes D and G is So, the two notes do form a perfect fifth.

## Check Your Progress

In a bag of 96 marbles, 18 of the marbles are black. Write the fraction of black marbles in simplest form.

## 4-5 Fractions and Decimals

## EXAMPLES Use Mental Math

## MAIN IDEA

- Write fractions as terminating or repeating decimals and write decimals as fractions.

Under the tab for Lesson 4-5, take notes on writing fractions as decimals and writing decimals as fractions. Include examples.


Write each fraction or mixed number as a decimal. (1) $\frac{9}{10}$

THINK


So, $\frac{9}{10}=\square$.
(2) $7 \frac{3}{5}$
$7 \frac{3}{5}=7+\square \quad$ Think of it as a sum.
$=7+\square$ You know that $\frac{3}{5}=0.6$.
$=7.6 \quad$ Add mentally.
So, $7 \frac{3}{5}=\square$.

Check Your Progress
Write each fraction or mixed number as a decimal.
a. $\frac{7}{25}$

b. $9 \frac{1}{5}$
$\square$

## EXAMPLE Use Pencil and Paper or a Calculator

(3) Write $\frac{1}{8}$ as a decimal.

METHOD 1 Use paper and pencil.
8 $\begin{array}{r}0.125 \\ 1.000\end{array}$
Divide

by $\qquad$
$-8$
20
$-16$
40
$-40$
Division ends when the remainder is 0 .

## Write IT

Write the following decimal equivalents: $\frac{1}{2}, \frac{1}{3}, \frac{2}{3}, \frac{1}{4}, \frac{3}{4}, \frac{1}{5}, \frac{1}{10}, \frac{1}{8}$.
$\qquad$
$\qquad$
$\qquad$
METHOD 2 Use a calculator.
$1 \div 8$ ENTER $\square$
So, $\frac{1}{8}=$ $\square$

Check Your Progress Write each fraction or mixed number as a decimal.
a. $\frac{2}{5}$

b. $1 \frac{7}{20}$


## BUILD YOUR VOGABULARY (pages 77-78)

A terminating decimal is a decimal whose digits $\square$
Repeating decimals have a pattern in the digits that repeats $\square$.

Bar notation is used to indicate that a number repeats

EXAMPLES Write Fractions as Repeating Decimals
(4) Write $\frac{1}{11}$ as a decimal.

METHOD 1 Use paper and pencil.
$1 \begin{gathered}0.0909 \ldots \\ 1.0000\end{gathered}$
$\underline{1}$
100


99


## METHOD 2 Use a calculator.

$1 \div 11$ ENTER 0.0909...
So, $\frac{1}{11}=\square$.
Check Your Progress Write $2 \frac{5}{11}$ as a decimal.

Homework Assignment

Page(s):
Exercises:

## EXAMPLE Use a Power of 10

(3) CEREAL Jorge read that 0.72 of his favorite cereal was whole-grain wheat. Find what fraction of his cereal, in simplest form, is whole-grain wheat.
$0.72=\frac{72}{100} \quad$ The final digit,,$\square$, is in the hundredths place.
$=\frac{18}{25}$ Simplify.
So,


## Check Your Progress EXERCISE Jeanette ran 0.86 of a

 mile. What fraction of a mile did she run?
## 4-6 Fractions and Percents

## MAIN IDEA

- Write fractions as percents and percents as fractions.


## Key Concept

Percent A percent is a ratio that compares a number to 100.

## BUILD YOUR YOGABULARY (pages 77-78)


$\square$ When a compares a number to $\square$, it can be written as a percent.

## EXAMPLES Write Ratios as Percents

## Write each ratio as a percent.

(1) Diana scored 63 goals out of 100 attempts.

You can represent 63 out of 100 with a model.


2 In a survey, 31.9 out of 100 people on average preferred crunchy peanut butter.


## Check Your Progress

Write each ratio as a percent.
a. Alicia sold 34 of the 100 cookies at the bake sale.

b. On average, 73.4 out of 100 people preferred the chicken instead of the roast beef.

## EXAMPL: Write a Fraction as a Percent

## FOLDABLES

## Organize IT

Under the tab for Lesson 4-6, take notes on writing fractions as percents and percents as fractions. Include examples.

(3) Write $\frac{16}{25}$ as a percent.

$\frac{64}{100}=64 \%$
So, $\frac{16}{24}=64 \%$.


Check Your Progress Write $\frac{11}{20}$ as a percent.
$\square$

## EXAMPLE

4 FISHING William caught and released 20 trout on his fishing trip. Twelve of them were rainbow trout. What percent of the trout he caught were rainbow trout?

William caught $\square$ rainbow trout out of 20 trout.


$$
=60 \%
$$

$$
\frac{60}{100}=60 \%
$$

So, $\square$ of the trout William caught were rainbow trout.

## Homework ASSIGNMENT

Page(s):
Exercises:

## 4-7 Percents and Decimals

## EXAMPLES Write Percents as Decimals

## Main IDEA

- Write percents as decimals and decimals as percents.


## Key Concept

Writing Percents as Decimals To write a percent as a decimal, divide the percent by 100 and remove the percent symbol.

## 1) Write $47.8 \%$ as a decimal.

To write a percent as a decimal, you can either first write the percent as a $\square$ or divide mentally. Let's divide mentally.

$$
\begin{aligned}
47.8 \% & =47.8 & & \text { Remove the \% symbol and divide by } 100 . \\
& =0.478 & & \text { Add leading zero. }
\end{aligned}
$$

So, $47.8 \%=\square$.
2 POPULATION According to the Administration on Aging, about $28 \frac{1}{5} \%$ of the population of the United States is 19 years of age or younger. Write $28 \frac{1}{5} \%$ as a decimal.

$$
\begin{aligned}
28 \frac{1}{5} \% & =28.2 \% & & \text { Write } \frac{1}{5} \text { as } 0.2 . \\
& =28.2 & & \text { Remove the \% symbol and divide by } 100 . \\
& =\square & & \text { Add leading zero. }
\end{aligned}
$$

So, $28 \frac{1}{5} \%=0.282$.
Check Your Progress
a. Write $83.2 \%$ as a decimal.
b. AMUSEMENT PARKS A popular amusement park reports that $17 \frac{1}{10} \%$ of its visitors will return at least three times during the year. Write $17 \frac{1}{10} \%$ as a decimal.

EXAMPLE Write Decimals as Percents
(3) Write 0.33 as a percent.

METHOD 1 Write the decimal as a fraction.

$$
\begin{aligned}
0.33 & =\frac{33}{100} \\
& =\square \quad \text { Write the fraction as a percent. }
\end{aligned}
$$

METHOD 2 Multiply mentally.

$$
\begin{aligned}
0.33 & =33.0 & & \text { Multiply by } 100 . \\
& =33 \% & & \text { Add the \% symbol. }
\end{aligned}
$$

So, $0.33=\square$.

Check Your Progress
Write 0.7 as a percent.

## Homework AssignMent

Page(s):
Exercises:

## EXAMPLE

4 POPULATION In 1790, about 0.05 of the population of the United States lived in an urban setting. Write 0.05 as a percent.


Check Your Progress
In 2000 , the population of Illinois had increased by 0.086 from 1990 . Write 0.086 as a percent.

## 4-8 Least Common Multiple

## MAIN IDEA

- Find the least common multiple of two or more numbers.


## BUILD YOUR VOGABULARY (pages 77-78)

 $\square$ number.

The least common multiple (LCM) of two or more numbers is the $\square$ of their common multiples, excluding $\square$

## EXAMPLES Find the LCM

## 1) Find the LCM of 4 and 6.

## FOLDABLES

## Organize It

Under the tab for Lesson 4-8, take notes about least common multiples. Be sure to include examples.


METHOD 1 List the nonzero multiples.
multiples of 4:

multiples of 6:


The common multiples are $\square$ $24,36, \ldots$.

The LCM of 4 and 6 is $\square$
METHOD 2 Use prime factorization.



The LCM is $2 \cdot 2 \cdot 3$ or $\square$

## 2 Find the LCM of 4 and 15.

Use Method 2. Find the prime factorization of each number.

$15=\square \times \square$
The prime factors of 4 and 15 are $\square$
The LCM of 4 and 15 is $\square$ $\times 3 \times 5$, or $\square$

Check Your Progress of numbers.
a. 8,12
$\square$
b. 6,14


## EXAMPLE

3 WORK On an assembly line, machine A must be oiled every 18 minutes, machine $B$ every 24 minutes, and machine $C$ every 48 minutes. If all three machines are turned on at the same time, in how many minutes will all three machines need to be oiled at the same time?

First find the LCM of 18,24 , and 48.
$18=2 \times 3 \times 3$ or $2 \times 3^{2}$
$24=2 \times 2 \times 2 \times 3$ or $2^{3} \times 3$
$48=2 \times 2 \times 2 \times 2 \times \square$ or $2^{4} \times 3$
The LCM of 18,24 , and 48 is $2^{4} \times 3^{2}$ or $\square \times 9$, which is 144 .
So, all three machines will need to be oiled at the same time in
$\square$ minutes.

## Check Your Progress

LIGHTS Brenda put up three different strands of decorative blinking lights. The first strand blinks every 6 seconds while the second strand blinks every 8 seconds. The third strand blinks every 4 seconds. If all strands blink at the same time, in how many seconds will they again blink at the same time?

## 4-9 Comparing and Ordering Rational Numbers

## Main Idea

- Compare and order fractions, decimals, and percents.


## BUILD YOUR VOGABULARY (pages 77-78)

Rational numbers are numbers that can be written as fractions and include fractions, terminating and repeating decimals, and $\square$
A common denominator is a common multiple of two or more $\square$
The least common denominator (LCD) is the $\square$ of the denominators.

## EXAMPLES Compare Rational Numbers

Replace each $\bigcirc$ with $<,>$, or $=$ to make a true sentence.
(1) $-3 \frac{3}{8}-3 \frac{7}{8}$

Graph each rational number on a number line.
Mark off equal size increments of $\square$ between -4 and $\square$.

The number line shows that $-3 \frac{3}{8} \square-3 \frac{7}{8}$.
2) $\frac{5}{12} \bigcirc \frac{7}{16}$

The LCD of the denominators, 12 and 16 , is 48.


Check Your Progress
Replace each with $<,>$, or $=$ to make a true sentence.
a. $-2 \frac{4}{5} \bigcirc-2 \frac{3}{5}$
b. $\frac{5}{8} \bigcirc \frac{7}{12}$


## EXAMPLE

## Key Concept

Rational Numbers Rational numbers are numbers that can be written as fractions.

Foldables Takes notes on rational numbers. Be sure to include examples.

3 DOGS According to the Pet Food Manufacturer's Association, 11 out of 25 people own large dogs and 13 out of 50 people own medium dogs. Do more people own large or medium dogs?
Write $\frac{11}{25}$ and $\frac{13}{50}$ as decimals and compare.


Since $0.44>0.26, \frac{11}{25} \square \frac{13}{50}$.

So, a greater fraction of people own $\square$ dogs than own $\square$ dogs.

## Check Your Progress

 A survey showed that 21 out of 50 people stated that summer is their favorite season and 13 out of 25 people prefer fall. Do more people prefer summer or fall?
## BRINGING IT ALL TOGETHER

## STUDY GUIDE

## FOLDABLES

Use your Chapter 4 Foldable to help you study for your chapter test.

## Vocabulary PUZZLEMAKER

To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 4, go to:
glencoe.com

## BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (pages 77-78) to help you solve the puzzle.

## 4-1 <br> Prime Factorization

## Underline the correct terms to complete each sentence.

1. A factor tree is complete when all of the factors at the bottom of the factor tree are (prime, composite) factors.
2. The order of the factors in prime factorization (does, does not) matter.

Find the prime factorization of each number.
3. 36

4. 48

5. 250

6. 60


## 4-2

## Greatest Common Factor

## Complete each sentence.

7. A shows how elements of sets of numbers are related.
8. A prime factor is a factor that is a $\square$ number.
9. You can find the $\square$ of two numbers by
$\square$ the common prime factors.

Find the common prime factors and GCF of each set of numbers.
10. 20,24
11. 28,42 $\square$

## 4-3

Problem-Solving Investigation: Make an Organized List
12. CLOTHES Lucas has a pair of brown pants and a pair of black pants. He has a white dress shirt, a blue dress shirt, and a tan dress shirt. He has a striped tie and a polka-dotted tie. Assuming he can wear any combination, how many combinations of one pair of pants, one dress shirt, and one tie can Lucas wear?
$\square$

## 4-4 <br> Simplifying Fractions

## Complete the sentence.

13. To find the simplest form of a fraction, $\square$ the numerator and the denominator by the $\square$
Write each fraction in simplest form.
14. $\frac{18}{24}$
15. $\frac{15}{60}$
$\square$

## 4-5

Fractions and Decimals
Write each fraction or mixed number as a decimal. Use bar notation if the decimal is a repeating decimal.
16. $3 \frac{2}{3} \square$
17. $5 \frac{3}{4}$

18. $\frac{2}{5} \square$
19. $7 \frac{3}{8} \square$
20. $6 \frac{1}{2} \square$
21. $\frac{7}{10}$


## 4-6

## Fractions and Percents

22. Write the ratio that compares 4 to 25 in three different ways.

23. Write the ratio in exercise 23 as a percent. $\square$
24. Write $88 \%$ as a fraction in simplest form. $\square$
25. Write $\frac{9}{20}$ as a percent. $\square$

## 4-7

Percents and Decimals
Write each percent as a decimal.
26. $69 \%$ $\square$
27. $3 \%$ $\square$
28. $32 \frac{1}{4} \%$ $\square$

Write each decimal as a percent.
29. 0.47 $\square$

## 4-8

Least Common Multiple
30. 0.5775
$\square$
31. 0.09 $\square$

Find the LCM of each set of numbers.
32. 15, 36 $\square$ 33. 21, 70 $\square$
34. 16, 20

35. 6, 9, 24 $\square$
36. $12,18,30$ $\square$ 37. 14, 28, 35 $\square$

## 4-9

Comparing and Ordering Rational Numbers
Replace each - with $<$,$\rangle , or =$ to make each sentence true.
39. $\frac{21}{49} \bigcirc \frac{18}{63} \square$

## ARE YOU READY FOR THE CHAPTER TEST?

## Checklist

## Math Online

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 4.

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 4 Practice Test on page 225 of your textbook as a final check.

I used my Foldables or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 4 Study Guide and Review on pages 221-224 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may want to take the Chapter 4 Practice Test on page 225 of your textbook.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 4 Foldables.
- Then complete the Chapter 1 Study Guide and Review on pages 221-224 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 4 Practice Test on page 225 of your textbook.


5

## Applying Fractions

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.

Begin with a sheet of $11^{\prime \prime}$ by 17 " paper, four index cards, and glue.

STEP 1 Fold the paper in half widthwise.


STEP 2 Open and fold along the length about $2 \frac{1}{2}^{\prime \prime}$ from the bottom.


STEP 3 Glue the edges on either side to form two pockets.


STEP 4 Label the pockets Fractions and Mixed Numbers, respectively. Place two index cards in each pocket.


NOTE-TAKING TIP: When you take notes, place a question mark next to any concepts you do not understand. Be sure to ask your teacher to clarify these concepts before a test.

5

## BUILD YOUR VOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 5.
As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

| Vocabulary Term | Found <br> on Page | Definition | Description or <br> Example |
| :--- | :--- | :--- | :--- |
| compatible numbers |  |  |  |
| like fractions |  |  |  |
| multiplicative inverse |  |  |  |
| [MUHL-tuh-PLIH-kuh-tihv] |  |  |  |
| reciprocal |  |  |  |
| [rih-SIH-pruh-kuhl |  |  |  |

## 5-1 Estimating with Fractions

## EXAMPLES Estimate with Mixed Numbers

## Main IDEA

- Estimate sums, differences, products, and quotients of fractions and mixed numbers.


## Estimate.

(1) $5 \frac{1}{4}+3 \frac{5}{8}$


The sum is about $\square$
(2) $7 \frac{3}{4} \times 1 \frac{7}{8}$


The sum is about


Check Your Progress
Estimate.
a. $2 \frac{7}{9}+5 \frac{1}{4}$
b. $4 \frac{2}{3} \times 3 \frac{1}{8}$

## FOLDABLES

## ORGANIZE IT

Record main ideas, definitions and other notes about estimating with fractions on study cards. Store these cards in the "Fractions" pocket of your Foldable.



## EXAMPLES Estimate with Fractions

## Estimate.

3 $\frac{1}{3}+\frac{4}{7}$


The sum is about $\square$

## Remember It

Some fractions are easy to round because they are close to 1. Examples of these kinds of fractions are ones where the numerator is one less than the denominator, such as $\frac{4}{5}$ or $\frac{7}{8}$.
(4) $\frac{5}{8}-\frac{1}{4}$

$\frac{5}{8}$ is about $\frac{1}{2}$.


The difference is about

(3) $\frac{5}{6} \div \frac{4}{5}$
$\frac{5}{6} \div \frac{3}{4} \approx \square \div \square=1$
$\frac{5}{6} \approx \square$ and $\frac{3}{4} \approx \square$.

## Check Your Progress

Estimate.
a. $\frac{8}{9}+\frac{1}{6}$
b. $\frac{11}{12}-\frac{2}{9}$
c. $\frac{3}{5} \div \frac{7}{8}$


## BUILD YOUR YOCABULARY (page 103)

Numbers that are easy to compute $\square$ are called compatible numbers.

## EXAMPLE Use Compatible Numbers

(6) Estimate $\frac{3}{4} \times 21$ using compatible numbers.
$\frac{3}{4} \times 21 \approx \frac{3}{4} \times 20$ or $\square$

Round 21 to 20, since 20 is divisible by 4 .

Check Your Progress numbers.

Estimate $\frac{2}{3} \times 17$ using compatible
$\square$

## 5-2 Adding and Subtracting Fractions

## EXAMPLES Add and Subtract Like Fractions

## Main IDEA

- Add and subtract fractions.


## KEy Concept

Adding and Subtracting Like Fractions To add or subtract like fractions, add or subtract the numerators and write the result over the denominator. Simplify if necessary.

## Add or subtract. Write in simplest form.

(1) $\frac{7}{12}+\frac{4}{12}$
$\frac{7}{12}+\frac{4}{12}=\frac{\square}{12}$
$=\square$
Add the $\square$
Write the sum over the denominator.
2) $\frac{5}{6}-\frac{1}{6}$

$$
\frac{5}{6}-\frac{1}{6}=\frac{\square}{6}
$$



numerators.

Write the difference sover the $\square$ Simplify.

## EXAMPLES Add and Subtract Unlike Fractions

## Add or subtract. Write in simplest form.

(3) $\frac{1}{3}+\frac{1}{9}$

To add or subtract unlike fractions, you can use a $\square$ or the $\square$. Let's use the LCD.

The least common denominator of 3 and 9 is $\square$


Rename $\frac{1}{3}$ using the $\square$.


## Write It

Explain what happens to denominators when adding like fractions.
$\qquad$
$\qquad$
$\qquad$
(4) $\frac{3}{4}-\frac{1}{6}$

The LCD of 4 and 6 is



Rename each fraction using the LCD.
$-\frac{1}{6} \rightarrow \underline{\underline{1 \times 2}} \rightarrow-\underline{\square}$


So, $\frac{3}{4}-\frac{1}{6}=$


Check Your Progress
Add or subtract. Write in simplest form.
a. $\frac{7}{15}+\frac{4}{15}$
b. $\frac{3}{8}+\frac{1}{4}$
c. $\frac{7}{9}-\frac{1}{6}$


## EXAMPLE

(5) ART A picture mounted on art board is $\frac{1}{8}$ inch thick. The frame for the picture is $\frac{1}{2}$ inch thick. How much thicker than the picture is the frame?
The phrase how much thicker suggests $\square$ , so find $\frac{1}{2}-\frac{1}{8}$.

$$
\begin{aligned}
\frac{1}{2}-\frac{1}{8} & =\square-\square \\
& =\frac{3}{8} \quad
\end{aligned} \begin{aligned}
& \text { Rename the fractions using the LCD. } \\
& \text { Subtract the numerators. }
\end{aligned}
$$

## Homework

Assignment
Page(s):
Exercises:

## 5-3 Adding and Subtracting Mixed Numbers

## EXAMPLES Add and Subtract Mixed Numbers

## Main IdeA

- Add and subtract mixed numbers.


## FOLDABLES

## Organize It

Record main ideas, definitions, and other notes about adding and subtracting mixed numbers on study cards. Store the cards in the "Mixed Numbers" pocket of your Foldable.


Add or subtract. Write in simplest form.
(1) $3 \frac{1}{12}+14 \frac{7}{12}$

Estimate $3+15=\square$
$3 \frac{1}{12} \quad$ Add the whole numbers and $+14 \frac{7}{12}$ fractions separately.

(2) $9 \frac{7}{10}-4 \frac{3}{5}$

Estimate $10-5=\square$
$9 \frac{7}{10} \longrightarrow 9 \frac{7}{10}$


## EXAMPLES Rename Mixed Numbers to Subtract

## Subtract. Write in simplest form.

(3) $8 \frac{1}{5}-3 \frac{3}{5}$ $8 \frac{1}{5} \longrightarrow 7 \frac{6}{5}$


First subtract the
 and then the $\square$
(4) $11-8 \frac{2}{3}$


## Remember It

When you are adding mixed numbers, you can add the whole numbers first and then add the fractions. Make sure if the fractions add to more than one, that you change the sum of the whole numbers.

Check Your Progress
Add or subtract. Write in simplest form.
a. $5 \frac{5}{14}+4 \frac{3}{14}$
b. $6 \frac{2}{9}-3 \frac{5}{9}$
c. $9 \frac{3}{8}-5 \frac{3}{4}$


## EXAMPLE

3 COOKING A quiche recipe calls for $2 \frac{3}{4}$ cups of grated cheese. A recipe for quesadillas requires $1 \frac{1}{3}$ cups of grated cheese. What is the total amount of grated cheese needed for both recipes?
$2 \frac{3}{4}+1 \frac{1}{3}=2 \frac{9}{12}+1 \frac{4}{12} \quad$ Rename the fractions.

$$
\begin{aligned}
& =\square+\square \quad \begin{array}{l}
\text { Add whole numbers and } \\
\text { add fractions. }
\end{array} \\
& =3+1 \frac{1}{12} \text { or } \square \quad \begin{array}{l}
\text { Rename } \frac{13}{12} \text { as } 1 \frac{1}{12} \text { and } \\
\text { simplify. }
\end{array}
\end{aligned}
$$

The total amount of grated cheese needed is


Check Your Progress TIME Jordan spent $3 \frac{1}{6}$ hours at the mall and $2 \frac{1}{4}$ hours at the movies. How many more hours did he spend at the mall than at the movies?

Page(s):
Exercises:

## Homework Assignment

## 5-4 Problem-Solving Investigation: Eliminate Possibilities

## EXAMPLE Eliminate Possibilities

## MAIN IDEA

- Solve problems by eliminating possibilities.


## Homework

ASSIGNMENT


GAMES On a television game show, the winning contestant must answer three questions correctly to win the grand prize. Each question is worth twice as many points as the question before it. The third question is worth 1,000 points. How much is the first question worth-250, 500, or 2,000 points?

UNDERSTAND You know that there are three questions and each question is worth $\square$ as many points as the question before it. You know that the third question is worth 1,000 points.

PLAN Eliminate answers that are not


SOLVE The first question cannot be worth 2,000 points since each question after it would have to worth more than 2,000 points, and the third question is only $\square$ points. So, eliminate
that choice. If the first question is worth 500 points, then the second question would be worth 1,000 points and the third question would be worth $\square$ points. So, eliminate that choice. The reasonable answer is 250 points.

CHECK If the first question is worth 250 points, then the second question would be worth $\square$ points, and the third question would be worth 1,000 points. So, the answer is correct.

## Check Your Progress

CELL PHONES A cell phone company charges $\$ 35$ for 500 free minutes and $\$ 0.50$ for each additional minute. Using this plan, what is a reasonable price a customer would pay for using 524 minutes- $\$ 32$, $\$ 40$, or $\$ 47$ ?

## 5-5 Multiplying Fractions and Mixed Numbers

## EXAMPLES Multiply Fractions

## Main Idea

- Multiply fractions and mixed numbers.


## Key Concept

Multiplying Fractions To multiply fractions, multiply the numerators and multiply the denominators.

FOLDABLES Take notes on multiplying fractions and mixed numbers. Place your study cards in your Foldable.

## Multiply. Write in simplest form.

(1) $\frac{1}{8} \times \frac{1}{9}$
$\frac{1}{8} \times \frac{1}{9}=\square \longleftarrow \begin{array}{ll}\longleftarrow & \text { Multiply the numerators. } \\ & \text { Multiply the denominators. }\end{array}$


Simplify.
(2) $6 \times \frac{1}{3}$
(3) $\frac{3}{12} \times \frac{4}{5}$

$$
\begin{aligned}
6 \times \frac{1}{3} & =\square \times \frac{1}{3} \\
& =\frac{6 \times 1}{1 \times 3}
\end{aligned}
$$

$$
=\square \text { or } \square \text { Simplify. }
$$

Check Your Progress
Multiply. Write in simplest form.

## a. $\frac{1}{5} \times \frac{1}{7}$

b. $12 \times \frac{1}{6}$
$\square$
$\frac{3}{12} \times \frac{4}{5}=\frac{3}{\frac{12}{3}} \times \frac{1}{5}$
Divide 4 and 12 by their GCF, 4.

$=\square$
Write 6 as $\square$
Multiply the numerators and the denominators.


Multiply the numerators and the denominators.

Simplify.

## Remember It

The Distributive
Property can help you do mental math. When you see a problem like $\frac{1}{4} \cdot 4 \frac{4}{9}$, you can think, "What is $\frac{1}{4}$ of 4 and what is $\frac{1}{4}$ of $\frac{4}{9}$ ?" This is equal to $\frac{1}{4}\left(4+\frac{4}{9}\right)$.

## HoMEWORK ASSIGNMENT

Page(s):
Exercises:

## EXAMPLE Multiply Mixed Numbers

(4) Multiply $\frac{1}{3} \times 6 \frac{6}{7}$. Write in simplest form.

METHOD 1 Rename the mixed number.

$$
\frac{1}{3} \times 6 \frac{6}{7}=\frac{1}{3} \times \frac{16}{1}
$$



METHOD 2 Use mental math.


Write $6 \frac{6}{7}$ as a sum of its parts.

$$
\begin{aligned}
& =\left(\frac{1}{3} \times 6\right)+\left(\frac{1}{3} \times \frac{6}{7}\right) \\
& =\square+\square \quad \text { or } \quad \text { Multiply. }
\end{aligned}
$$

## Check Your Progress

Multiply. Write in simplest form.
a. $\frac{4}{9} \times \frac{6}{7}$

b. $\frac{1}{6} \times 4 \frac{6}{9}$

## 5-6 Algebra: Solving Equations

## Main Idea

- Solve equations with rational number solutions.


EXAMPLES Find Multiplicative Inverses

## Key Concept

Multiplicative Inverse Property The product of a number and its multiplicative inverse is 1 .

Find the multiplicative inverse of each number.


The multiplicative inverse of $\frac{4}{7}$ is

(2) $6 \frac{1}{4}$


The multiplicative inverse of $6 \frac{1}{4}$ is $\square$

## Check Your Progress

Find the multiplicative inverse of each number.
a. $\frac{5}{8}$
b. $4 \frac{1}{3}$


## Key Concept

Multiplication Property of Equality If you multiply each side of an equation by the same nonzero number, the two sides remain equal.

## HOMEWORK ASSIGNMENT

## Page(s):

Exercises:

## EXAMPLE Solve a Division Equation

(3) Solve $11=\frac{p}{6}$. Check your solution.

$$
11=\frac{p}{6} \quad \text { Write the equation. }
$$

$11 \cdot \square=\frac{p}{6} \cdot \square \quad$ Multiply each side by $\square$

Simplify.
Check
$11=\frac{p}{6} \quad$ Write the original equation.


Replace $p$ with

$11=$ $\square$

The solution is $\square$

## EXAMPLE Use a Reciprocal to Solve an Equation

4) Solve $\frac{2}{5} x=\frac{6}{15}$.

$$
\frac{2}{5} x=\frac{6}{15} \quad \text { Write the equation. }
$$



$$
x=\square \text { or } \square \quad \text { Simplify. }
$$

## Check Your Progress

Solve.
a. $\frac{m}{9}=4$
b. $\frac{3}{8} x=\frac{3}{4}$


## 5-7 Dividing Fractions and Mixed Numbers

## EXAMPLE Divide by a Fraction

## Main Idea

- Divide fractions and mixed numbers.


## Key Concept

Division by a Fraction To divide by a fraction, multiply by its multiplicative inverse or reciprocal.

## Write It

Will the quotient $7 \frac{1}{6} \div 3 \frac{2}{3}$ be a fraction less than 1 or greater than 1? Explain.
$\qquad$
(1) Find $\frac{2}{3} \div \frac{4}{9}$. Write in simplest form.
$\frac{2}{3} \div \frac{4}{9}=\frac{2}{3}$.
Multiply by the reciprocal $\frac{4}{9}$.
$=\frac{\stackrel{1}{2}}{\underset{1}{X}} \cdot \frac{\frac{3}{9}}{\frac{9}{2}}$


Divide out common factors.

Multiply and simplify.

## EXAMPLE Divide by Mixed Numbers

2 Find $\frac{5}{6} \div 2 \frac{1}{2}$. Write in simplest form.
Estimate $1 \div \frac{5}{2}=1 \times \square$ or $\frac{2}{5}$
$\frac{5}{6} \div 2 \frac{1}{2}=\frac{5}{6} \div$ $\square$ Rename $2 \frac{1}{2}$ as an $\square$ fraction.
$=\frac{5}{6} \cdot \square$
Multiply by the reciprocal of $\frac{5}{2}$.

Divide out common factors.

Multiply. The quotient is close to the estimate.

Check Your Progress
a. $\frac{6}{7} \div \frac{2}{5}$


Divide. Write in simplest form.
b. $\frac{3}{8} \div 2 \frac{1}{2}$

## EXAMPLE

3 FACTORY A bottling machine needs to be restocked with new lids every $2 \frac{3}{4}$ hours. If the machine runs $19 \frac{1}{4}$ hours, how many times will it have to be restocked with lids?

$$
\begin{array}{rll}
19 \frac{1}{4} \div 2 \frac{3}{4} & =\square \div \square & \begin{array}{l}
\text { Rename the mixed numbers as } \\
\text { improper fractions. }
\end{array} \\
& =\frac{77}{4} \cdot \frac{4}{11} & \begin{array}{l}
\text { Multiply by the } \square \\
\text { of } \frac{11}{4}, \text { which is } \frac{4}{11} .
\end{array} \\
& =\frac{7^{7}}{4} \cdot \frac{1}{11} \\
& =\square \text { or } \square & \text { Divide out common factors. } \\
\text { Multiply. }
\end{array}
$$

So, the machine will need to restocked $\square$ times.

Check Your Progress
FURNITURE A rectangular table is $5 \frac{5}{6}$ feet long. If the area of the table is $20 \frac{5}{12}$ square feet, how wide is the table?

## HoMEWORK ASSIGNMENT

Page(s):
Exercises:

5

## BRINGING IT ALL TOGETHER

## STUDY GUIDE

## Foldables

Use your Chapter 5 Foldable to help you study for your chapter test.

## VOCABULARY <br> PUZZLEMAKER

To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 5, go to:
glencoe.com

## BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (page 103) to help you solve the puzzle.

## 5-1

## Estimating with Fractions

## Estimate.

1. $8 \frac{2}{3}+7 \frac{1}{4}$ $\square$ 2. $11 \frac{7}{8} \div 3 \frac{5}{6}$ $\square$

## 5-2

Adding and Subtracting Fractions
Add or subtract. Write in simplest form.
3. $\frac{7}{8}+\frac{3}{8}$

4. $\frac{5}{6}-\frac{1}{3}$

5. $\frac{1}{5}+\frac{3}{4}$

## 5-3

Adding and Subtracting Mixed Numbers
Add or subtract. Write in simplest form.
6. $3 \frac{7}{8}+6 \frac{1}{4}$
7. $7 \frac{1}{6}+2 \frac{5}{12}$

8. $8 \frac{3}{7}-4 \frac{5}{7}$
9. $9 \frac{2}{9}-1 \frac{2}{3}$


5-4
Problem-Solving Investigation: Eliminate Possibilities
10. READING Joel read $\frac{5}{8}$ of a novel. If the novel has 600 pages, is 250,300 , or 375 a reasonable number of pages that Joel has read?


## 5-5

Multiplying Fractions and Mixed Numbers
Multiply. Write in simplest form.
11. $\frac{2}{7} \times 4 \frac{1}{5}$
$\square$
12. $\frac{1}{6} \times \frac{3}{4}$ $\square$
13. $5 \frac{1}{6} \times \frac{2}{5}$

14. $\frac{5}{8} \times \frac{4}{5}$


## 5-6

## Algebra: Solving Equations

Find the multiplicative inverse of each number.
15. $\frac{3}{5}$

16. $1 \frac{1}{2}$

17. 3


Solve each equation.
18. $\frac{1}{3} a=\frac{5}{6}$ $\square$ 19. $-4=\frac{k}{3}$ $\square$

## 5-7

## Dividing Fractions and Mixed Numbers

Divide. Write in simplest form.
20. $\frac{1}{4} \div \frac{2}{3}$

21. $\frac{7}{8} \div \frac{2}{3}$

22. $6 \div 1 \frac{1}{3}$ $\qquad$ 23. $5 \frac{3}{4} \div 2 \frac{1}{2}$ $\square$

## ARE YOU READY FOR THE CHAPTER TEST?

## Checklist

## Math Online

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 5.

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 5 Practice Test on page 275 of your textbook as a final check.

I used my Foldable or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 5 Study Guide and Review on pages 271-274 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 5 Practice Test on page 275 of your textbook.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 5 Foldable.
- Then complete the Chapter 5 Study Guide and Review on pages 271-274 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 5 Practice Test on page 275 of your textbook.



## Ratios and Proportions

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.

## Begin with a sheet of notebook paper.

Fold lengthwise to the holes.


STEP 2 Cut along the top line and then make equal cuts to form 7 tabs.

STEP 3 Label the major topics as shown.

NOTE-TAKING TIP: When you take notes, it may be helpful to include an example for each term or concept learned.

## BUILD YOUR VOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 6.
As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

| Vocabulary Term | Found <br> on Page | Definition | Description or <br> Example |
| :--- | :--- | :--- | :--- |
| cross products |  |  |  |
| equivalent ratios |  |  |  |
| gram |  |  |  |
| kilogram |  |  |  |
| liter |  |  |  |
| meter |  |  |  |
| metric system |  |  |  |
| proportion |  |  |  |
| rate |  |  |  |


| Vocabulary Term | Found <br> on Page | Definition | Description or <br> Example |
| :--- | :--- | :--- | :--- |
| ratio |  |  |  |
| scale |  |  |  |
| scale drawing |  |  |  |
| scale factor |  |  |  |
| scale model |  |  |  |
| slope |  |  |  |
| unit rate ratio |  |  |  |

## MAIN IDEA

- Write ratios as fractions in simplest form and determine whether two ratios are equivalent.

BUILD YOUR VOCABULARY (pages 121-122)
A $\square$ is a comparison of two quantities by division. Ratios that express the $\square$ relationship between two quantities are equivalent ratios.

## EXAMPLE Write Ratios in Simplest Form

(1) APPLES Mr. Gale bought a basket of apples. Using the table, write a ratio comparing the Red Delicious apples to the Granny Smith apples as a fraction in simplest form.
$\begin{aligned} & \text { Red Delicious } \\ & \text { Granny Smith }\end{aligned} \frac{30}{9}=\frac{\frac{10}{30}}{\frac{3}{9}}$ or $\square$

Mr. Gale's Apples
12 Fuji
9 Granny Smith
30 Red Delicious

The ratio of Red Delicious apples to Granny Smith apples


## EXAMPLE Identify Equivalent Ratios

2 Determine whether the ratios 12 onions to 15 potatoes and 32 onions to 40 potatoes are equivalent.

12 onions : 15 potatoes $=\frac{12 \div 3}{15 \div 3}$ or $\square$
32 onions: 40 potatoes $=\frac{32 \div 8}{40 \div 8}$ or $\square$
The ratios simplify to the same fraction. They are
$\square$

## Remember It

Ratios such as 120:1,800 can also be written in simplest form as 1:15.

## HoMEWORK <br> ASSIGNMENT



## Check Your Progress

a. FLOWERS A garden has 18 roses and 24 tulips. Write a ratio comparing roses to tulips as a fraction in simplest form.

b. Determine whether the ratios 3 cups vinegar to 8 cups water and 5 cups vinegar to 12 cups water are equivalent.
$\square$

## EXAMPLE

3 POOLS It is recommended that no more than one person be allowed into the shallow end of an outdoor public pool for every 15 square feet of surface area. If a local pool's shallow end has a surface area of 1,800 square feet, are the lifeguards correct to allow 120 people into that part of the pool?

## Recommended Ratio



## Actual Ratio

$120: 1,800=\frac{120}{1,800}$ or $\square$ persons per square feet
Since the ratios simplify to the same fraction, they are
$\square$

## Check Your Progress SCHOOL A district claims that

 they have 1 teacher for every 15 students. If they actually have 2,700 students and 135 teachers, is their claim correct?

## 6-2 Rates

## MAIN IDEA <br> Determine unit rates.

## BUILD YOUR VOCABULARY (pages 121-122)

A ratio that $\square$ two quantities with different kinds of units is called a rate.

When a rate is simplified so that it has a $\square$ of 1 unit, it is called a unit rate.

## EXAMPLES Find Unit Rates

## Foldables

## ORGANIZE IT

Under the rate tab, take notes on rate and unit rate. Be sure to include examples.


1) READING Julia read 52 pages in 2 hours. What is the average number of pages she read per hour?

Write the rate as a fraction. Then find an equivalent rate with a denominator of 1 .

52 pages in 2 hours $=\frac{52 \text { pages }}{2 \text { hours }}$

2 SODA Find the unit price per can if it costs $\$ 3$ for 6 cans


Write the rate as a fraction.

Divide the numerator and denominator by

Simplify. of soda. Round to the nearest hundredth if necessary.
$\$ 3$ for 6 cans $=\frac{\$ 3}{6 \text { cans }} \quad$ Write the rate as a fraction.

$$
=\frac{\$ 3 \div 6}{6 \text { cans } \div 6} \quad \begin{aligned}
& \text { Divide the numerator and the } \\
& \text { denominator by } 6 .
\end{aligned}
$$

Simplify.


## Remember IT

The word rate is often understood to mean unit rate.

## Check Your Progress

a. 16 laps in 4 minutes


Find each unit rate.
b. $\$ 3$ for one dozen cookies


## EXAMPLE Compare Using Unit Rates

3 TEST EXAMPLE The costs of 4 different sizes of orange juice are shown in the table. Which container costs the least per ounce?

| Amount | Total Cost |
| :---: | :---: |
| 16 oz | $\$ 1.28$ |
| 32 oz | $\$ 1.92$ |
| 64 oz | $\$ 2.56$ |
| 96 oz | $\$ 3.36$ |

A 96-oz container
C 32-oz container
B 64-oz container
D 16-oz container

## Read the Item

Find the unit price, or the cost per ounce of each size of orange juice. Divide the price by the number of ounces.

Solve the Item


The $\square$ -ounce container of orange juice costs the least per ounce. The answer is


## Check Your Progress

MULTIPLE CHOICE The costs of different sizes of bottles of laundry detergent are shown below. Which bottle costs the least per ounce?
F 96-oz container
G 64-oz container

| Amount | Total Cost |
| :---: | :---: |
| 16 oz | $\$ 3.12$ |
| 32 oz | $\$ 5.04$ |
| 64 oz | $\$ 7.04$ |
| 96 oz | $\$ 11.52$ |

H 32-oz container
J 16-oz container

## EXAMPLE Use a Unit Rate

4 POTATOES An assistant cook peeled 18 potatoes in 6 minutes. At this rate, how many potatoes can he peel in 50 minutes?
Find the unit rate.
18 potatoes in 6 minutes $=\frac{18 \div 6}{6 \div 6}=\frac{3}{1}$
The unit rate is $\square$ potatoes per minute.
$\frac{3 \text { potatoes }}{1 \text { min }} \cdot 50$ min $=\square$ potatoes
He can peel $\square$ potatoes in 50 minutes.

## Check Your Progress Sarah can paint 21 beads in

 7 minutes. At this rate, how many beads can she paint in one hour?
## 6-3 A Plan for Problem Solving

## Main IDEA

- Identify rate of change and slope using tables and graphs.


## Write IT

Explain how rate of change is similar to unit rates.
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## BUILD YOUR VOGABULARY (pages 121-122)

A rate of change is a rate that describes how one quantity changes in relation to another and is usually expressed as a
$\square$

## EXAMPLE Find Rate of Change from a Table

1 The table shows the number of miles a car drove on a trip. Use the information to find the approximate rate of change.


So, the rate was 65 miles per hour.

Check Your Progress The table shows the number of miles a car drove on a trip. Use the information to find the rate of change.

| Distance (miles) | 44 | 88 | 132 | 176 |
| :--- | :---: | :---: | :---: | :---: |
| Fuel (gallons) | 2 | 4 | 6 | 8 |

## BUILD YOUR VOGABULARY (pages 121-122)

The constant rate of change in $y$ with respect to the constant change in $\square$ is called the slope of a line.

## EXAMPLE Find Rate of Change from a Graph

## FOLDABLES

## ORGANIZE IT

Under the rate of change and slope tab, take notes on how to find the slope of a line.


2 GRAPH THE DATA Find the slope of the line. Explain what the slope represents.

Graph the points and connect them with a line.

| Hours | Amount Earned |
| :---: | :---: |
| 3 | $\$ 45$ |
| 6 | $\$ 90$ |
| 9 | $\$ 135$ |

Pick two points on the line, such as $(3,45)$ and $(6,90)$, to find the slope.

$$
\begin{aligned}
\text { slope } & =\frac{\text { change in } y}{\text { change in } x} \\
& =\frac{90-\square}{6-\square} \\
& =\frac{45}{3} \text { or } \square
\end{aligned}
$$

Earnings

$\square$ and represents the amount earned per
The slope is hour.

## Check Your Progress

The
table shows the cost of renting a bicycle. Graph the data. Find the slope of the line. Explain what the slope represents.

| Hours | Cost |
| :---: | ---: |
| 2 | $\$ 8$ |
| 4 | $\$ 16$ |
| 6 | $\$ 24$ |



## 6-4 Measurement: Changing Customary Units

## MAIN IDEA

- Change units in the customary system.


## BUILD YOUR VOGABULARY (pages 121-122)

A unit ratio is a ratio in which the denominator is $\square$ unit.

## EXAMPLES Convert Larger Units to Smaller Units

## Remember IT

You multiply to change from larger units of measure because it takes more smaller units than larger units to measure an object.

## REVIEW IT

Explain how estimating can help you solve a problem. (Lesson 6-1)
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## (1)

## Convert 2 miles into feet.

Since 1 mile $=5,280$ feet, the unit ratio is


$$
\begin{array}{rlrl}
2 \mathrm{mi} & =2 \mathrm{mi} \cdot \frac{5,280 \mathrm{ft}}{1 \mathrm{mi}} & & \text { Multiply } \\
& =2 \mathrm{mix} \cdot \frac{5,280 \mathrm{ft}}{1 \mathrm{mi}} & & \text { Divide oI } \\
& =\square \mathrm{ft} \text { or } 10,560 \mathrm{ft} & \text { Multiply. }
\end{array}
$$

So, 2 miles $=\square$ feet.
2 ELEVATOR The elevator in an office building has a weight limit posted of one and a half tons. How many pounds can the elevator safely hold?
$1 \frac{1}{2} t=1 \frac{1}{2} t \cdot \square$
Multiply by

since there are $\square$ pounds in 1 ton.

$$
=1 \frac{1}{2} \cdot 2,000 \mathrm{lb} \text { or } 3,000 \mathrm{lb} \quad \text { Multiply. }
$$

So, the elevator can safely hold $\square$ pounds.

Check Your Progress
Complete.
a. $8 \mathrm{yd}=\square \mathrm{ft}$
b. $4 \frac{1}{2} \mathrm{~T}=\square \mathrm{lb}$


## EXAMPLES Convert Smaller Units to Larger Units

3 Convert 11 cups into pints.
Since 1 pint = 2 cups, the unit ratio is $\frac{2 \mathrm{c}}{1 \mathrm{pt}}$, and its reciprocal is

$11 \mathrm{c}=11 \mathrm{c} \cdot \frac{1 \mathrm{pt}}{2 \mathrm{c}}$
Multiply by $\square$
$=11 \ell \cdot \frac{1 \mathrm{pt}}{2 \ell} \quad$ Divide out common units.
$=11 \cdot \square$

$$
=\frac{11}{2} \mathrm{pt}
$$

Multiplying 11 by $\frac{1}{2}$ is the same as dividing 11 by 2 .


So, 11 cups $=\square$ pints.
(4) SOCCER Tracy kicked a soccer ball $\mathbf{1 , 0 0 0}$ inches. How many feet did she kick the ball?

Since 1 foot $=12$ inches, multiply by $\square$ Then divide out common units. 1,000 in. $=1,000$ ік. $\cdot \frac{1 \mathrm{ft}}{12 \text { ік. }}$

$$
\begin{aligned}
& =1,000 \mathrm{in} \cdot \cdot \square \mathrm{ft} \\
& =\frac{1000}{12} \mathrm{ft} \text { or } \square \mathrm{ft}
\end{aligned}
$$

So, Tracy kicked the soccer ball $\square$

Check Your Progress
Complete.
a. $21 \mathrm{qt}=\square \mathrm{gal}$

b. $78 \mathrm{oz}=\square \mathrm{lb}$


## EXAMPLE

(5) LEMONADE Paul made 6 pints of lemonade and poured it into 10 glasses equally. How many cups of lemonade did each glass contain?
Begin by converting 6 pints to cups.


Find the unit rate which gives the number of cups per glass.


Check Your Progress CANDY Tom has 3 pounds of candy he plans to divide evenly among himself and his 3 best friends. How many ounces of candy will each of them get?

## Homework

 AssignmentPage(s):
Exercises:
$\square$

## 6-5 Measurement: Changing Metric Units

## Main Idea

- Change metric units of length, capacity, and mass.


## BUILD YoUR VoGABULARY (pages 121-122)

The metric system is a $\square$ system of measures.

The meter is the base unit of $\square$
The liter is the base unit of $\square$
The gram measures $\square$
The base unit of mass in the metric system is the
$\square$

## EXAMPLES Convert Units in the Metric System

(1) Complete $7.2 \mathrm{~m}=\square \mathrm{mm}$.

To convert from meters to millimeters, $\square$
$\square$
by


So, $7.2 \mathrm{~m}=\square \mathrm{mm}$.

## Foldables

## Organize IT

Under the metric units tab, take notes on how to change metric units, include examples involving length, capacity, and mass.


Complete $40 \mathrm{~cm}=\square \mathrm{m}$.
To convert from centimeters to meters, $\square$ by $\square$
$\square$
So, $40 \mathrm{~cm}=$ $\square$ m.

Check Your Progress
Complete.
a. $7.5 \mathrm{~m}=\square \mathrm{cm}$

b. $3,400 \mathrm{~mm}=\square \mathrm{m}$


## EXAMPIE

## WRITE IT

Explain how you can multiply a number by a power of ten.

Homework Assignment

Page(s):
Exercises:
a mass of 32,850 grams. What is the mass of the box in kilograms?
Check Your Progress
BOOKS A box of textbooks has
FARMS A bucket holds 12.8 liters of water. Find the capacity of the bucket in milliliters.

You are converting from $\square$ to milliliters. Since the bucket holds 12.8 liters, use the relationship $1 \mathrm{~L}=$ $\square$ mL .

$$
1 \mathrm{~L}=1,000 \mathrm{~mL} \quad \text { Write the relationship. }
$$

$\square \times 1 \mathrm{~L}=12.8 \times 1,000 \mathrm{~mL} \quad \begin{aligned} & \text { Multiply each side by } 12.8 \\ & \text { since you have } 12.8 \text { liters. }\end{aligned}$
$12.8 \mathrm{~L}=\square \mathrm{mL} \quad \begin{aligned} & \text { To multiply } 12.8 \text { by } 1,000, \\ & \text { move the decimal point } \square \\ & \text { places to the right. }\end{aligned}$
So, the capacity of the bucket in milliliters is $\square \mathrm{mL}$.
kilogra?


## EXAMPLES Convert Between Measurement Systems

(4) Convert 7.13 miles to kilometers. Round to the nearest hundredth if necessary.

Use the relationship $1 \square \approx 1.61$ kilometers.


So, 7.13 miles is approximately $\square$ kilometers.
(5) Convert 925.48 grams to pounds. Round to the nearest hundredth if necessary.

Since 1 pound $\approx \square$ grams, the unit ratio is $\frac{1 \mathrm{lb}}{453.6 \mathrm{~g}}$.
$925.48 \mathrm{~g} \approx \square \mathrm{~g} \cdot \frac{1 \mathrm{lb}}{453.6 \mathrm{~g}} . \quad$ Multiply by $\square$

$$
\approx \frac{925.48 \mathrm{lb}}{453.6} \text { or } \square \mathrm{lb} \quad \text { Simplify. }
$$

So, 925.48 grams is approximately $\square$ pounds.

## Check Your Progress

Complete. Round to the nearest hundredth if necessary.
a. $8.15 \mathrm{gal}=\square \mathrm{L}$
b. $5.75 \mathrm{~m}=\square \mathrm{yd}$


## 6-6 Algebra: Solving Proportions

## Main Idea

- Solve proportions.


## Key Concept

Proportion A proportion is an equation stating that two ratios are equivalent.

## BUILD YOUR VOCABULARY (pages 121-122)

Two quantities are proportional if they have a


A proportion is an equation stating that two ratios or rates are $\square$.
In a proportion, a cross product is the $\square$ of the numerator of one ratio and the denominator of the other ratio.

## EXAMPLE Identify Proportional Relationships

(1) MATH Before dinner, Mohammed solved 8 math problems in 12 minutes. After dinner, he solved 2 problems in 3 minutes. Is the number of problems he solved proportional to the time?
To identify proportional relationships, you can compare unit rates or compare ratios by comparing cross products. Let's compare ratios by comparing $\square$

$24=24$
Since the cross products are $\square$ the number of problems solved is proportional to the time.

## FOLDABLES

## ORGANIZE IT

Under the proportions tab, take notes on how to solve a proportion. Include examples.


## Homework

 AssignMentPage(s):
Exercises:

## Check Your Progress

Determine if the quantities $\$ 30$ for 12 gallons of gasoline and $\$ 10$ for 4 gallons of gasoline are proportional.

## EXAMPLES Solve a Proportion

(2) Solve $\frac{5}{8}=\frac{18}{x}$.

$$
\begin{aligned}
\frac{5}{8} & =\frac{18}{x} & & \text { Write the proportion. } \\
5 \cdot x & =8 \cdot 18 & & \text { Find the cross products. } \\
5 x & =\square & & \text { Multiply. } \\
\frac{5 x}{\square \times} & =\frac{144}{\square} & & \text { Divide each side by } \\
x & =\square & &
\end{aligned}
$$

(3) Solve $\frac{3.5}{14}=\frac{6}{n}$.


Check Your Progress
a. $\frac{9}{15}=\frac{k}{18}$


Solve each proportion.
b. $\frac{4.6}{w}=\frac{4}{5}$


## 6-7 Problem-Solving Investigation: Draw a Diagram

## EXAMPLE Draw a Diagram

## Main IdeA

Solve problems by drawing a diagram.

## Homework Assignment

Page(s):

Exercises:

ROCK CLIMBING A rock climber stops to rest at a ledge 90 feet above the ground. If this represents $\mathbf{7 5 \%}$ of the total climb, how high above the ground is the top of the rock?

UNDERSTAND You know that $\square$ feet is $75 \%$ of the total height. You need to find the total height.

PLAN Draw a diagram showing the part already climbed.

SOLVE


You know that $75 \% \div 3=25 \%$. If $75 \%$ of the total height is 90 feet, then $25 \%$ of the total height would be $90 \div 3$, or 30 , feet. You know that $75 \%+25 \%=\square$, so 90 feet +30 feet $=120$ feet, which is the height of the top of the rock.

CHECK Since $75 \%$, or 0.75 , of the total height is 90 feet, and $90 \div 120=\square$, the solution checks.

## Check Your Progress

INVENTORY A retail store has taken inventory of 400 items. If this represents $80 \%$ of the total items in the store, what is the total number of items in the store?

## 6-8 Scale Drawings

## Main Idea

- Solve problems involving scale drawings.


## BUILD YOUR VOGABULARY (pages 121-122)

Scale drawings and scale models are used to represent objects that are too $\square$ or too $\square$ to be drawn at actual size.

The scale gives the ratio that compares the


## EXAMPLE Use a Map Scale

(1) MAPS What is the actual distance between Portland and Olympia?

Step 1 Use a ruler to find the map distance between the two cities. The map distance is about


Step 2 Write and solve a proportion using the scale. Let $d$ represent the actual distance between the cities.

$$
\begin{array}{rlrl}
\operatorname{map} \longrightarrow \quad \frac{3}{8} \text { inch } & =\frac{1.69 \text { inches }}{d \mathrm{mi}} & \longleftarrow \text { map } \\
\text { actual } \longrightarrow \quad \begin{array}{l}
23 \mathrm{mi}
\end{array} \\
\frac{3}{8} \times d & =23 \times 1.69 & & \text { Cross products. } \\
0.375 d & =3.887 & \begin{array}{l}
\text { Multiply. Write } \frac{3}{8} \\
\text { as a decimal. }
\end{array} \\
d & =\square & \begin{array}{l}
\text { Divide both sides } \\
\text { by } 0.375 .
\end{array}
\end{array}
$$

The distance between the cities is about $\square$ kilometers.

## WRITE IT

Explain why these two scales are equivalent scales:
$\frac{1}{2}$ inch $=4$ miles
1 inch $=8$ miles

Check Your Progress
MAPS On a map of California, the distance between San Diego and Bakersfield is about $11 \frac{2}{5}$ centimeters. What is the actual distance if the scale is 1 centimeter $=30$ kilometers?

## EXAMPLE Use a Blueprint Scale

2 ARCHITECTURE On the blueprint of a new house, each square has a side length of $\frac{1}{4}$ inch. If the length of a bedroom on the blueprint is $1 \frac{1}{2}$ inches, what is the actual length of the room?

Write and solve a proportion.


The length of the room is $\square$

Check Your Progress
On a blueprint of a new house, each square has a side length of $\frac{1}{4}$ inch. If the width of the kitchen on the blueprint is 2 inches, what is the actual width of the room?


## EXAMPLE Find a Scale Factor

(3) Find the scale factor of a blueprint if the scale is $\frac{1}{2}$ inch $=3$ feet.


Divide out the common units.

The scale factor is


That is, each measure on the


Check Your Progress Find the scale factor of a blueprint if the scale is 1 inch $=4$ feet.


## 6-9 Fractions, Decimals, and Percents

## EXAMPLES Percents as Fractions

## Main IDEA

- Write percents as fractions and decimals and vice versa.


## FOLDABLES

## ORGANIZE IT

Under the Fractions, Decimals, and Percents tab, take notes on writing percents as fractions and fractions as percents. Include examples.


1) NUTRITION In a recent consumer poll, $41.8 \%$ of the people surveyed said they gained nutrition knowledge from family and friends. What fraction is this? Write in simplest form.

$$
\begin{aligned}
& 41.8 \%=\frac{41.8}{100} \quad \\
&=\frac{41.8}{100} \cdot \square \\
&=\square \text { or } \square \\
& \text { Write a fraction with a } \\
& \text { denominator of } 100 . \\
& \text { Multiply to eliminate the } \\
& \text { decimal in the numerator }
\end{aligned}
$$

2 Write $12 \frac{1}{2} \%$ as a fraction in simplest form.
$12 \frac{1}{2} \%=\frac{12 \frac{1}{2}}{100} \quad$ Write a fraction.

$$
=12 \frac{1}{2} \div 100 \quad \text { Divide }
$$

$$
=\square \div 100 \quad \text { Write } 12 \frac{1}{2} \text { as an improper fraction. }
$$



Check Your Progress
a. ELECTION In a recent election, $64.8 \%$ of registered voters actually voted. What fraction is this? Write in simplest form.

b. Write $62 \frac{1}{2} \%$ as a fraction in simplest form.

## KEy CONCEPTS

## Common Fraction/

Decimal/Percent Equivalents
$\frac{1}{3}=0 . \overline{3}=33 \frac{1}{3} \%$
$\frac{2}{3}=0 . \overline{6}=66 \frac{2}{3} \%$
$\frac{1}{8}=0.125=12 \frac{1}{2} \%$
$\frac{3}{8}=0.375=37 \frac{1}{2} \%$
$\frac{5}{8}=0.625=62 \frac{1}{2} \%$
$\frac{7}{8}=0.875=87 \frac{1}{2} \%$

## Homework

 AssignmentPage(s):
Exercises:

## EXAMPLES Fractions as Percents

3 PRODUCE In one shipment of fruit to a grocery store, 5 out of 8 bananas were still green. Find this amount as a percent.

$$
\begin{array}{rlrl}
\frac{5}{8} & =\frac{n}{100} & & \text { Write a proportion. } \\
500 & =8 n & & \text { Find the cross products. } \\
\frac{500}{\square} & =\frac{8 n}{\square} & & \text { Divide each side by } \square \\
& =n & & \text { Simplify. } \\
\text { So, } \frac{5}{8}=62 \frac{1}{2} \% \text { or } &
\end{array}
$$

(4) Write $\frac{5}{12}$ as a percent. Round to the nearest hundredth if necessary.
$\frac{5}{12}=\frac{n}{100} \quad$ Write a proportion.
$\square=\square$ Find the cross products.
500 € 12 ENTER 41.66666667 Use a calculator.
So, $\frac{5}{12}$ is about $\square$
(5) Write $\frac{3}{7}$ as a percent. Round to the nearest hundredth. $\frac{3}{7}=0.4285714 \ldots \quad$ Write $\frac{3}{7}$ as a decimal.
$\square$

Check Your Progress Write each fraction as a percent. Round to the nearest hundredth.
a. $\frac{13}{25}$

b. $\frac{11}{15}$

## BRINGING IT ALL TOGETHER

## STUDY GUIDE

## FOLDABLES

Use your Chapter 6 Foldable to help you study for your chapter test.

## VOCABULARY PUZZLEMAKER

To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 6, go to:
glencoe.com

## BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (pages 121-122) to help you solve the puzzle.

6-1
Ratios
State whether each sentence is true or false. If false, replace the underlined word to make it a true sentence.

1. When you simplify a ratio, write a fraction as a mixed number.
$\square$
2. To write a ratio comparing measures, both quantities should have the same unit of measure.
$\square$
Write each ratio as a fraction in simplest form.
3. $63: 7$

4. $15: 54$


## 6-2 <br> Rates

Complete.
5. A $\square$ is a ratio that compares two quantities with different kinds of units.

Write each ratio as a fraction in simplest form.
6. 36 inches: 48 inches $\square$
7. 15 minutes to 3 hours $\square$

6-3

## Rate of Change and Slope

8. The table shows Amanda's running time during a 5-mile race.

Graph the data. Find the slope of the line. Explain what the slope represents.

| Distance <br> (miles) | Time <br> (minutes) |
| :---: | :---: |
| 1 | 6 |
| 2 | 12 |
| 3 | 18 |
| 4 | 24 |
| 5 | 30 |

## 6-4

Measurement: Changing Customary Units

## Complete.

## 9. $3 \frac{3}{4} \mathrm{pt}=\square \mathrm{c}$

10. $90 \mathrm{ft}=\square \mathrm{yd}$
11. $156 \mathrm{oz}=\square \mathrm{lb}$

$\square$

## 6-5 <br> Measurement: Changing Metric Units

## Complete.

12. $4.3 \mathrm{~cm}=$ $\square$ mm
13. $42.7 \mathrm{~g}=\square \mathrm{mg}$

## 6-6

## Algebra: Solving Proportions

## Complete each sentence.

14. The cross products of a $\square$ are equal.
15. If you know $\square$ parts of a proportion, you can solve for the fourth part by $\square$ and then $\square$ both sides by the coefficient of the unknown.

## Solve each proportion.

16. $\frac{15}{n}=\frac{3}{8}$ $\square$ 17. $\frac{6}{20}=\frac{x}{80} \square$
17. $\frac{b}{16}=\frac{3}{48}$ $\square$

6-7
Problem-Solving Investigation: Draw a Diagram
19. LADDERS A ladder leans against a wall. The top of the ladder rests against the wall at a point 12 feet above the ground. If this distance represents $80 \%$ of the height of the wall, how tall is the wall?

## 6-8

Scale Drawings
On a map, the scale is $\frac{1}{4}$ inch $=10$ miles. For each map distance, find the actual distance.
20. 6 inches $\square$
22. $2 \frac{1}{2}$ inches $\square$
21. $\frac{3}{8}$ inch $\square$
23. 1 inch $\square$

## 6-9

Fractions, Decimals, and Percents
Complete the table of equivalent fractions.
24.

| Fraction | Decimal | Percent |
| :---: | :---: | :---: |
| $\frac{1}{3}$ | $\square$ | $\square$ |
| $\frac{3}{8}$ | $\square$ | $37 \frac{1}{2} \%$ |
| $\frac{1}{8}$ | $\square$ | $\square$ |
| $\square$ | 0.875 | $87 \frac{1}{2} \%$ |

6

## ARE YOU READY FOR THE CHAPTER TEST?

## Checklist

## Math Online

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 6.

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 6 Practice Test on page 337 of your textbook as a final check.

I used my Foldable or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 6 Study Guide and Review on pages 333-336 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 6 Practice Test on page 337 of your textbook.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 6 Foldable.
- Then complete the Chapter 6 Study Guide and Review on pages 333-336 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 6 Practice Test on page 337 of your textbook.


Student Signature


Parent/Guardian Signature


Teacher Signature

## Applying Percents

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.

| Begin with a sheet of $11^{\prime \prime} \times 17^{\prime \prime}$ paper. |  |  |  |
| :---: | :---: | :---: | :---: |
| STEP 1 | Fold the paper in half lengthwise. |  |  |
| STEP 2 | Open and refold the paper into fourths along the opposite axis. |  | $\square$ |
| STEP 3 | Trace along the fold lines and label each section with a lesson title or number. | $7-1$ $7-3$ $7-5$ 77 | $7-2$ $7-4$ $7-6$ $7-8$ |

## BUILD YOUR VOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 7. As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

| Vocabulary Term | Found <br> on Page | Definition | Description or <br> Example |
| :--- | :--- | :--- | :--- |
| discount |  |  |  |
| percent equation |  |  |  |
| percent of change |  |  |  |
| percent of decrease |  |  |  |
| percent of increase |  |  |  |

(continued on the next page)

| Vocabulary Term | Found <br> on Page | Definition | Description or <br> Example |
| :--- | :---: | :---: | :---: |
| percent proportion |  |  |  |
| principal |  |  |  |
| sales tax |  |  |  |
| simple interest |  |  |  |

## 7-1 Percent of a Number

## EXAMPLE Find the Percent of a Number

## Main Idea

- Find the percent of a number.


## Remember It

Finding the percent

1) Find $8 \%$ of 125.

METHOD 1 Write the percent as a fraction.
$8 \%=\frac{8}{100}$ or

$\frac{2}{25}$ of $125=\frac{2}{25} \times 125$ or $\square$
METHOD 2 Write the percent as a decimal.
$8 \%=\frac{8}{100}$ or $\square$
0.08 of $125=0.08 \times 125$ or $\square$

So, $8 \%$ of 125 is $\square$

Check Your Progress
Find $72 \%$ of 350 .


You can either write the percent as a $\square$ or as a
$\square$ Let's write the percent as a decimal.
$125 \%=\frac{125}{100}=\square$
1.25 of $64=1.25 \times 64$ or $\square$
So, $125 \%$ of 64 is $\square$

## EXAMPLE

3 LANGUAGES The graph below shows that $30 \%$ of the people in a community speak Spanish as their first language. If a community has 800 people, how many people can be expected to speak Spanish as their first language?


To find $30 \%$ of 800 , write the percent as a $\square$ Then multiply.
$30 \%$ of $800=30 \% \cdot 800$

$$
\begin{aligned}
& =\square \cdot 800 \\
& =240
\end{aligned}
$$

So, about $\square$ people in the community speak Spanish as their first language.

## Homework ASSIGNMENT

Page(s):
Exercises:

Check Your Progress SLEEP The average person sleeps $33 \%$ of their adult life. If their adult life consists of 62 years, how many years does the average person spend sleeping?


## 7-2 The Percent Proportion

## Main IdeA

- Solve problems using the percent proportion.


## Key Concept

Percent Proportion The percent proportion
is $\frac{\text { part }}{\text { whole }}=\frac{\text { percent }}{100}$.

## BUILD YOUR VOGABULARY (pages 149-150)

 A percent proportion compares $\square$ of a quantity tothe whole quantity, called the $\square$, using a percent.

## EXAMPLE Find the Percent

(1) What percent of 24 is $\mathbf{1 8}$ ?

18 is the part, and 24 is the whole. You need to find the percent.

$$
\frac{p}{w}=\frac{n}{100}
$$

$$
=\frac{n}{100}
$$

$18 \cdot 100=24 \cdot n$
$1,800=24 n$
$\square=\frac{24 n}{24}$


Write the proportion.
$p=\square, w=\square$
Find the cross products.
Simplify.

Divide each side by $\square$

Simplify.

## EXAMPLE Find the Part

2) What number is $\mathbf{3 0 \%}$ of $\mathbf{1 5 0}$ ?

30 is the percent and 150 is the base. You need to find the part.
$\frac{p}{w}=\frac{n}{100}$

$p \cdot 100=150 \cdot 30$
$100 p=\square$
$\frac{100 p}{100}=\frac{4,500}{100}$
$p=\square$
So, $30 \%$ of $\square$ is 45 .

Percent proportion


Find the cross products.
Simplify.
Divide each side by 100.
Simplify.

## EXAMPLE Find the Base

## (3) 12 is $\mathbf{8 0 \%}$ of what number?

12 is the part and 80 is the percent. You need to find the base.

$$
\begin{array}{ll}
\frac{p}{w}=\frac{n}{100} & \text { Percent proportion } \\
\frac{12}{w}=\square & a=\square, n=80 .
\end{array}
$$

$$
\square=w \cdot 80 \quad \text { Find the cross products. }
$$

$$
1,200=\square \quad \text { Simplify }
$$

$\square$
Write an example of

$$
\frac{1,200}{8}=\frac{80 w}{80} \quad \text { Divide each side by }
$$ a real-world percent problem.

$\qquad$ So, 12 is $80 \%$ of 15 .

## Check Your Progress

a. What percent of 80 is 28 ?
b. What number is $65 \%$ of 180 ?

c. 36 is $40 \%$ of what number?


## 7-3 Percent and Estimation

## EXAMPLE

## Main Idea

- Estimate percents by using fractions and decimals.
(1) CONCERTS A town sold 407 tickets to a chamber music concert in the town square. Of the tickets sold, $61 \%$ were discounted for senior citizens. About how many senior citizens bought tickets for the concert?

You need to estimate $61 \%$ of 407 .
$61 \%$ is about $60 \%$, and 407 is about 400 .


$$
\approx 240 \quad \text { Multiply. }
$$

So, about $\square$ senior citizens bought tickets.

Check Your Progress
TAXES Michelle discovered that $27 \%$ of her paycheck was deducted for taxes. If her paycheck before taxes was $\$ 590$, about how much was deducted for taxes?

## EXAMPLE

2 COINS Melinda calculated that $40 \%$ of the coins in her

## FOLDABLES

## ORGANIZE IT

Record the main ideas, and give examples about percent and estimation in the section for Lesson 7-3 of your Foldable.

| $7-1$ | $7-2$ |
| :--- | :--- |
| $7-3$ | $7-4$ |
| $7-5$ | $7-6$ |
| $7-7$ | $7-8$ | coin collection were minted before 1964. If there are 715 coins in her collection, about how many of them were minted before 1964?

You can use a fraction or $10 \%$ of a number to estimate. Let's use $10 \%$ of a number.

Step 1 Find 10\% of the number.

$10 \%$ of $700=0.1 \cdot 700$


## 7-3

## Step 2 Multiply.

$40 \%$ of 700 is $4 \cdot 10 \%$ of 700 .
$4 \times 70=\square$
So, about $\square$ coins were minted before 1964.

Check Your Progress SAVINGS Suki saves $70 \%$ of her monthly allowance. If her monthly allowance is $\$ 58$, about how much does she save?

## EXAMPLES Percents Greater Than 100 or Less Than 1

## Remember It

To estimate the percent of a number, round the percent, round the number, or round both.

## Homework AssignMent

Page(s):
Exercises:

## 3

## Estimate $173 \%$ of 60.

$173 \%$ is about $175 \%$.

$$
\begin{aligned}
175 \% \text { of } 60 & =(100 \% \text { of } 60)+(75 \% \text { of } 60) \\
& =(1 \cdot 60)+\left(\frac{3}{4} \cdot 60\right) \\
& =60+45 \text { or }
\end{aligned}
$$

So, $173 \%$ of 60 is about $\square$
Estimate $\frac{1}{3} \%$ of 898.
$\frac{1}{3} \%$ is one third of $1 \% .898$ is about 900 .

$$
\begin{aligned}
1 \% \text { of } 900 & =0.01 \cdot 900 & & \text { Write } 1 \% \text { as } \square . \\
& =9 & & \text { Multiply. }
\end{aligned}
$$

One third of 9 is $\frac{1}{3} \cdot 9$ or $\square$
So, $\frac{1}{3} \%$ of 898 is about $\square$

## Check Your Progress

## Estimate.

a. $142 \%$ of 80
b. $\frac{1}{5} \%$ of 197
$\square$

## 7-4 Algebra: The Percent Equation

## Main IdeA

- Solve problems by using the percent equation.


## BUILD YOUR VOGABULARY (pages 149-150)

The equation $\square=$ percent $\cdot \square$ is called the percent equation.

## EXAMPLE Find the Part

## Foldables

## Organize IT

Record the main ideas, and give examples about the percent equation in the section for Lesson 7-4 of your Foldable.

| $7-1$ | $7-2$ |
| :--- | :--- |
| $7-3$ | $7-4$ |
| $7-5$ | $7-6$ |
| $7-7$ | $7-8$ |

1) What number is $46 \%$ of 200 ?
$46 \%$ or $\square$ is the percent and $\square$ is the whole.

Let $p$ represent the $\square$
$\underbrace{\text { part }}=\underbrace{\text { percent }} \cdot \underbrace{\text { whole }}$
$p=\square \cdot 200 \quad$ Write an equation.
$p=\square$
Multiply.

So, $46 \%$ of 200 is $\square$

## EXAMPLE Find the Percent

(2) 26 is what percent of 32 ?

Let $n$ represent the percent.


Simplify.
Write as a percent.

So, 26 is $\square$ of 32 .

## EXAMPLE Find the Whole

## (3) 12 is $40 \%$ of what number?

Let $w$ represent the whole.


Divide each side by $\square$
$\square$ $=w$

So, 12 is $40 \%$ of $\square$

## Check Your Progress

a. What number is $72 \%$ of 500 ?

b. 18 is what percent of 80 ?


Homework Assignment

Page(s):<br>Exercises:

## 7-5 Problem-Solving Investigation: Determine Reasonable Answers

EXAMPLE Solve. Use the Reasonable Answer Strategy.

## Main Idea

- Solve problems by determining reasonable answers.

FUNDRAISER A soccer team is having a candy sale to raise funds to buy new shirts. The team gets to keep 25\% of the sales. Each candy bar costs $\$ 1.50$, and the team has sold 510 bars so far. If the shirts cost a total of $\mathbf{\$ 1 7 5}$, should the team order the shirts yet? Explain.

UNDERSTAND You know the shirts cost a total of $\$ 175$ and that each candy bar costs $\$ 1.50$. You know that the team has sold $\square$ bars so far and that they get to keep $25 \%$ of the sales. You need to know if the team has enough money to order the shirts yet.

PLAN Find how much the team has earned so far. Round 510 to 500. Then find $\square$ of their sales.

SOLVE
Find $25 \%$ of $\$ 750$. $25 \%$ of $750=0.25 \cdot 750$

$$
=\square
$$

The team gets to keep $\square$ Since this is more than the cost of the shirts, they should order the shirts.

CHECK Use a calculator to check that the actual result is 191.25 , so the answer is reasonable.

Check Your Progress
FIELD TRIP There are 392 students in the seventh grade at Hamilton Middle School. If $35 \%$ of the seventh grade will attend the class field trip, is it reasonable to say that about 170 students will attend the field trip? Explain.

## 7-6 Percent of Change

## MAIN IDEA

- Find the percent of increase or decrease.


## BUILD YOUR VOGABULARY (pages 149-150)

A percent of change is a ratio that compares the change in quantity to the $\square$ amount.

If the original quantity is $\square$, the percent of change is called the percent of increase.

If the original quantity is $\square$ the percent of change is called the percent of decrease.

## EXAMPLE Find Percent of Increase

SHOPPING Last year a sweater sold for \$56. This year the same sweater sells for $\$ 60$. Find the percent of change in the cost of the sweater. Round to the nearest whole percent if necessary.

percent of increase $=\frac{\text { amount of increase }}{\square}$


The percent of $\square$ is about $\square$

Check Your Progress
Last year a DVD sold for $\$ 20$. This year the same DVD sells for $\$ 24$. Find the percent of change in the cost of the DVD. Round to the nearest whole percent if necessary.

## EXAMPLE Find Percent of Decrease

## FOLDABLES

## Organize It

Record the main ideas, and give examples about percent of change in the section for Lesson 7-6 of your Foldable.

| $7-1$ | $7-2$ |
| :--- | :--- |
| $7-3$ | $7-4$ |
| $7-5$ | $7-6$ |
| $7-7$ | $7-8$ |

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

## HoMEWORK AssignMent

Page(s):
Exercises:

2 ATTENDANCE On the first day of school this year, 435 students reported to Howard Middle School. Last year on the first day, 460 students attended. Find the percent of change for the first day attendance. Round to the nearest whole percent if necessary.

Since the new enrollment figure is $\square$ than the figure for $\square$ year, this is a percent of $\square$. The amount of decrease is $\square-435$ or $\square$ students. percent of decrease $=\frac{\square}{\text { original amount }}$


The percent of $\square$ in the enrollment is about $\square$

## Check Your Progress ZOO At the beginning of the

 summer season, the local zoo reported having 385 animals in its care. At the beginning of last year's summer season the zoo had reported 400 animals. Find the percent of change in the number of animals at the zoo. Round to the nearest whole percent if necessary.
## 7-7 Sales Tax and Discount

## MAIN IDEA

- Solve problems involving sales tax and discount.

FOLDABLES

## ORGANIZE IT

Record the main ideas, and give examples about sales tax and discount in the section for Lesson 7-7 of your Foldable.

| $7-1$ | $7-2$ |
| :--- | :---: |
| $7-3$ | $7-4$ |
| $7-5$ | $7-6$ |
| $7-7$ | $7-8$ |

## BUILD YOUR VOGABULARY (pages 149-150)



Discount is the amount by which the regular $\square$ of an item is $\square$

## EXAMPLE Find the Total Cost

## 1) GOLF A set of golf balls sells for $\$ 20$, and the sales tax is

 $\mathbf{5 . 7 5 \%}$. What is the total cost?To find the total cost, you can add sales tax to the regular price or add the percent of tax to $100 \%$. Let's add sales tax to the regular price.

First, find the $\square$ tax.


Next, add the sales tax to the regular price.


The $\square$ cost of the set of golf balls is $\square$

## Check Your Progress

BOOKS A set of three paperback books sells for $\$ 35$ and the sales tax is $7 \%$. What is the total cost of the set?

## EXAMPLE Find the Sale Price

## Remember It

The cost of an item with sales tax will always be greater than the regular price. The discounted price of an item is always less than the regular price.

2 OUTERWEAR Whitney wants to buy a new coat that has a regular price of $\$ 185$. This weekend, the coat is on sale at a $33 \%$ discount. What is the sale price of the coat?

## METHOD 1

First, find the amount of the $\square d$.


So, the sale price is $\$ 185-$ $\square$ or $\square$

## METHOD 2

First, subtract the
 of discount from $100 \%$.


So, the sale price is $\square$ of the regular price.


So, the sale price of the coat is $\square$

Check Your Progress
ELECTRONICS Alex wants to buy a DVD player that has a regular price of $\$ 175$. This weekend, the DVD player is on sale at a $20 \%$ discount. What is the sale price of the DVD player?

## EXAMPLE Find the Percent of the Discount

(3) WATCHES A sports watch is on sale for $\mathbf{\$ 6 0 . 2 0}$ after a $\mathbf{3 0 \%}$ discount. What is the original price?

First, find the percent paid.



| Words | $\square$ is $70 \%$ of what amount? |
| :--- | :--- |
| Variable | Let $n$ represent the original price. |
| Equation | $60.20=70 \% \cdot \square$ |



The original price of the sports watch is $\square$

Check Your Progress
FURNITURE A rocking chair is on sale for $\$ 318.75$ after a $15 \%$ discount. What is the original price?


## 7-8 Simple Interest

## Main IdeA

- Solve problems involving simple interest.


## BUILD YOUR VOGABULARY (pages 149-150)

Simple Interest is the amount $\square$ or earned for the use of money.

Principal is the amount of $\square$ deposited or

## EXAMPLES Find Interest Earned

SAVINGS Brandon found a bank offering a certificate of deposit that pays $4 \%$ simple interest. He has $\$ 1,500$ to invest. How much interest will he earn in each amount of time?

1) 3 years
$I=p r t \quad$ Formula for simple interest

## FOLDABLES

## ORGANIZE IT

Record the main ideas, and give examples about simple interest in the section for Lesson 7-8 of your Foldable.

| $7-1$ | $7-2$ |
| :--- | :---: |
| $7-3$ | $7-4$ |
| $7-5$ | $7-6$ |
| $7-7$ | $7-8$ |

$I=\square \cdot \square \cdot \square$ Replace the variables.
$I=\square$ Simplify.
Brandon will earn $\square$ in interest in $\square$ years.
(2) 30 months

30 months $=\square=\square$ years Write the time as years.
$I=p r t$

$I=\square$

Brandon will earn $\square$ in interest in 30 months.

## Write It

Which is better: a higher percentage of interest on your credit card or on your savings account? Explain.
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Homework

Assignment


## Check Your Progress

a. SAVINGS Cheryl opens a savings account that pays 5\% simple interest. She deposits $\$ 600$. How much interest will she earn in 2 years?
$\square$
b. SAVINGS Micah opens a savings account that pays $4 \%$ simple interest. He deposits $\$ 2,000$. How much interest will he earn in 42 months?

## EXAMPLE Find Interest Paid on a Loan

3 LOANS Laura borrowed $\$ 2,000$ from her credit union to buy a computer. The interest rate is $9 \%$ per year. How much interest will she pay if it takes 8 months to repay the loan?
$I=\square \quad$ Formula for simple interest
$I=2,000 \cdot 0.09 \cdot \frac{8}{12}$
Replace $p$ with $\square$, $r$ with


Simplify.

Laura will pay $\square$ in interest in $\square$ months.

## Check Your Progress

LOANS Juan borrowed \$7,500 from the bank to purchase a used car. The interest rate is $15 \%$ per year. How much interest will he pay if it takes 2 years to repay the loan?

## BRINGING IT ALL TOGETHER

## STUDY CUIDE

## Foldables

Use your Chapter 7 Foldable to help you study for your chapter test.

## Vocabulary

PUZZLEMAKER
To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 7, go to:
glencoe.com

## BUILD YOUR

 VocabularyYou can use your completed Vocabulary Builder (pages 149-150) to help you solve the puzzle.
3. Find $200 \%$ of 17 .


## 7-2

2. Find $15 \%$ of $\$ 24$.

3. What is $0.6 \%$ of 800 ?

4. In the formula $\frac{p}{w}=\frac{n}{100}, p$ is the $\square$ $w$ is the $\square$ and $n$ is the $\square$
5. What number is $30 \%$ of 15 ?
$\square$
6. 32.5 is $65 \%$ of what number?

## 7-3

Percent and Estimation

## Write fraction equivalents in simplest form for the following percents.

8. $20 \%$

9. $40 \%$

10. $60 \%$

11. $80 \%$

12. $25 \%$

13. $50 \%$

14. $75 \%$

15. $100 \%$


## Estimate.

16. $49 \%$ of 80

17. $153 \%$ of 10

18. $78 \%$ of 25

19. $0.5 \%$ of 200


## 7-4

## Algebra: The Percent Equation

Write an equation for each problem. Then solve.

## 20. $40 \%$ of what number is 48 ?


22. Find $80 \%$ of 90 .

21. 18 is what percent of 72 ?

23. $12 \%$ of what number is 60 ?


## 7-5

Problem-Solving Investigation: Determine Reasonable Answers
24. TRAVEL The Winston family determined that lodging accounted for $48 \%$ of their total travel costs. If they spent $\$ 1,240$ total during their trip, would about $\$ 560, \$ 620$, or $\$ 750$ be a reasonable amount that they spent on lodging?


## 7-6 <br> Percent of Change

State whether each sentence is true or false. If false, replace the underlined word to make a true sentence.
25. If the new amount is less than the original amount, then there is a percent of increase.
$\square$
26. The amount of increase is the new amount minus the original amount.
$\square$
Find the percent of change. Round to the nearest whole percent. State whether the percent of change is an increase or decrease.
27. original: \$48; new: $\$ 44.25$

28. original: \$157; new: $\$ 181$

29. original: $\$ 17.48$; new: $\$ 9.98$


## 7-7

Sales Tax and Discount
Find the total cost or sale price to the nearest cent.
30. $\$ 29.99$ jeans; $15 \%$ discount

31. $\$ 6.25$ lunch; $8.5 \%$ sales tax


Find the percent of discount to the nearest percent.
32. Pen: regular price, $\$ 9.95$; sale price, $\$ 6.95$

33. Sweatshirt: regular price, $\$ 20$; sale price, $\$ 15.95$
$\square$

## 7-8

## Simple Interest

Find the interest earned to the nearest cent for each principal, interest rate, and time.
34. $\$ 15,000,9 \%$, 2 years, 4 months

35. $\$ 250,3.5 \%, 6$ years


## ARE YOU READY FOR THE CHAPTER TEST?

## Checklist

## Math Online

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 7.

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 7 Practice Test on page 389 of your textbook as a final check.

I used my Foldable or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 7 Study Guide and Review on pages 384-388 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 7 Practice Test on page 389 of your textbook.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 7 Foldable.
- Then complete the Chapter 7 Study Guide and Review on pages 384-388 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 7 Practice Test on page 389 of your textbook.


8

## Statistics: Analyzing Data

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.

## Begin with nine sheets of notebook paper.

STEP 1 Fold 9 sheets of paper in half along the width.


STEP 2 Cut a 1" tab along the left edge through one thickness.


STEP 3 Glue the 1 " tab down. Write the lesson number and title on the front tab.


STEP 4 Repeat Steps 2 and 3 for the remaining sheets. Staple them together on the glued tabs to
 form a booklet.

NOTE-TAKING TIP: When you take notes, it is sometimes helpful to make a graph, diagram, picture, chart, or concept map that presents the information introduced in the lesson.

## BUILD YOUR VOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 8. As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

| Vocabulary Term | Found <br> on Page | Definition | Description or <br> Example |
| :--- | :--- | :--- | :--- |
| analyze |  |  |  |
| bar graph |  |  |  |
| biased sample |  |  |  |
| cluster |  |  |  |
| data |  |  |  |
| histogram |  |  |  |
| inferences |  |  |  |
| leaf |  |  |  |
| line graph |  |  |  |

(continued on the next page)

| Vocabulary Term | Found <br> on Page | Definition | Description or <br> Example |
| :--- | :--- | :--- | :--- |
| mean |  |  |  |
| measures of central <br> tendency |  |  |  |
| median |  |  |  |
| mode |  |  |  |
| outlier |  |  |  |
| population |  |  |  |
| random sample |  |  |  |
| range |  |  |  |
| scatter plot |  |  |  |
| statistics |  |  |  |
| stem |  |  |  |
| survey |  |  |  |

## MAIN IDEA

- Display and analyze data using a line plot.


## BUILD YOUR VOGABULARY (pages 173-174)

Statistics deals with collecting, organizing, and interpreting data.

A line plot is a diagram that shows the data on a number line.

Data that is grouped closely together is called a cluster.
Outliers are numbers that are quite separated from the rest of the data in a data set.

## EXAMPLE Display Data Using a Line Plot

(1) PRESIDENTS The table below shows the ages of the U.S. presidents at the time of their inaugurations. Make a line plot of the data.

Age at Inauguration

| 57 | 51 | 54 | 56 | 61 | 61 | 49 | 49 | 55 | 52 | 57 | 64 | 50 | 51 | 69 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 57 | 50 | 47 | 54 | 64 | 58 | 48 | 55 | 51 | 46 | 57 | 65 | 55 | 60 | 54 |
| 61 | 52 | 54 | 62 | 68 | 54 | 56 | 42 | 43 | 46 | 51 | 55 | 56 |  |  |

Step 1 Draw a number line. Use a scale of 40 to 70 and an interval of 5 .

Step 2 Place an $\times$ above the number that represents the age of each U.S. president.


## Check Your Progress

STUDY TIME The table at the right shows the number of minutes each student in a math class spent studying the night before the last math exam. Make a line plot of the data.

| Minutes Studying |  |  |  |
| :---: | :---: | :---: | :---: |
| 36 | 42 | 60 | 35 |
| 70 | 48 | 55 | 32 |
| 60 | 58 | 42 | 55 |
| 38 | 45 | 60 | 50 |

## BUILD YOUR VOGABULARY (pages 173-174)

The range is the difference between the greatest and least numbers in the data set. When you analyze data, you use observations to describe and compare data.

## EXAMPLE Use a Plot to Analyze Data

## Remember It

A line plot does not need to start at 0 , but you cannot leave out numbers on the number line when there are no $x$ 's above them.

## Homework <br> Assignment



2 CLIMATE The line plot shows the number of inches of precipitation that fell in several cities west of the Mississippi River during a recent year. Identify any clusters, gaps, and outliers, and find the range of the data.


There are data clusters between $\square$ and 13 inches and between 16 and $\square$ inches. There are gaps: between 18 and $\square$; between $\square$ and 32 . Since $\square$ and 50 are apart from the rest of the data, they could be outliers.

The range is $\square$ or $\square$ inches.

## Check Your Progress

AGE The line plot below shows the ages of students in an introductory computer course at the local community college. Identify any clusters, gaps, and outliers, and find the range of the data.


## 8-2 Measures of Central Tendency and Range

## Main Idea

- Describe a set of data using mean, median, mode, and range.


## BUILD YOUR VocABULARY (pages 173-174)

Measures of central tendency can be used to describe the center of the data.

The mean of a set of data is the sum of the data divided by the number of items in the data set.

## EXAMPLE Find the Mean

(1) ANIMALS The table below shows the number of species of animals found at 30 major zoos across the United States. Find the mean.

| Number of Species in <br> Major U.S. Zoos |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 300 | 400 | 283 | 400 | 175 |
| 617 | 700 | 700 | 715 | 280 |
| 800 | 290 | 350 | 133 | 400 |
| 195 | 347 | 488 | 435 | 640 |
| 232 | 350 | 300 | 300 | 400 |
| 705 | 400 | 800 | 300 | 659 |

Source: The World Almanac


The mean number of species of animals is $\square$

Check Your Progress
SLEEP The table below shows the results of a survey of 15 middle school students concerning the number of hours of sleep they typically get each night. Find the mean.

| Nightly Hours of Sleep |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 7 | 8 | 6 | 7 | 8 |
| 9 | 5 | 6 | 7 | 7 |
| 8 | 6 | 7 | 8 | 8 |



## BUILD YOUR VOGABULARY (pages 173-174)

FOLDABLES

## Organize IT

Under the tab for Lesson 8-2, define and differentiate between mean, median, and mode.


The median of a set of data is the middle number of the ordered data, or the mean of the middle two numbers.

The mode or modes of a set of data is the number or numbers that occur most often.

## EXAMPLE Find the Mean, Median, and Mode

2 OLYMPICS The table below shows the number of gold medals won by each country participating in the 2002 Winter Olympic games. Find the mean, median, and mode of the data.

| 2002 Winter Olympics: <br> Gold Medals Won |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 12 | 6 | 4 | 3 | 0 |
| 10 | 6 | 4 | 2 | 3 |
| 11 | 2 | 3 | 4 | 2 |
| 1 | 1 | 0 | 2 | 2 |
| 1 | 0 | 0 | 0 | 0 |

mean: sum of data divided by $\square$, or $\square$ median: 13 th number of the $\square$ data, or $\square$ mode: number appearing $\square$ often, or $\square$

## Check Your Progress PETS The table below shows the

 number of pets students in an art class at Green Hills Middle School have at home. Find the mean, median, and mode of the data.| Pets |  |  |  |
| :--- | :--- | :--- | :--- |
| 0 | 2 | 1 | 0 |
| 1 | 3 | 5 | 2 |
| 0 | 1 | 0 | 2 |
| 3 | 1 | 2 | 0 |

(3) TEST EXAMPLE The average weight in pounds of several breeds of dogs is listed below.

$$
15,45,26,55,15,30
$$

If the average weight of the Golden Retriever, 70 pounds, is added to this list, which of the following statements would be true?

A The mode would increase.
B The median would decrease.
C The median would increase.
D The mean would decrease.

## Read the Item

You are asked to identify which statement would be true if the data value $\square$ was added to the data set.

## Solve the Item

Use number sense to eliminate possibilities.
The mode, $\square$, will remain unchanged since the new data value occurs only once. So, eliminate choice $\square$

## Homework

 AssignmentPage(s):
Exercises:

Since the new data value is $\square$ than each value in the data set, neither the mean nor median will decrease. So, eliminate choices B and $\square$
Since 70 is greater than each value in the data set, the median will now $\square$. So, the answer is $\square$.

Check Your Progress
If the average weight of the
Chihuahua, 4 pounds, is added to the list above, which of the following statements would be true?
F The mean would decrease.
G The mode would decrease.
H The median would stay the same.
J The mean would increase.

## 8-3 Stem-and-Leaf Plots

## Main IdeA

- Display and analyze data in a stem-and-leaf plot.


## BUILD YOUR VOGABULARY (pages 173-174)

In a stem-and-leaf plot, the data are organized from


The digits of the $\square$ place value usually form the leaves and the next place-value digits form the stems.

## EXAMPLE Display Data in a Stem-and-Leaf Plot

B BASEBALL The table below shows the number of home runs that Babe Ruth hit during his career from 1914 to 1935. Make a stem-and-leaf plot of the data.

| Home Runs |  |  |  |
| :---: | :---: | :---: | :---: |
| 0 | 54 | 25 | 46 |
| 4 | 59 | 47 | 41 |
| 3 | 35 | 60 | 34 |
| 2 | 41 | 54 | 6 |
| 11 | 22 | 46 |  |
| 29 | 46 | 49 |  |

Step 1 The digits in the $\square$ place value will form the leaves and the remaining digits will form the $\square$. In these data, $\square$ is the least value, and $\square$ is the greatest. So, the ones digit will form the $\square$ and the $\square$ digit will form the stems.

Step 2 List the stems 0 to $\square$ in order from least to greatest in the Stem column. Write the leaves, the $\square$ digits of the home runs, to the $\square$ of the corresponding stems.

Step 3 Order the leaves and write a key that explains how to read the stems and leaves


## Check Your Progress

BUSINESS The table shows the number of hours several business men and women spent aboard an airplane. Make a stem-and-leaf plot of the data.

| Hours Aboard an Airplane |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | 18 | 0 | 23 | 12 | 7 | 9 |
| 35 | 14 | 6 | 11 | 21 | 19 | 6 |
| 15 | 26 | 9 | 0 | 13 | 22 | 10 |

## EXAMPLE Describe Data

## Write IT

Explain how to find how many items are on a stem-and-leaf plot.
$\qquad$
$\qquad$
$\qquad$
$\qquad$

2 FITNESS The stem-and-leaf plot below shows the number of miles that Megan biked each day during July. Find the range, median, and mode of the data.

| Stem | Leaf |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 5 | 5 | 5 | 6 |  |  |  |  |  |  |  |
| 1 | 0 | 0 | 0 | 0 | 1 | 2 | 2 | 5 | 8 | 8 | 9 |
| 2 | 1 | 2 | 5 | 8 |  |  |  |  |  |  |  |
| 3 | 0 |  |  |  |  |  |  | $2 \mid 5=25$ miles |  |  |  |

range: greatest distance - least distance $=\square-\square$
or $\square$
median: middle value, or $\square$ miles
mode: most frequent value, or $\square$ miles

## Check Your Progress SNOWFALL The stem-and-leaf plot

 below shows the number of inches of snow that fell in Hightown during the month of January for the past 15 years. Find the range, median, and mode.| Stem | Leaf |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 3 | 5 | 7 | 9 |  |  |
| 1 | 0 | 0 | 0 | 2 | 4 | 4 | 7 |
| 2 | 2 | 6 |  |  | 8 |  |  |
| 2 | 12 inches |  |  |  |  |  |  |

## EXAMPLE Effects of Outliers Animals' Life Spans

3 ANIMALS The average life span of several animal species is shown in the stem-and-leaf plot. Which measure of central tendency is most affected by the inclusion of the outlier?

| Stem | Leaf |  |  |  |  |  |  |  |  |  |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 3 | 4 | 6 | 8 |  |  |  |  |  |  |
| 1 | 0 | 0 | 2 | 2 | 2 | 5 | 5 | 6 | 8 |  |
| 2 | 0 | 0 | 0 | 0 | 2 |  |  |  |  |  |
| 3 |  |  |  |  |  |  |  |  |  |  |
| 4 | 0 |  |  |  | $1 \mid 0=10$ years |  |  |  |  |  |

The mode, $\square$, is not affected by the inclusion of the outlier,


Calculate the mean and median each without the
 40. Then calculate them including the outlier and compare.
without the outlier
mean: $\frac{3+4+\ldots+22}{18} \approx 12.4$
median:

including the outlier

$\square$

The mean increased by $13.8-12.4$, or $\square$ while the median increased by $15-13.5$, or $\square$. So, the $\square$ is most affected by the inclusion of the outlier.

## Check Your Progress

TEST SCORES The test scores earned by a class of middle school math students on a chapter test are shown. Which measure of central tendency is most affected by the inclusion of the outlier?

Test Scores

| Stem | Leaf |  |  |  |  |  |  |  |  |  |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 5 | 8 |  |  |  |  |  |  |  |  |  |
| 6 |  |  |  |  |  |  |  |  |  |  |
| 7 | 5 | 6 | 7 | 9 |  |  |  |  |  |  |
| 8 | 0 | 0 | 1 | 2 | 2 | 5 | 5 | 6 | 6 | 7 |
| 9 | 0 | 2 | 3 | 3 | 3 | 4 | 4 | 6 |  |  |

$$
7 \mid 5=75 \text { points }
$$

## 8-4 Bar Graphs and Histograms

## Main IDEA

- Display and analyze data using bar graphs and histograms.


## FOLDABLES

## Organize It

Under the tab for Lesson 8-4, draw a sketch of a bar graph and a histogram and describe their similarities and differences.


## BUILD YOUR VOGABULARY (pages 173-174)

 A bar graph is one method of $\square$ data by using solid bars to represent quantities.
## EXAMPLE Display Data Using a Bar Graph

(1) TOURISM Make a bar graph to display the data in the table below.

| Country | Vacation Days per Year |
| :--- | :---: |
| Italy | 42 |
| France | 37 |
| Germany | 35 |
| Brazil | 34 |
| United Kingdom | 28 |
| Canada | 26 |
| Korea | 25 |
| Japan | 25 |
| United States | 13 |

Source: The World Almanac
Step 1 Draw and label the axes. Then choose a $\square$ on the vertical axis so that it includes all of the vacation days per year.

Step 2 Draw a $\square$ to represent each category.


Country

## WRITE IT

Explain when you would use a bar graph and when you would use a histogram.

Check Your Progress
SPORTS The table shows the average number of miles run each day during training by members of the cross country track team. Make a bar graph to display the data.


## BUILD YOUR VOCABULARY (pages 173-174)

A histogram is a special kind of $\square$ graph that uses bars to represent the frequency of numerical data that have been organized in $\square$

## EXAMPLE Display Data Using a Histogram

2 BASKETBALL The number of wins for 29 teams of a basketball league for a season have been organized into a frequency table. Make a histogram of the data.

| Number of Wins | Frequency |
| :---: | :---: |
| $11-20$ | 3 |
| $21-30$ | 4 |
| $31-40$ | 4 |
| $41-50$ | 10 |
| $51-60$ | 8 |

Step 1 Draw and $\square$ horizontal and $\square$ axes.
Add a $\square$

Step 2 Draw a bar to represent the $\square$ of each interval.


Check Your Progress SPEED The speeds of cars on a stretch of interstate are clocked by a police officer and have been organized into a frequency table. Make a histogram of the data.

| Speed (mph) | Frequency |
| :---: | :---: |
| $50-59$ | 2 |
| $60-69$ | 14 |
| $70-79$ | 18 |
| $80-89$ | 3 |

## EXAMPLES Analyze Data to Make Inferences

## DINING OUT The bar graph shows the number of times

 people dine out each month.

3 How many people are represented in the histogram? Justify your answer.

Find the sum of the heights of the bars in the histogram.


4 What percent of people surveyed ate out more than 40 times per month?


So, $24 \%$ of the people surveyed ate out more than 40 times per month.

## Check Your Progress

HOUSING The bar graph shows the number of houses sold in various price ranges.


Price (\$)
a. How many houses are represented in the histogram?

b. What percent of houses were sold for more than $\$ 200,00$

## 8-5 Problem-Solving Investigation: Use a Graph

## EXAMPLE Solve Problems by Using a Graph

## Main Idea

- Solve problems by using a graph.


## HOMEWORK ASSIGNMENT

| Page(s): |
| :--- |
| Exercises: |

VCR SALES Based on the information in the graph, how many VCRs would you expect to be sold in 2012 ?


UNDERSTAND You know that the graph shows a rapid downward trend. You need to determine how many VCRs would be expected to be sold in 2012.

PLAN Look at the trend of the graph. Predict the number of VCR sales in 2012.

SOLVE If the trend continues, no VCRs will be expected to be sold in 2012.

CHECK The graph rapidly decreases. The answer is reasonable.

The graph shows a rapid $\square$ trend. If it continued,
$\square$

## Check Your Progress <br> TEMPERATURE Refer to the

 graph below. Suppose the trends continue. Predict the average high temperature for the month of August.
## Miami Average Temperatures



## Main Idea

- Analyze line graphs and scatter plots to make predictions and conclusions.


## FOLDABLES

## Organize It

Under the tab for Lesson 8-6, include an example of a line graph and explain how it can be used to make predictions.


## BUILD YOUR VOCABULARY (pages 173-174)

Line graphs can be useful in predicting $\square$ events when they show trends over $\square$

## EXAMPLE Use a Line Graph to Predict

1 TYPING The line graph shows the time it has taken Enrique to type a class paper so far. The paper is 600 words long. Use the graph to predict the total time it will take him to type his paper.

By looking at the pattern in the graph, you can predict that it will take Enrique about $\square$ minutes to type his 600-word paper.


## Check Your Progress TRAVEL During a recent road

 trip, Helen kept track of the number of miles traveled after each hour of travel time was completed. The table shows her information. Use the line graph to predict how far Helen will travel in 12 hours of travel time.

## Write It

Explain how a line graph can help you to make a prediction.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Homework Assignment

## Page(s):

Exercises:

## BUILD YOUR VOCABULARY (pages 173-174)

A scatter plot displays two sets of data on the same graph and are also useful in making $\square$

## EXAMPLE Use a Scatter Plot to Predict

2 POLLUTION The scatter plot shows the number of days that a city failed to meet air quality standards from 2000 to 2008. Use it to predict the number of days of bad air quality in 2014.
By looking at the pattern, you can predict that the number of days of bad air quality in 2014 will be about $\square$ days.


## Check Your Progress GAS MILEAGE Use the scatter

 plot below to predict the gas mileage for a car weighing 5500 pounds.Gas Mileage of Cars


## 8-7 Using Data to Predict

## Main Idea

Predict actions of a larger group by using a sample.

## BUILD YOUR VOCABULARY (pages 173-174)

A survey is designed to collect $\square$ about a specific group of people, called the population.

## EXAMPLE

1) PETS The table shows the results of a survey in which people were asked whether their house pets watch television. There are 540 students at McCloskey Middle School who own pets. Predict how many of them would say their pets watch TV.

| Does your pet watch <br> television? |  |
| :---: | :---: |
| Response | Percent |
| yes | $38 \%$ |
| no | $60 \%$ |
| don't know | $2 \%$ |

You can use the percent proportion and the survey results to predict the number of people who said their pets watch TV.


About $\square$ of the people surveyed said that their pets watch television.

## Review It

Solve the proportion $\frac{7}{9}=\frac{x}{27}$.


## Homework <br> Assignment



## EXAMPLE

2 SUMMER JOBS According to one survey, $25 \%$ of high school students reported they would not get summer jobs. Predict how many of the 948 students at Mohawk High School will not get summer jobs.

You need to predict how many of the $\square$ students will not get summer jobs.

## Check Your Progress

VIDEO GAMES In a survey of middle school students, $32 \%$ responded that playing video games was their favorite after-school activity. Predict how many of the 260 students surveyed said that playing video games was their favorite after-school activity.


So, you could predict that about $\square$ of the students at Mohawk High School will not get summer jobs.

## Check Your Progress

SEASONS According to one survey, $31 \%$ of adults consider spring to be their favorite season of the year. Predict how many of the 525 employees of a large corporation would respond that spring is their favorite season of the year.

## 8-8 Using Sampling to Predict

## MAIN IDEA

Predict the actions of a larger group by using a sample.

## BUILD YOUR VOCABULARY (pages 173-174)

A sample is representative of a larger population. An unbiased sample is representative of the entire population. A simple random sample is the most common type of unbiased sample.

A biased sample occurs when one or more parts of the population are favored over others. A convenience sample includes members of a population who are easily accessed. A voluntary response sample involves only those who want to participate in sampling.

## EXAMPLE Determine Validity of Conclusions

Determine whether the conclusion is valid. Justify your answer.

1) A newspaper asks its readers to answer a poll about whether or not an issue should be on the ballot in an
said that they wanted the issue on the ballot, so the newspaper printed an article saying that $85 \%$ of people want the issue on the ballot.

The conclusion is $\square$. The population is restricted
to readers and it is a voluntary response sample and is
$\square$. The results of a voluntary response sample do not necessarily represent the entire $\square$

## EXAMPLE

2 VENDING MACHINES An office building manager interviewed 60 of their employees to determine whether or not a vending machine should be placed in the break room. 45 of the employees said yes and 15 said no. If there are 255 employees in the building, predict how
many employees would like a vending machine in the there are 255 employees in the building, predict how
many employees would like a vending machine in the break room.
The sample is an unbiased $\square$ sample since employees were randomly selected. Thus, the sample is valid.
 in the break room. So, find $75 \%$ of $\square$
$\square$ $75 \%$ of $255=0.75$ $\square$ 255

## Homework Assignment

Exercises:

Check Your Progress
Determine whether the conlusion is valid. Justify your answer.

A coffee shop asks every tenth customer that comes in the door to identify their favorite coffee drink. $45 \%$ of the customers surveyed said the mocha coffee is their favorite drink. The manager of the store concluded that about half of the store's customers like the mocha coffee.
 $75 \%$ of $255=0.75$ So, about $\square$ employees would like a vending machine in the break room.

Check Your Progress
CLUBS A Spanish teacher is trying to determine if students would be interested in joining a Spanish club. She randomly asked 30 of her students. 18 of the students said yes and 12 said no. If the teacher has 105 students in her Spanish classes, predict how many would like to join a Spanish club.

## 8-9 Misleading Statistics

## EXAMPLE Changing the Interval of Graphs

## Main Idea

- Recognize when statistics and graphs are misleading.

1) BUSINESS The line graphs below show the last 10 weeks of sales for the Crumby Cookie Bakery.


Sales, Graph B

a. Do the graphs show the same data? If so, explain how the graphs differ.
The graphs show the $\square$ data. However, the graphs differ in that Graph $\square$ has greater intervals and a greater range.
b. Which graph makes it appear that the bakery's sales declined only slightly?
Graph $\square$ makes it appear that the sales declined only slightly even though both graphs show the same decline.

## Check Your Progress

SOCCER The graphs show the number of wins by four different soccer teams. Do the graphs show the same data? If so, explain how they differ.

Graph A
Wins by Soccer Teams in the Pony League


Graph B
Wins by Soccer Teams in the Pony League


## FOLDABLES

## Organize IT

Under the tab for Lesson 8-9, explain how to recognize misleading graphs and statistics.


## Homework <br> Assignment



## EXAMPLE Misleading Statistics

2 GRADES Michael and Melissa both claim to be earning a C average, $70 \%$ to $79 \%$, in their Latin class. One student is wrong. Which one? Explain how he or she is using a misleading statistic.
mean
Michael:


Melissa:

median
Michael:


Melissa:


| Test | Grade (\%) |  |
| :---: | :---: | :---: |
|  | Michael | Melissa |
| 1 | 80 | 88 |
| 2 | 76 | 83 |
| 3 | 73 | 75 |
| 4 | 70 | 70 |
| 5 | 40 | 60 |
| 6 | 25 | 65 |
| 7 | 10 | 62 |

Michael is wrong. He is using the $\square$ to describe his grade rather than the $\square$ Only Melissa's mean, or average, is $70 \%$ or better.

## Check Your Progress

RETAIL SALES Two different grocery stores each claim to have the lowest average prices. Use the table to explain their reasoning and determine which store really has the lowest average prices.

| Item | Store $\mathbf{A}$ | Store $\mathbf{B}$ |
| :--- | :---: | :---: |
| Milk | $\$ 1.29$ | $\$ 1.34$ |
| Bread | $\$ 1.99$ | $\$ 1.85$ |
| Eggs | $\$ 1.19$ | $\$ 1.09$ |
| Soda | $\$ 2.29$ | $\$ 2.99$ |
| Coffee | $\$ 7.99$ | $\$ 5.29$ |
| Ice Cream | $\$ 4.39$ | $\$ 4.19$ |

## BRINGING IT ALL TOGETHER

## STUDY GUIDE

## FOLDABLES

Use your Chapter 8 Foldable to help you study for your chapter test.

## Vocabulary <br> PUZZLEMAKER

To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 8, go to:
glencoe.com

## BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (pages 173-174) to help you solve the puzzle.

## 8-1 <br> Line Plots

The line plot shows prices for different running shoes.


1. What is the range of the prices? $\square$

## 8-2

Measures of Central Tendency and Range
Find the mean, median, and mode of each set of data.
2. $2,5,5,6,8,11,12$

3. $6,5,12,34,20,17$


## 8-3

## Stem-and-Leaf Plots

4. The stem-and-leaf plot shows test scores for 13 students. Find the range, median, and mode of the data.
$\qquad$

| Stem | Leaf |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 7 | 8 |  |  |  |  |  |
| 1 | 5 | 5 | 6 | 9 |  |  |  |
| 2 | 0 | 2 | 2 | 3 | 3 | 3 | 4 |
|  |  |  |  |  |  | $1 \mid 5=15$ |  |

## 8-4

## Bar Graphs and Histograms

Write true or false for each statement. If the statement is false, replace the underlined words with words that will make the statement true.
5. A bar graph is used to compare data.
$\square$
6. A histogram shows categories on one of the axes.
$\square$

8-5
Problem-Solving Investigation: Use a Graph
The graph shows the results of a survey about favorite countries students would like to visit.
7. Which place was favored by most students? $\square$
8. Compare the number of students that would like to visit Italy versus Ireland.

Favorite Countries to Visit


## 8-6

## Using Graphs To Predict

Refer to the graph shown.
9. Mark the City Zoo graph to show how to predict the attendance in 2005.
10. If the trend continues, predict the attendance in 2005. $\square$


8-7
Using Data To Predict
11. LUNCHES A survey of 7th graders showed that $44 \%$ bring their lunch to school. Predict how many of the 450 7th graders bring their lunch to school.

12. ZOO A survey of zoo visitors showed that $28 \%$ chose the lion exhibit as their favorite. If 338 people visited today, predict how many would choose the lion exhibit as their favorite.


## 8-8

Using Sampling To Predict

## Determine whether each conclusion is valid. Justify

 your answer.13. A researcher randomly surveys ten employees from each department of a large company to determine the number of employees that buy their lunch in the cafeteria. Of these, $82 \%$ said they do buy their lunch in the cafeteria. The researcher concludes that most of the employees do buy their lunch in the cafeteria.

14. Every tenth customer who purchases books from an online store is asked to take a survey. The majority of those who replied said they would like more shipping options. As a result, the store adds more shipping options for their customers.
$\square$

## 8-9

## Misleading Statistics

The table lists the number of wrong answers a student had on her homework papers this year.
15. Which measure of central tendency might she use to emphasize her good work? $\square$

| Wrong Answers |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 8 | 2 | 7 | 2 |
| 6 | 8 | 7 | 2 | 4 |
| 7 | 2 | 5 | 8 | 6 |

16. Which measure of central tendency best represents her work? Explain.

## ARE YOU READY FOR THE CHAPTER TEST?

## Checklist

## Math Online

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 8.

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 8 Practice Test on page 455 of your textbook as a final check.

I used my Foldables or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 8 Study Guide and Review on pages 450-454 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may want to take the Chapter 8 Practice Test on page 455 of your textbook.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 8 Foldables.
- Then complete the Chapter 8 Study Guide and Review on pages 450-454 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 8 Practice Test on page 455 of your textbook.


Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.

Begin with five sheets of $8 \frac{1}{2}$ " by 11 "paper.

STEP 1 Stack 5 sheets of paper $\frac{3}{4}$ inch apart.

STEP 2 Roll up bottom edges so that all tabs are the same size. along fold.


STEP 4 Write the chapter title on the front. Label each tab with a lesson number and title. Label the last tab Vocabulary.


NOTE-TAKING TIP: When taking notes, writing a paragraph that describes the concepts, the computational skills and the graphics will help you to understand the math in a lesson.

9

## BUILD YOUR VOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 9.
As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description of these pages. Remember to add the textbook page number in the second column for reference when you study.

| Vocabulary Term | Found <br> on Page | Definition | Description or <br> Example |
| :--- | :--- | :--- | :--- |
| combination |  |  |  |
| complementary events <br> [KAHM-pluh-MEHN- <br> tuh-ree] |  |  |  |
| composite events |  |  |  |
| experimental <br> probability <br> [ihk-SPEHR-uh- <br> MEHN-tuhl] |  |  |  |
| fair game |  |  |  |
| Fundamental Counting <br> Principle |  |  |  |



## 9-1 Simple Events

## MAIN IDEA

- Find the probability of a simple event.


## KEY CoNCEPT

Probability The probability of an event is a ratio that compares the number of favorable outcomes to the number of possible outcomes.

FFOLDABLES On the tab for Lesson 9-1, take notes on how to find the probability of simple events. Include examples.

## BUILD YoUR Vocalbulary (pages 202-203)

An outcome is any possible $\square$

A simple event is one $\square$ or a collection of outcomes.

Outcomes occur at random if each outcome occurs by
$\square$

## EXAMPLE Find Probability

(1) If the spinner shown is spun once, what is the probability of its landing on an odd number?
$P($ odd number $)=\frac{\text { odd numbers possible }}{\text { total numbers possible }}$


The probability of spinning an odd number is $\frac{1}{2}$ or $\square$

## Check Your Progress

What is the probability of rolling a number less than three on a number cube marked with $1,2,3$, 4,5 , and 6 on its faces?

## EXAMPLE

2 GAMES A game requires spinning the spinner shown

## Review It

Explain how to subtract a fraction from 1.
$\qquad$
$\qquad$
$\qquad$ in Example 1. If the number spun is greater than 3, the player wins. What is the probability of winning the game?

Let $P(A)$ be the probability that the player will win.

$$
\begin{aligned}
P(A) & =\frac{\text { number of favorable outcomes }}{\text { number of possible outcomes }} \\
& =\frac{1}{4}
\end{aligned}
$$

The probability of winning the game is


## BUILD YOUR VOGABULARY (pages 202-203)

The sum of the probabilities of complementary events is 1 or $100 \%$.

## EXAMPLE

(3) GAMES What is the probability of not winning the game described in Example 2?
$P(A)+P(\operatorname{not} A)=1 \quad$ Definition of complementary events
$\frac{1}{4}+P(\operatorname{not} A)=1 \quad$ Replace $P(A)$ with $\frac{1}{4}$.

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.


Subtract $\frac{1}{4}$ from each side.

The probability of not winning the game is $\frac{3}{4}$.
Check Your Progress
A game requires spinning the spinner shown in Example 1. If the number spun is less than or equal to 2 , the player wins.
a. What is the probability of winning the game?

## Homework

 AssignmentPage(s):
Exercises:

## 9-2 Sample Spaces

## Main Idea

- Find sample spaces and probabilities.


## BUILD YOUR VOGABULARY (pages 202-203)

The sample space is the set of all $\square$ outcomes.

A tree diagram can be used to display the


## EXAMPLE Find the Sample Space

(1) CHILDREN A couple would like to have two children. Find the sample space of the children's genders if having a boy is equally likely as having a girl.
Make a table that shows all of the possible outcomes.


Check Your Progress
CARS A dealer sells a car in red, black, or white. The car also can be 2 -door or 4 -door. Find the sample space for all possible cars available from this dealer.
$\square$

## EXAMPLE

2 TEST EXAMPLE Amy was trying to decide what kind of sandwich to make. She had two kinds of bread, wheat and sourdough. And she had three kinds of lunchmeat, ham, turkey, and roast beef. Which list shows all the possible bread-lunchmeat combinations?

| Outcomes |  |
| :--- | :--- |
| wheat | ham |
| sourdough | turkey |
| wheat | turkey |
| sourdough | ham |

B | Outcomes |  |
| :--- | :--- |
| wheat | ham |
| wheat | turkey |
| wheat | roast beef |

C

| Outcomes |  |
| :--- | :--- |
| wheat | ham |
| wheat | turkey |
| wheat | roast beef |
| sourdough | ham |
| sourdough | turkey |
| sourdough | roast beef |


| Outcomes |  |
| :--- | :--- |
| wheat | turkey |
| sourdough | turkey |
| wheat | turkey |
| sourdough | ham |
| wheat | ham |
| sourdough | ham |

## Read the Item

There are two bread choices and three lunchmeat choices. Find all of the bread-lunchmeat combinations.

## Write It

In a probability game using two counters A and $B$, what would the outcome BA mean?
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Homework <br> AssignMent

Page(s):
Exercises:

## 9-3 The Fundamental Counting Principle

## Main Idea

- Use multiplication to count outcomes and find probabilities.


## Key Concept

The Fundamental Counting Principle If event $M$ can occur in $m$ ways and is followed by event $N$ that can occur in $n$ ways, then the event $M$ followed by $N$ can occur in $m \times n$ ways.

FOLDABLES Include this concept in your notes.

## Homework

 AssignmentPage(s):
Exercises:

## BUILD YOUR VOGABULARY (pages 202-203)

You can use the Fundamental Counting Principle to find the number of possible outcomes in a sample space.

## EXAMPLE

(1) CLOTHING The table below shows the shirts, shorts, and shoes in Gerry's wardrobe. How many possible outfitsone shirt, one pair of shorts, and one pair of shoes-can he choose?

| Shirts | Shorts | Shoes |
| :---: | :---: | :---: |
| red | beige | black |
| blue | green | brown |
| white | blue |  |
| yellow |  |  |



There are $\square$ possible outfits that Gerry can choose.

## Check Your Progress

SANDWICHES The table below shows the types of bread, types of cheese, and types of meat that are available to make a sandwich. How many possible sandwiches can be made by selecting one type of bread, one type of cheese, and one type of meat?

| Bread | Cheese | Meat |
| :---: | :---: | :---: |
| White | American | Turkey |
| Wheat | Swiss | Ham |
| Rye | Mozzarella | Roast Beef |

$\square$

## 9-4 Permutations

## Main IdeA

- Find the number of permutations of a set of objects and find probabilities.


## Key Concept

Factorial The expression $n$ factorial ( $n!$ ) is the product of all counting numbers beginning with $n$ and counting backward to 1.

## BUILD YoUR Vocalbulary (pages 202-203)

A permutation is an $\square$, or listing of objects in which $\square$ is important.

## EXAMPLE Find a Permutation

(1) BOWLING A team of bowlers has five members, who bowl one at a time. In how many orders can they bowl?


There are $\square$ possible arrangements, or permutations, of the five bowlers.

Check Your Progress
TRACK AND FIELD A relay team has four members who run one at a time. In how many orders can they run?


## EXAMPIE Find a Permutation



2 RAFFLE A school fair holds a raffle with $1^{\text {st }}, 2^{\text {nd }}$, and $3^{\text {rd }}$ prizes. Seven people enter the raffle, including Marcos, Lilly, and Heather. What is the probability that Marcos will win the $1^{\text {st }}$ prize, Lilly will win the $2^{\text {nd }}$ prize, and Heather will win the $3^{\text {rd }}$ prize?


There are $\square$ possible arrangements, or permutations, of the 3 prizes. Since there is only one way of arranging Marcos first, Lilly second, and Heather third, the probability of this event is $\square$

Check Your Progress
CLUBS The president and vice president of the French Club will be randomly selected from a jar of 24 names. Find the probability that Sophie will be selected as president and Peter selected as vice president.

## 9-5 Combinations

## MAIN IDEA

- Find the number of combinations of a set of objects and find probabilities.


## BUILD YOUR VOCABULARY (pages 202-203)

An arrangement, or listing, of objects in which order is
$\square$ is called a combination.

## EXAMPLE Find the Number of Combinations

1) DECORATING Ada can select from seven paint colors for her room. She wants to choose two colors to paint stripes on her walls. How many different pairs of colors can she choose?

METHOD 1 Make a list.
Number the colors 1 through 7.

| 1,2 | 1,5 | 2,3 | 2,6 | 3,5 | 4,5 | 5,6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1,3 | 1,6 | 2,4 | 2,7 | 3,6 | 4,6 | 5,7 |
| 1,4 | 1,7 | 2,5 | 3,4 | 3,7 | 4,7 | 6,7 |

There are $\square$ different pairs of colors.
METHOD 2 Use a permutation.
There are $7 \cdot 6$ permutations of two colors chosen from seven. There are $2 \cdot 1$ ways to arrange the two colors.

## FOLDABLES

## Organize it

On the tab for Lesson 9-5, record what you learn about combinations. Be sure to compare and contrast combinations and permutations.


There are $\square$ different pairs of colors Ada can choose.

Check Your Progress HOCKEY The Brownsville Badgers hockey team has 14 members. Two members of the team are to be selected to be the team's co-captains. How many different pairs of players can be selected to be the co-captains?


## Remember It

To find a combination you must divide the permutation by the number of ways you can arrange the items.

## EXAMPLES

2 INTRODUCTIONS Ten managers attend a business meeting. Each person exchanges names with each other person once. How many introductions will there be?

There are $10 \cdot 9$ ways to choose 2 people.
There are $2 \cdot 1$ ways to arrange the 2 people.
$\frac{10 \cdot 9}{2 \cdot 1}=\frac{90}{2}$ or $\square$
There are $\square$ introductions.

3 If the introductions in Example 2 are made at random, what is the probability that Ms. Apple and Mr. Zimmer will be the last managers to exchange names?

Since there are $\square$ introductions and only one favorable outcome, the probability that Ms. Apple and Mr. Zimmer will be the last managers to exchange names is


Check Your Progress
a. INTRODUCTIONS Fifteen managers attend a business meeting. Each person exchanges names with each other person once. How many introductions will there be?
b. What is the probability that Ms. Apple and Mr. Zimmer will be the last managers to exchange names?

## 9-6 Problem-Solving Investigation: Act It Out

## EXAMPLE Solve Using the Act It Out Strategy

## Main Idea

- Solve problems by acting it out.


## Homework <br> ASSIGNMENT



LUNCH Salvador is looking for his lunch money, which he put in one of the pockets of his backpack this morning. If the backpack has six pockets, what is the probability that he will find the money in the first pocket that he checks?

UNDERSTAND You know that there are $\square$ pockets in

Salvador's backpack and that one of the pockets contains his lunch money.

PLAN Toss a number cube several times. If the cube lands on 1, Salvador will find the money in the first pocket that he checks. If the cube lands on $2,3,4,5$, or 6 , Salvador will not find the money in the first pocket that he checks.

SOLVE Toss the cube and make a table of the results.

| Trials | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Outcome | 4 | 5 | 1 | 2 | 2 | 3 | 6 | 4 | 5 | 2 | 1 | 3 |

The highlighted entries show that $\square$ out of
the 12 trials resulted in Salvador finding his lunch money in the first pocket that he checks.
So, the probability is $\frac{2}{12}$ or $\square$.
CHECK
Repeat the experiment several times to see whether the results agree.

Check Your Progress
PHOTOGRAPHS A photographer is taking a picture of the four members in Margaret's family. Margaret's grandmother will stand on the right. How many different ways can the photographer arrange the family members in a row for the photo?

## 9-7 Theoretical and Experimental Probability

## Main Idea

- Find and compare experimental and theoretical probabilities.


## FOLDABLES

## ORGANIZE IT

On the tab for Lesson 9-7, take notes about theoretical and experimental probability. Be sure to describe their differences.

$\square$

## EXAMPLE Experimental Probability

(1) A spinner is spun 50 times, and it lands on the color blue 15 times. What is the experimental probability of spinning blue?


The experimental probability of spinning the color blue is

Check Your Progress A marble is pulled from a bag of colored marbles 30 times and 18 of the pulls result in a yellow marble. What is the experimental probability of pulling a yellow marble?

EXAMPLES Experimental and Theoretical Probability
The graph shows the results of an experiment in which a number cube is rolled 30 times.
2 Find the experimental probability of rolling a 5.


The experimental probability of rolling


(3) Compare the experimental probability of rolling a 5 to its theoretical probability.
The theoretical probability of rolling a 5 on a number cube
$\square$ So, the theoretical probability is close to the
experimental probability of


Check Your Progress The graph shows the result of an experiment in which a coin was tossed 150 times.
a. Find the experimental probability of tossing heads for this experiment.

b. Compare the experimental probability of tossing heads to its theoretical probability.

## Homework Assignment



Coin Toss



## 9-8 Compound Events

## Main Idea

Find the probability of independent and dependent events.

## Key Concept

Probability of Two Independent Events The probability of two independent events can be found by multiplying the probability of the first event by the probability of the second event.

FOLDABLES On the tab for Lesson 9-8, give an example of finding the probability of two independent events.

## BUILD YoUR Vocasulary (pages 202-203)

A compound event consists of two or more $\square$ events.

When choosing one event does not $\square$ choosing a second event, both events are called independent events.

## EXAMPLE Independent Events

(1) LUNCH For lunch, Jessica may choose from a turkey sandwich, a tuna sandwich, a salad, or a soup. For a drink, she can choose juice, milk, or water. If she chooses a lunch and a drink at random, what is the probability that she chooses a sandwich (of either kind) and juice?


So, the probability that she chooses a sandwich and juice is


Check Your Progress SWEATS Zachary has a blue, a red, a gray, and a white sweatshirt. He also has blue, red, and gray sweatpants. If Zachary randomly pulls a sweatshirt and a pair of sweatpants from his drawer, what is the probability that they will both be blue?

## BUILD YOUR VOGABULARY (pages 202-203)

If one event affects the outcome of a second event, the events are called dependent events.

If two events cannot happen at the same time, then they are disjoint events.

## Key Concept

## Probability of two

 Dependent Events The probability of two dependent events, $A$ and $B$, can be found by multiplying the probability of $A$ by the probability of $B$ after A occurs.FOIDABLES On the tab for Lesson 9-8, give an example of finding the probability of two independent events.

## Homework Assignment



## EXAMPLES Dependent Events

2 SOCKS There are 4 black, 6 white, and 2 blue socks in a drawer. José randomly selects two socks without replacing the first sock. What is the probability that he selects two white socks?
$P($ first sock is white $)=\frac{6}{12} \quad$ There are $\square$ white socks and $\square$ total socks.
$P($ second sock is white $)=\frac{5}{11}$
After one white sock is removed, there are $\square$ white socks and total socks.
$P($ two white socks $)={ }_{2}^{1} \frac{8}{12} \cdot \frac{5}{11}$ or $\square$

## Disjoint Events

MONTHS A month of the year is randomly selected. What is the probability of the month ending in the letter $Y$ or the letter $R$.
They are disjoint events since it is impossible to have a month ending in both the letter $Y$ and the letter $R$ ?


There are 8 months that end in $Y$ or $R$.

There are 12 months.
Check Your Progress
a. GAMES Janet has a card game that uses a deck of 48 cards - 16 red, 16 blue, and 16 green. If she randomly selects two cards without replacing the first, what is the probability that both are green?

b. MARBLES There are 12 yellow, 3 black, 5 red, and 8 blue marbles in a bag. Joseph randomly selects one marble from the bag. What is the probability that the marble selected will be black or red?

## BRINGING IT ALL TOGETHER

## STUDY GUIDE

## FOLDABLES

Use your Chapter 9 Foldable to help you study for your chapter test.

## VOCABULARY <br> PUZZLEMAKER

To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 9, go to:
glencoe.com

## BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (pages 202-203) to help you solve the puzzle.

## 9-1 <br> Simple Events

For Questions 1-3, a bag contains 4 green, 6 orange, and
10 purple blocks. Find each probability if you draw one block at random from the bag. Write as a fraction in simplest form.

1. P (green)

2. P (orange)

3. P (purple)


## 9-2

## Sample Spaces

4. PHONES A phone company offers three different calling features (caller ID, call waiting, and call forward) and two different calling plans (Plan A or Plan B). Find the sample space for all possibilities of a calling feature and a calling plan.
$\square$

9-3

## The Fundamental Counting Principle

5. Underline the correct term to complete the sentence: The operation used in the Fundamental Counting Principle is (addition, multiplication).

## Use the Fundamental Counting Principle to find the total number of outcomes in each situation.

6. Tossing a coin and rolling a 6 -sided number cube.

7. Making a sandwich using whole wheat or sourdough bread, ham or turkey, and either cheddar, swiss, or provolone cheese.

8. Choosing a marble from a bag containing 10 differently colored marbles and spinning the spinner at the right.


## 9-4

Permutations
9. LETTERS How many permutations are there of the letters in the word pizza?
$\square$
10. BASEBALL In how many ways can the six infielders of a baseball team stand in a row for autograph signing?

11. NUMBERS How many 4-digit passwords can be formed using the digits $1,3,4,5,7$, and 9 ? Assume no number can be used more than once.
$\square$

## 9-5

Combinations
Complete each sentence.
12. You can find the number or combinations of objects in a set by $\square$ the number of $\square$ of the entire set by the number of ways each smaller set can be arranged.
13. A $\square$ is an arrangement or listing in which order is not $\square$
14. The burger shop offers 3 choices of condiments from the following: lettuce, onions, pickles, ketchup, and mustard. How many different combinations of condiments can you have on your burger?

## 9-6

Problem-Solving Investigation: Act It Out
15. TRAVEL Four friends are driving to the beach. In how many different ways can two friends sit in the front and two friends sit in the back if Raul must be the driver?

## 9-7

Theoretical and Experimental Probability
Underline the correct term(s) to complete each sentence.
16. The word experimental means based on (experience, theory).
17. Theoretical probability is based on what (you actually try, is expected).
18. (Experimental, theoretical) probability can be based on past performance and can be used to make predictions about future events.

## Sue has 5 different kinds of shoes: sneakers, sandals, boots, moccasins, and heels.

19. If she chooses a pair each day for two weeks, and chooses moccasins 8 times, what is the experimental probability that moccasins are chosen?
$\square$
20. Find the theoretical probability of choosing the moccasins.
$\square$

## 9-8

## Compound Events

State whether each sentence is true or false. If false, replace the underlined word to make the sentence true.
21. A compound event consists of more than one single event.
$\square$
22. When the outcome of the first event does not have any effect on the second event it is called a simple event.

23. A yellow and a green cube are rolled. What is the probability that an even number is rolled on the yellow cube and a number less than 3 is rolled on the green cube?

24. There are 4 chocolate chip, 6 peanut butter, and 2 sugar cookies in a box. Malena randomly selects two cookies without replacing the first. Find the probability that she selects a peanut butter cookie and then a sugar cookie.
$\square$

## ARE YOU READY FOR THE CHAPTER TEST?

## Checklist

## Math Online

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 9.

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 9 Practice Test on page 503 of your textbook as a final check.

I used my Foldable or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 9 Study Guide and Review on pages 498-502 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may want to take the Chapter 9 Practice Test on page 503 of your textbook.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 9 Foldable.
- Then complete the Chapter 9 Study Guide and Review on pages 498-502 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 9 Practice Test on page 503 of your textbook.


Student Signature


Parent/Guardian Signature


Teacher Signature

10

## Geometry: Polygons

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.

Begin with a sheet of 11 " by 17 " paper.

STEP 1 Fold a 2" tab along the long side of the paper.


STEP 2 Unfold the paper and fold in thirds widthwise.

STEP 3 Open and draw lines along the folds. Label the head of each column as shown. Label the front of the folded table with the chapter title.

NOTE-TAKING TIP: As you study a chapter, take notes, record concepts, and write examples about important definitions and concepts.

## BUILD YOUR VOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 10. As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

| Vocabulary Term | Found <br> on Page | Definition | Description or <br> Example |
| :--- | :--- | :--- | :--- |
| acute triangle |  |  |  |
| adjacent angles |  |  |  |
| complementary angles |  |  |  |
| congruent angles |  |  |  |
| congruent segments |  |  |  |
| equilateral [EH-kwuh- |  |  |  |
| LA-tuh-rull] triangle |  |  |  |
| indirect measurement |  |  |  |
| isosceles [y-SAHS- |  |  |  |
| LEEZ] triangle |  |  |  |
| line symmetry |  |  |  |
| obtuse triangle |  |  |  |


| Vocabulary Term | Found <br> on Page | Definition | Description or <br> Example |
| :--- | :--- | :--- | :--- |
| quadrilateral [KWAH- <br> druh-LA-tuh-ruhl] |  |  |  |
| reflection |  |  |  |
| rhombus [RAHM-buhs] |  |  |  |
| scalene [SKAY-LEEN] <br> triangle |  |  |  |
| similar figures |  |  |  |
| straight angle |  |  |  |
| supplementary angles |  |  |  |
| tessellation |  |  |  |
| translation |  |  |  |
| vertical angles |  |  |  |
| ZoYD] |  |  |  |

## 10-1 Angle Relationships

## Main Idea

- Classify angles and identify vertical and adjacent angles.


## BUILD YOUR VOGABULARY (pages 225-226)

An angle has two sides that share a $\square$ endpoint and is measured in units called degrees.

The $\square$ where the sides of an angle $\square$ is called the vertex.

## EXAMPLE Naming Angles

(1) Name the angle at the right.

- Use the vertex as the middle letter and a point from each side.

- Use the vertex only.
$\square$
- Use a number.


The angle can be named in four ways:


Check Your Progress Name the angle below.


## Remember IT

A ray starts at a point and goes without end in one direction.

## BUILD YOUR VOCABULARY (pages 225-226)

A right angle measures $\square 90^{\circ}$.
An acute angle measures $\square$ than $90^{\circ}$. An obtuse angle measures $\square 90^{\circ}$ and $180^{\circ}$. A straight angle measures $\square 180^{\circ}$.

## EXAMPLES Classify Angles

Classify each angle as acute, obtuse, right, or straight.


The angle is exactly $\square$ , so it is a $\square$ angle.


The angle is $\square$ than $90^{\circ}$, so it is an $\square$ angle.

Check Your Progress
Classify each angle as acute, obtuse, right, or straight.
a.

b.


BUILD YOUR VOCABULARY (pages 225-226)
Two angles that have the same $\square$ are congruent.

Two angles are vertical if they are $\square$ angles formed by the intersection of two lines.

Two angles are adjacent if they share a common vertex, a common $\square$, and do not overlap.

## EXAMPLE

Determine if each pair of angles in the figure at the right are vertical angles, adjacent angles, or neither.
a. $\angle 3$ and $\angle 5$


Since $\angle 3$ and $\angle 5$ are opposite angles formed by the

b. $\angle 3$ and $\angle 4$
$\angle 3$ and $\angle 4$ share a common vertex and side, and do not overlap. So, they are $\square$ angles.
c. $\angle 4$ and $\angle 5$
$\angle 4$ and $\angle 5$ share a common vertex and side, and do not overlap. So, they are $\square$ angles.

## Check Your Progress

Determine if each pair of angles in the figure at the right are vertical angles, adjacent angles, or neither.
a. $\angle 1$ and $\angle 2$

b. $\angle 2$ and $\angle 5$
$\square$
c. $\angle 1$ and $\angle 4$

## 10-2 Complementary and Supplementary Angles

## Main IDEA

- Identify complementary and supplementary angles and find missing angle measures.

BUILD YOUR VOGABULARY (pages 225-226)

Complementary angles have a sum of $\square$
Supplementary angles have a sum of $\square$

## EXAMPLES Classify Angles

Classify each pair of angles as complementary, supplementary, or neither.


So, the angles are $\square$

$\angle x$ and $\angle y$ form a $\square$ angle.

So, the angles are $\square$

Check Your Progress
Classify each pair of angles as complementary, supplementary, or neither.
a.


## Remember It

When two angles are congruent, the measure of the angles are equal.
b.


## EXAMPLE Find a Missing Angle Measure

(3) Angles PQS and $R Q S$ are supplementary. If $\boldsymbol{m} \angle P Q S=\mathbf{5 6} \boldsymbol{6}^{\circ}$, find $\boldsymbol{m} \angle \boldsymbol{R Q S}$.

Since $\angle P Q S$ and $\angle R Q S$ are supplementary, $m \angle P Q S+m \angle R Q S=180^{\circ}$.
$m \angle P Q S+m \angle R Q S=180 \quad$ Write the equation.


$$
m \angle R Q S=\square
$$

The measure of $\square$ is $124^{\circ}$.

Check Your Progress
Angles $M N P$ and $K N P$ are complementary. If $m \angle M N P=23^{\circ}$, find $m \angle K N P$.


## Homework ASSIGNMENT

Page(s):
Exercises:

## 10-3 Statistics: Display Data in a Circle Graph

## Main Idea

- Construct and interpret circle graphs.


## WRITE IT

Write a proportion to convert 65\% to the number of degrees in a part of a circle graph.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

- Label each section of the graph with the category and
 Give the graph
a


Favorite Sport


## EXAMPL: Construct a Circle Graph

2 MOVIES Gina has the following types of movies in her DVD collection. Make a circle graph of the data.

| Type of Movie | Numbers |
| :--- | :---: |
| action | 24 |
| comedy | 15 |
| science fiction | 7 |

- Find the total number of DVDs: $24+15+7$ or $\square$
- Find the $\square$ that compares each number with the $\square$. Write the ratio as a $\square$ number rounded to the nearest hundredth.
action:

comedy:

science fiction:

$$
\square \approx 0.15
$$

- Find the number of degrees for each section of the graph.

$$
\begin{array}{ll}
\text { action: } & 0.52 \cdot 360^{\circ}=\square \\
\text { comedy: } & 0.33 \cdot 360^{\circ}=\square \\
\begin{array}{ll}
\text { science } \\
\text { fiction. }
\end{array} & 0.15 \cdot 360^{\circ}=\square
\end{array}
$$

## Gina's DVD Collection



- Draw the circle graph.


## Check Your Progress

a. ICE CREAM In a survey, a group of students were asked to name their favorite flavor of ice cream. The results are shown in the table. Make a circle graph of the data.

| Flavor | Percent |
| :--- | :---: |
| chocolate | $30 \%$ |
| cookie dough | $25 \%$ |
| peanut butter | $15 \%$ |
| strawberry | $10 \%$ |
| other | $20 \%$ |

b. MARBLES Michael has the following colors of marbles in his marble collection. Make a circle graph of the data.

| Color | Number |
| :--- | :---: |
| black | 12 |
| green | 9 |
| red | 5 |
| gold | 3 |



## EXAMPLES Analyze a Circle Graph

VOTING The circle graph below shows the percent of voters in a town who are registered with a political party.

(3) Which party has the most registered voters?

The largest section of the circle is the one representing
 So, the Democratic party has the most registered voters.

4 If the town has 3,400 registered Republicans, about how many voters are registered in all?
Republicans: $42 \%$ of registered voters $=$ $\square$

$$
\begin{aligned}
0.42 \times n & =3,400 \\
0.42 n & =3,400 \\
n & \approx 8,095
\end{aligned}
$$

## Homework AssignMent

Page(s):
Exercises:

Check Your Progress SPORTS The circle graph below shows the responses of middle school students to the question "Should teens be allowed to play professional sports?"
a. Which response was the greatest? Should Teens Be Allowed


## Main Idea

Identify and classify triangles.

## Key Concept

Angles of a Triangle The sum of the measures of the angles of a triangle is $180^{\circ}$.

FOLDABLES Record this relationship in your Foldable. Be sure to include an example.

## BUILD YOUR VOCABULARY (pages 225-226)

A triangle is a figure with three $\square$ and three
$\square$
Sides with the same $\square$ are congruent segments.

## EXAMPLE Find a Missing Measure

(1) ALGEBRA Find $m \angle A$ in $\triangle A B C$ if $m \angle A=m \angle B$, and $m \angle C=80^{\circ}$.

Since the sum of the angle measures in a triangle is $180^{\circ}$, $m \angle A+m \angle B+m \angle C=\square$.

Let $x$ represent $m \angle A$. Since $m \angle A=m \angle B, x$ also represents


$$
x+x+80=180 \quad \text { Write the equation. }
$$

$$
\square+80=180 \quad x+x=2 x
$$



$$
x=\square
$$

$$
\text { So, } m \angle A=\square \text {. }
$$

## Check Your Progress

ALGEBRA Find $m \angle M$ in $\triangle M N O$ if $m \angle N=75^{\circ}$ and $m \angle O=67^{\circ}$.

BUILD YOUR VOCABULARY (pages 225-226)
An acute triangle has all acute angles. A right triangle has one right angle. An obtuse triangle has one obtuse angle.

A scalene triangle has no congruent sides. An isosceles triangle has at least 2 congruent sides. An equilateral triangle has three congruent sides.

## EXAMPLE

2 TEST EXAMPLE An airplane has wings that are shaped like triangles. What is the missing measure of the angle?
A $41^{\circ}$
B $31^{\circ}$
C $26^{\circ}$
D $21^{\circ}$

## Read the Item

To find the missing measure, write and solve an equation.

Solve the Item

## Homework Assignment

Page(s):
Exercises:

The sum of the measures is 180 .


Subtract 159 from each side.

The missing measure is $21^{\circ}$. The answer is D .

## Check Your Progress

MULTIPLE CHOICE A piece of fabric is shaped like a triangle. Find the missing angle measure.

| F $73^{\circ}$ | G $49^{\circ}$ |
| :--- | ---: |
| H $58^{\circ}$ | J $53^{\circ}$ |



$-159 \quad-159$

$$
x=\square
$$



## 10-5 Problem-Solving Investigation: Use Logical Reasoning

## EXAMPLE Solve Using Logical Reasoning

## MAIN IDEA

- Solve problems by using logical reasoning.


## Homework ASSIGNMENT

## Page(s):

Exercises:

238

GEOMETRY Draw an equilateral triangle. How can you confirm that it is equilateral?

UNDERSTAND You know that equilateral triangles have
$\square$ congruent sides. You need to confirm whether or not a drawn triangle is equilateral.

PLAN Draw an equilateral triangle. Measure the sides to confirm that all three sides are


SOLVE Draw the triangle.


Measure the sides using a ruler or centimeter ruler. The side lengths are 2.6 centimeters, 2.6 centimeters, and 2.6 centimeters. Since all three sides are congruent, the triangle is equilateral.

CHECK Since all three sides are congruent, the triangle is equilateral. You can have someone else also measure the sides to check that the triangle is $\square$

Check Your Progress GEOMETRY Do the angles in an equilateral triangle have a special relationship?


## 10-6 Quadrilaterals

## Main Idea

- Identify and classify quadrilaterals.


## FOLDABLES

## ORGANIZE IT

Record what you learn about quadrilaterals. Illustrate and describe the five types of quadrilaterals discussed in this chapter.


A parallelogram is a quadrilateral with opposite sides


A trapezoid is a $\square$ with one pair of
$\square$ sides.

A rhombus is a parallelogram with four congruent sides.

## EXAMPLES Classify Quadrilaterals

Classify the quadrilateral using the name that best describes it.
 angles and opposite sides are $\square$ It is a $\qquad$


The quadrilateral has $\square$ pair of $\square$ sides.

It is a $\square$

## Key Concept

Angles of a Quadrilateral The sum of the measures of the angles of a quadrilateral is $360^{\circ}$.

## Homework

 Assignment

Check Your Progress Classify the quadrilateral using the name that best describes it.
a.


b.


## EXAMPLE Find a Missing Measure

3 ALGEBRA Find the value of $x$ in the quadrilateral shown.

Write and solve an equation. Let $x$ represent the missing measure.

$\square+\square+\square+x=360$


The sum of the measures is $360^{\circ}$.

Simplify.
 both sides.

So, the missing angle measure is $\square$

Check Your Progress
Find the missing angle measure in the quadrilateral.


## 10-7 Similar Figures

## MAIN IdeA

- Determine whether figures are similar and find a missing length in a pair of similar figures.


## KEY Concept

Similar Figures If two figures are similar, then

- the corresponding sides are proportional, and
- the corresponding angles are congruent.


## BUILD YOUR VOGABULARY (pages 225-226)

Figures that have the same $\square$ but not necessarily the same $\square$ are similar figures.

The $\square$ of similar figures that "match" are corresponding sides.

The $\square$ of similar figures that "match" are corresponding angles.

## EXAMPLE Identify Similar Figures

(1) Which rectangle below is similar to rectangle FGHI?


Compare the ratios of the corresponding sides.
Rectangle LMNO Rectangle $A B C D \quad$ Rectangle $Q R S T$


So, rectangle $F G H I$ is similar to rectangle $\square$

## FOLDABLES

## ORGANIZE IT

Use your Foldable to record what you learn about similar figures and indirect measurement.


## Homework Assignment



Check Your Progress
Which rectangle from Example 1 is similar to rectangle WXYZ shown?


## BUILD YOUR VOGABULARY (pages 225-226)

Indirect measurement uses similar figures to find the length, width, or height of objects that are too difficult to measure directly.

## EXAMPLE

2 ARCHITECTURE A rectangular picture window 12 feet long and 6 feet wide needs to be shortened to 9 feet in length to fit a redesigned wall. If the architect wants the new window to be similar to the old window, how wide will the new window be?

$$
\frac{12}{9}=\frac{6}{w} \quad \text { Write a proportion. }
$$


Find the cross products.
Simplify.
Divide each side by $\square$

## Check Your Progress

Tom has a rectangular garden that has a length of 12 feet and a width of 8 feet. He wishes to start a second garden that is similar to the first and will have a width of 6 feet. Find the length of the new garden.


## 10-8 Polygons and Tessellations

## MAIN IDEA

- Classify polygons and determine which polygons can form a tessellation.


## BUILD YOUR VOGABULARY (pages 225-226)

A polygon is a simple, closed figure formed by three or more straight line segments.

A regular polygon has all sides congruent and all angles congruent.

A polygon is named by the number of sides it has:
pentagon ( 5 sides), hexagon ( 6 sides), heptagon ( 7 sides), octagon (8 sides), nonagon (9 sides), and decagon (10 sides).

## EXAMPLES Classify Polygons

Determine whether each figure is a polygon.



This figure has 6 sides that are not
all of equal length. It is a


Check Your Progress Determine whether each figure is a polygon. If it is, classify the polygon and state whether it is regular. If it is not a polygon, explain why.
a.

b.


FOLDABLES

## ORGANIZE IT

Use your Foldable to record what you learn about polygons and tessellations. Explain how a tessellation can be made with several kinds of polygons.


## Homework Assignment

Page(s):<br>Exercises:

## Main IdeA

- Graph translations of polygons on a coordinate plane.


## BUILD YOUR VocasULARY (pages 225-226)

A transformation maps one figure onto another.
A translation is a transformation where a figure is moved
without turning it.
The original figure and the translated figure are congruent
figures.

## EXAMPLE Graph a Translation

(1) Translate $\triangle A B C 5$ units left and 1 unit up.

## Remember It

The order of a translation of a figure does not matter. Moving a figure to the side $x$ units and then up $y$ units is the same as moving it up $y$ units and then to the side $x$ units.

- Move each vertex of the figure 5 units left and 1 unit up. Label the new vertices $A^{\prime}, B^{\prime}$, and $C^{\prime}$.
- Connect the vertices to draw the triangle. The coordinates of the vertices of the new figure are


Check Your Progress
Translate $\triangle D E F 3$ units left and 2 units down.

and $\square$


## EXAMPLE Find Coordinates of a Translation

2 Trapezoid GHIJ has vertices $G(-4,1), H(-4,3),, I(-2,3)$, and $J(-1,1)$. Find the vertices of trapezoid $G^{\prime} H^{\prime} I^{\prime} J^{\prime}$ after a translation of 5 units right and 3 units down. Then graph the figure and its translated image.

Add


| Vertices of <br> Trapezoid GHIJ | $(x+5, y-3)$ | Vertices of <br> Trapezoid G'H'I'J |
| :---: | :---: | :---: |
| $G(-4,1)$ |  | $G^{\prime}(1,-2)$ |
| $H(-4,3)$ | $(-4+5,3-3)$ | $\square$ |
| $\square$ | $(-2+5,3-3)$ | $\square$ |
| $J(-1,1)$ |  | $J^{\prime}(4,-2)$ |

The coordinates of trapezoid $G^{\prime} H^{\prime} I^{\prime} J^{\prime}$


Check Your Progress Triangle $M N O$ has vertices $M(-5,-3), N(-7,0)$, and $O(-2,3)$. Find the vertices of triangle $M^{\prime} N^{\prime} O^{\prime}$ after a translation of 6 units right and 3 units up. Then graph the figure and its translated image.

## Homework Assignment

Page(s):<br>Exercises:



## MAIN IDEA

- Identify figures with line symmetry and graph reflections on a coordinate plane.

BUILD YOUR VOGABULARY (pages 225-226)
Figures that $\square$ exactly when they are folded in
$\square$ have line symmetry.

Each fold line is called a line of symmetry.

## EXAMPLES Identify Lines of Symmetry

LETTERS Determine whether each letter has a line of symmetry. If so, copy the figure and draw all lines of symmetry.



There is
 line of symmetry.

This figure $\square$ have
line symmetry.

Check Your Progress Determine whether each figure has line symmetry. If so, copy the figure and draw all lines of symmetry.
a.

b.


## REMEMBER IT

Vertices of a figure receive double prime symbols (") after they have been transformed twice.

BUILD YOUR VOCABULARY (pages 225-226)

A reflection is a mirror $\square$ of the original figure that is the result of a transformation over a $\square$ called a line of reflection.

## EXAMPLE Reflect a Figure Over the $x$-axis

(4) Quadrilateral QRST has vertices $Q(-1,1), R(0,3), S(3,2)$, and $T(4,0)$. Graph the figure and its reflected image over the $x$-axis. Then find the coordinates of the reflected image.
The $x$-axis is the line of reflection. So, plot each vertex of $Q^{\prime} R^{\prime} S^{\prime} T^{\prime}$ the same distance from the $x$-axis as its corresponding vertex on $Q R S T$.

$Q^{\prime}$

$S^{\prime}$


$T^{\prime}$ $\square$

Check Your Progress
Quadrilateral $A B C D$ has vertices $A(-3,2) B,(-1,5), C(3,3)$, and $D(2,1)$. Graph the figure and its reflection over the $x$-axis. Then find the coordinates of the reflected image.


## EXAMPLE Reflect a Figure over the $y$-axis

(5) Triangle $X Y Z$ has vertices $X(1,2), Y(2,1)$, and $Z(1,-2)$. Graph the figure and its reflected image over the $y$-axis. Then find the coordinates of the reflected image.
The $y$-axis is the line of reflection. So, plot each vertex of $X^{\prime} Y^{\prime} Z^{\prime}$ the same distance from the $y$-axis and its corresponding vertex on $X Y Z$.


## Check Your Progress

Triangle $Q R S$ has vertices $Q(3,4)$, $R(1,0)$, and $S(6,2)$. Graph the figure and its reflection over the $y$-axis. Then find the coordinates of the reflected image.


Homework

## Assignment

Page(s):<br>Exercises:

## BRINGING IT ALL TOGETHER

## STUDY CUIDE

## Foldables

Use your Chapter 10 Foldable to help you study for your chapter test.

## VOCABULARY <br> PUZZLEMAKER

To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 10, go to:
glencoe.com

## BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (pages 225-226) to help you solve the puzzle.

## 10-1

Angle Relationships
Classify each angle as acute, obtuse, or right.
1.

2.

3.



## 10-2

## Complementary and Supplementary Angles

Complete each sentence.
4. The sum of the measures of $\square$ angles is $180^{\circ}$.
5. The sum of the measures of $\square$ angles is $90^{\circ}$.
6. If $\angle A$ and $\angle B$ are supplementary angles and $m \angle B=43^{\circ}$, find $m \angle A$.
$\square$

## 10-3

## Statistics: Display Data in a Circle Graph

Find the number of degrees for each part of the graph at the right.
7. A $\square$
8. B
$\square$
9. C $\square$


10-4

## Triangles

Complete the table to help you remember the ways to classify triangles.
10.

| Type of <br> Triangle | Classified by <br> Angles or Sides | Description |
| :---: | :---: | :---: |
| acute | angles | $\square$ |
| obtuse | $\square$ | $\square$ |
| $\square$ | sides | no congruent sides |
| $\square$ | $\square$ | 1 right angle <br> equilateral |

## 10-5

Problem-Solving Investigation: Logical Reasoning
15. RACES Marcus, Elena, Pedro, Keith, and Darcy ran a 2 -mile race. Darcy finished directly after Pedro, Elena finished before Marcus, and Keith finished first. If Pedro finished third, order the runners from first to last.

## 10-6

## Quadrilaterals

Find the value of $x$ in the quadrilateral.

$\square$
17.

$\square$

## 10-7

## Similar Figures

18. Find the value of $x$ if $\triangle A B C \sim \triangle D E F$.


## 10-8

Polygons and Tessellations

## Underline the correct term to complete each sentence.

19. A polygon can have (two, three) or more straight lines.
20. To find the sum of the angle measures in a regular polygon, draw all the diagonals from one vertex, count the number of (angles, triangles) formed, and multiply by $180^{\circ}$.

## 10-9

Translations
21. Triangle $A B C$ with vertices $A(2,4), B(-4,6)$, and $C(1,-5)$ is translated 2 units right and 3 units down. What are the coordinates of $B$ ?

## 10-10

Reflections
Underline the correct word(s) to complete the sentence.
22. The image of a reflection is (larger than, the same size as) the original figure.
23. Triangle $D E F$ has vertices $D(-5,2), E(-4,-2)$, and $F(-3,0)$. It is reflected over the $y$-axis. What are the coordinates of $D$ ?

10

## ARE YOU READY FOR THE CHAPTER TEST?

## Checklist

## Math Online

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 10.

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 10 Practice Test on page 567 of your textbook as a final check.

I used my Foldable or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 10 Study Guide and Review on pages 563-566 of your textbook.
- If you are unsure of any concepts or skills, refer to the specific lesson(s).
- You may want to take the Chapter 10 Practice Test on page 567 of your textbook.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 10 Foldable.
- Then complete the Chapter 10 Study Guide and Review on pages 563-566 of your textbook.
- If you are unsure of any concepts or skills, refer to the specific lesson(s).
- You may also want to take the Chapter 10 Practice Test on page 567 of your textbook.


Student Signature


Parent/Guardian Signature


Teacher Signature

11

## Measurement:

 Two- and Three-Dimensional FiguresUse the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.

## Begin with a sheet of $8 \frac{1}{2}$ " by 11 " construction paper and two sheets of notebook paper.

STEP 1 Fold the construction paper in half lengthwise. Label the chapter title on the outside.


STEP 2 Fold the sheets of notebook paper in half lengthwise. Then fold top to bottom twice.


STEP 3 Open the notebook paper. Cut along the second folds to make four tabs.

STEP 4 Glue the uncut notebook paper side by side onto the construction paper. Label each tab as shown.


## BUILD YOUR VOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 11. As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

| Vocabulary Term | Found <br> on Page | Definition | Description or <br> Example |
| :--- | :--- | :--- | :--- |
| base |  |  |  |
| circle |  |  |  |
| circumference |  |  |  |
| composite figure |  |  |  |
| cone |  |  |  |
| cylinder |  |  |  |
| edge |  |  |  |
| diameter |  |  |  |


| Vocabulary Term | Found <br> on Page | Definition | Description or <br> Example |
| :--- | :--- | :--- | :--- |
| height |  |  |  |
| lateral face |  |  |  |
| prism |  |  |  |
| pyramid |  |  |  |
| radius |  |  |  |
| rectangular prism |  |  |  |
| solid |  |  |  |
| sphere |  |  |  |
| vertex |  |  |  |
| three-dimensional |  |  |  |
| figure |  |  |  |
| viangular prism |  |  |  |

## Main Idea

- Find the areas of parallelograms.


## Key Concept

Area of a Parallelogram
The area $A$ of a
parallelogram equals the product of its base $b$ and height $h$.

## Homework ASSIGNMENT

Page(s):
Exercises:
$A=b$

$\square$ or $\square$ $\mathrm{cm}^{2}$

Estimate

## EXAMPLE Find the Area of a Parallelogram

## (1) Find the area of the parallelogram.

 $A=\square \quad$ Multiply.

The area of the parallelogram is $\square$ square centimeters.

This is the same as the estimate.

Check Your Progress Find the area of the parallelogram.


## 11-2 Areas of Triangles and Trapezoids

## EXAMPLE Find the Area of a Triangle

## Main Idea

- Find the areas of triangles and trapezoids.


## Key Concept

Area of a Triangle The area $A$ of a triangle equals half the product of its base $b$ and height $h$.
(1) Find the area of the triangle below.


Estimate $\frac{1}{2}(9)(3)=$ $\square$
$A=\frac{1}{2} b h$


Replace $b$ with $\square$ and $h$ with $\square$ $A=$


Area of a triangle.

Multiply.

The area of the triangle is 14.4 $\square$
This is close to the estimate.

Check Your Progress
Find the area of the triangle below.


## EXAMPLE Find the Area of a Trapezoid

## 2 Find the area of the trapezoid below.



The height is $\square$ meters.

## Key Concept

Area of a Trapezoid The area $A$ of a trapezoid equals half the product of the height $h$ and the sum of the bases $b_{1}$ and $b_{2}$.

FOLDABLES

## ORGANIZE IT

Under the tab for Lesson 11-2 of your Foldable, record in words and symbols how to find the area of triangles and trapezoids.


## Homework

 AssignmentPage(s): Exercises:
$A=\frac{1}{2} h\left(b_{1}+b_{2}\right) \quad$ Area of a trapezoid
$A=\frac{1}{2}(3) \square$

$A=\frac{1}{2} \square$


Multiply.
The area of the trapezoid is $\square$ square meters.

Check Your Progress
Find the area of the trapezoid below.


## 11-3 Circles and Circumference

## MAIN IDEA

- Find the circumference of circles.


## BUILD YOUR YOGABULARY (pages 255-256)

A circle is a set of all points in a plane that are the
$\square$ distance from a given $\square$ called the center.

The diameter ( $d$ ) is the distance $\square$ a $\square$ through its center.

The circumference $(C)$ is the distance
 a circle.

The radius $(r)$ is the distance from the
 to any point on a $\square$
An approximation often used for $\boldsymbol{\pi}(\mathbf{p i})$ is $\square$

## EXAMPLE Find Circumference

## KEY CONCEPT

Circumference of a Circle The circumference $C$ of a circle is equal to its diameter $d$ times $\pi$, or 2 times its radius $r$ times $\pi$.
(1) PETS Find the circumference around the hamster's running wheel shown. Round to the nearest tenth.
$C=2 \pi r$
$C=2 \square$
$C=$ $\square$ Multiply.
The circumference is about $\square$ inches.


## Remember It

All circumferences are estimates since 3.14 is an estimated value of pi.

## Check Your Progress

SWIMMING POOL
A new children's swimming pool is being built at the local recreation center. The pool is circular in shape with a diameter of 18 feet. Find the circumference of the pool. Round to the nearest tenth.

## EXAMPLE Find Circumference

2 Find the circumference of a circle with a diameter of 49 centimeters.

Since 49 is a multiple of 7, use for $\pi$.
$C=\pi d \quad$ Circumference of a circle
$C \approx \frac{22}{7} \cdot \square \quad$ Replace $\square$ with $\frac{22}{7}$ and $d$ with $\square$.
$C \approx \frac{22}{7} \cdot \frac{4^{7} 9}{1}$
Divide by the $\square$, 7 .
$C \approx \square$
Multiply.
The circumference is about 154 $\square$

Check Your Progress
Find the circumference of a circle with a radius of 35 feet.

## 11-4 Area of Circles

## EXAMPLES Find the Areas of Circles

## MAIN IDEA

Find the areas of circles.

## Key Concept

Area of a Circle The area $A$ of a circle equals the product of pi ( $\pi$ ) and the square of its radius $r$.

Homework Assignment

Page(s):
Exercises:

## (1) Find the area of the circle at the right.


$A=\pi$.


Area of a circle

Replace $r$ with

$\pi \times 2$ x2 ENTER $\square$
The area of the circle is approximately $\square$ square centimeters.

2 KOI Find the area of the koi pond shown.
The diameter of the pond is 3.6 meters, so the radius is $\frac{1}{2}(3.6)$ or 1.8 meters.
$A=\pi r^{2}$
Area of a circle

$A \approx$ $\square$ Use a calculator.

The area is approximately 10.2 square meters.

## Check Your Progress

a. Find the area of the circle below.

b. COINS Find the area of a nickel with a diameter of 2.1 centimeters.


BUILD YOUR VOGABULARY (pages 255-256)
A sector of a circle is a region of a circle bounded by
$\square$ radii.

## EXAMPLE

3 TEST EXAMPLE Mr. McGowan made an apple pie with a diameter of 10 inches. He cut the pie into 6 equal slices. Find the approximate area of each slice.
A 3 in $^{2}$
B 13 in $^{2}$
C 16 in $^{2}$
D 52 in $^{2}$

## Read the Item

You can use the diameter to find the total area of the pie and then divide that result by 6 to find the area of each slice.

## Solve the Item

Find the area of the whole pie.
$A=\pi r^{2}$
Area of a circle
$A=\pi(\square)^{2}$
$A \approx 78$
Replace $r$ with $\square$.
Multiply.

Find the area of one slice.
$78 \div \square=13$
The area of each slice is approximately 13 square inches.
The correct answer is $\square$

## Check Your Progress

MULTIPLE CHOICE The floor of a merry-go-round at the amusement park has a diameter of 40 feet. The floor is divided evenly into eight sections, each having a different color. Find the area of each section of the floor.
F $15.7 \mathrm{ft}^{2}$
H $62.8 \mathrm{ft}^{2}$
G $20 \mathrm{ft}^{2}$
J $157 \mathrm{ft}^{2}$

## 11-5 Problem-Solving Investigation: Solve a Simpler Problem

## EXAMPLE Use the Solve a Simpler Problem Strategy

## MAIN IDEA

- Solve problems by solving a simpler problem


## HOMEWORK ASSIGNMENT



PAINT Ben and Shelia are going to paint the wall of a room as shown in the diagram. What is the area that will be painted?


UNDERSTAND You know the dimensions of the wall including the door and window. You also know the dimensions of the door and window. You need to find the area of the wall not including the door and window.

PLAN Find the area of the wall including the door and window. Then subtract the area of the door and the window.

SOLVE area of wall including door and window:
$A=l w$
$A=12 \cdot 9$ or $\square$ square feet
area of door:
$A=l w$
$A=3 \cdot 7$ or
 square feet
area of window:
$A=l w$
$A=5 \cdot 4$ or $\square$ square feet

The total area to be painted is $108-21-20$ or $\square$ square feet.

CHECK The area to be painted is 67 square feet. Add the area of the door and the window. $67+21+$ 20 is 108 square feet. So, the answer is correct.

Check Your Progress
Karen is placing a rectangular area rug measuring 8 feet by 10 feet in a rectangular dining room that measures 14 feet by 18 feet. Find the area of the flooring that is not covered by the area rug.

## 11-6 Area of Composite Figures

## Main Idea

- Find the areas of composite figures.


## BUILD YOUR VOCABULARY (pages 255-256)

A composite figure is made of triangles, quadrilaterals, semicircles, and other $\square$ figures.

A semicircle is $\square$ of a circle.

## EXAMPLE Find the Area of a Composite Figure

(1) Find the area of the figure in square centimeters.

The figure can be separated
of each.


## Area of Rectangle

$A=\ell w$
$A=15 \cdot 10$ or $\square$
$\square$
Area of Triangle
$A=\frac{1}{2} b h$
$A=\frac{1}{2}(5)(4)$ or $\square$

The area is $150+10$ or square centimeters.

Check Your Progress Find the area of the figure shown.



## Write It

Explain in general terms how to subdivide a composite figure so you can find its area.
$\qquad$
$\qquad$
$\qquad$

## Homework

Assignment
Page(s):
Exercises:

## MAIN IDEA

- Classify threedimensional figures.

BUILD YOUR YOGABULARY (pages 255-256)
A three-dimensional figure has length, width, and depth.
A face is a flat $\square$. The edges are the segments formed by intersecting $\square$ . The edges
$\square$ at the vertices. The $\square$ are called

## lateral faces.

## EXAMPLES Classify Three-Dimensional Figures

For each figure, identify the shape of the base(s). Then classify the figure.


2


The base and all other faces are rectangles. The figure is a
$\square$

Check Your Progress
For each figure, identify the shape of the base(s). Then classify the figure.
a.

b.



## BUILD YOUR VOGABULARY (pages 255-256)

The top and bottom faces of a three-dimensional figure are called the bases.

A prism has at least three lateral faces that are rectangles.
A pyramid has at least three lateral faces that are triangles.
A cone has one base that is a $\square$ and one vertex.

A cylinder has two bases that are $\square$ circles.

All of the points on a sphere are the same distance from the center.

## EXAMPLE

## Remember IT

The base tells the name of the threedimensional figure.

## Homework

 AssignmentPage(s):
Exercises:

HOUSES Classify the shape of the house's roof as a three-dimensional figure.

The shape of the house's roof
is a


Check Your Progress Classify the shape of the house above, not including the roof.


## 11-8 Drawing Three-Dimensional Figures

## EXAMPLE Draw a Three-Dimensional Figure

## Main IDEA

- Draw a three-
dimensional figure given the top, side, and front views.


## FOLDABLES

OrGANIZE IT
Record notes about drawing threedimensional figures under the tab for Lesson 11-8 in your Foldable. Sketch examples of rectangular prisms and cylinders.

(1) Draw a top, a side, and a front view of the figure below.

The top and front views are $\square$ The side view is a $\square$


Check Your Progress
Draw a top, a side, and a front view of the figure below.


## EXAMPLE Draw a Three-Dimensional Figure

## Remember It

There is more than one way to draw the different views of a three-dimensional figure.

2 Draw the three-dimensional figure whose top, side, and

Homework Assignment
Page(s):
Exercises:

front views are shown below. Use isometric dot paper.

Step 1 Use the top view to draw the base of the figure.
Step 2 Add edges to make the base a solid figure.
Step 3 Use the side and front views to complete the figure.


Check Your Progress
Draw a solid using the top, side, and front views shown below. Use isometric dot paper.


## Main Idea

- Find the volumes of rectangular and triangular prisms.


## BUILD YOUR VOGABULARY (pages 255-256)

A volume of a three-dimensional figure is the measure of
$\square$
A rectangular prism is a prism that has rectangular
$\square$ A triangular prism has $\square$ bases.

## EXAMPLE Volume of a Rectangular Prism

(1) Find the volume of the rectangular prism.

## Key Concept

Volume of a Rectangular Prism The volume $V$ of a rectangular prism is the area of the base $B$ times the height $h$. It is also the product of the length $\ell$, the width $w$, and the height $h$.

## Homework ASSIGNMENT

Page(s):<br>Exercises:


$V=\ell w h$
$V=\square$
$\square$
Volume of a
 and $h$ with $\square$
$V=$ $\square$ Multiply.
The volume is 24 $\square$ centimeters.

Check Your Progress
Find the volume of the rectangular prism.


## 11-10 Volume of Cylinders

## EXAMPLE Find the Volume of a Cylinder

MAIN IDEA

- Find the volumes of cylinders.


## Key Concept

Volume of a Cylinder The volume $V$ of a cylinder with radius $r$ is the area of the base $B$ times the height $h$.

FOLDABLES Take notes on how to find the volume of cylinders under the tab for Lesson 11-10 of your Foldable.

1 Find the volume of the cylinder. Round to the nearest tenth.


Volume of a cylinder


Use 3.14 for $\pi$.

The volume is about $\square$ cubic centimeters.

Check Your Progress Find the volume of the cylinder. Round to the nearest tenth.


## EXAMPIE

2 COFFEE How much coffee can the can hold?

## WRITE IT

Explain how you would use a calculator to evaluate a power.

Copyright $\odot$ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.
$\qquad$

Homework Assignment

Page(s):
Exercises:

11

## BRINGING IT ALL TOGETHER

## STUDY GUIDE

## OLDABLES

Use your Chapter 11 Foldable to help you study for your chapter test.

## VOCABULARY PUZZLEMAKER

To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 11, go to:
glencoe.com

## BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (pages 255-256) to help you solve the puzzle.

## 11-1

## Area of Parallelograms

State whether each sentence is true or false. If false, replace the underlined word to make a true sentence.

1. To find the base of a parallelogram, draw a segment perpendicular to the base with endpoints on opposite
sides of the parallelogram. $\square$
2. The area of a parallelogram is found by multiplying its base times the height. $\square$
3. What is the area of a parallelogram with a base of 15 feet and a height of 3.5 feet? $\square$

## 11-2

## Area of Triangles and Trapezoids

## Complete the sentence.

4. To find the
 of a triangle, find the distance from
$\square$

## Find the area.

5. 




## 11-3

## Circles and Circumference

Find the circumference of each circle. Use 3.14 or $\frac{22}{7}$ for $\pi$. Round to the nearest tenth if necessary.
7. radius $=7.4 \mathrm{~cm}$

9. diameter $=6 \frac{1}{8} \mathrm{ft}$
$\square$
8. radius $=3 \frac{1}{2} \mathrm{in}$.

10. diameter $=1.7 \mathrm{mi}$

11-4
Area of Circles

Complete each sentence.
11. To find the $\square$ of a circle when you are given the
$\square$ divide the length of the diameter by $\square$
square that, and $\square$ the result by pi.
12. The units for the $\square$ of a circle will always be measured in $\square$ units.
13. Find the area of a circle with a diameter of 13.6 inches. Round to the nearest tenth. $\square$
11-5

## Problem-Solving Investigation: Solve a Simpler Problem

14. MOVIES Five friends, Marcy, Luke, Shawnda, Jorge, and Lily sat in a row at the movie theater. Marcy and Luke sat next to each other, Jorge did not sit next to Luke, and Shawnda sat at the right end. If Lily sat next to Shawnda and Jorge, find the order of the friends' seating from left to right.

11-6
Area of Composite Figures
Name the two dimensions of the following figures.
15. rectangle $\square$
16. triangle $\square$
Find the area of each figure. Round to the nearest tenth if necessary.
17.

18. 3 cm

$\square$
$\square$

11-7
Three-Dimensional Figures
For each figure, identify the shape of the base(s). Then classify the figure.
19.


21. MONUMENTS Ginger made a scale model of the Washington Monument as shown. What geometric figure is represented by the top figure of the monument?


11-8

## Drawing Three-Dimensional Figures

Complete each sentence.
22. A two-dimensional figure has two dimensions: $\square$ and $\square$
23. A three-dimensional figure has three dimensions: $\square$
$\square$ and $\square$

11-9

## Volume of Prisms

Find the volume of rectangular prisms with these dimensions. Round to the nearest tenth if necessary.
24. 4 ft by 12 ft by 7 ft

25. 9 in. by 8 in . by 5.5 in .

26. 2.5 in. by 6 in. by 5 in.

27. 3.8 cm by 2.4 cm by 2 cm


## 11-10 <br> Volume of Cylinders

Write $C$ if the phrase is true of a cylinder, $P$ if it is true of a prism, and CP if the phrase is true of both.
28. $\square$ has bases that are parallel and congruent.
29. $\square$ has sides and bases that are polygons.
30. $\square$ has bases that are circular.
31. $\square$ is a solid.
32. $\square$ has volume.
33. $\square$ is three-dimensional.

## Checklist

## Math Online

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 11.

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 11 Practice Test on page 631 of your textbook as a final check.

I used my Foldable or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 11 Study Guide and Review on pages 626-630 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may want to take the Chapter 11 Practice Test on page 631 of your textbook.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 11 Foldable.
- Then complete the Chapter 11 Study Guide and Review on pages 626-630 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 11 Practice Test on page 631 of your textbook.


12

## Geometry and Measurement

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.
Begin with a sheet of 11 " by 17 " paper.
STEP 1 Fold the paper
in fourths lengthwise.
STEP 2 Fold a 2" tab along the short side. Then fold the rest in half.

Draw lines along folds and label as shown.

| ch. 12 | Rectangular Prisms | Clinders |
| :---: | :---: | :---: |
| ${ }^{\text {omam }}$ |  |  |
| cind |  |  |
| cin |  |  |

## BUILD YOUR VOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 12.
As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

| Vocabulary Term | Found <br> on Page | Definition | Description or <br> Example |
| :--- | :--- | :--- | :--- |
| hypotenuse |  |  |  |
| irrational number |  |  |  |
| leg |  |  |  |
| Pythagorean Theorem |  |  |  |
| surface area |  |  |  |

## 12-1 Estimating Square Roots

## EXAMPLE Estimate the Square Root

## Main Idea

- Estimate square roots.

1) Estimate $\sqrt{\mathbf{9 6}}$ to the nearest whole number.

List some perfect squares.
$1,4,9,16,25,36,49,64,81,100, \ldots$

$81<96<100 \quad 96$ is between the $\square$ squares and

$\square$ $<\sqrt{96}<\square$ Find the $\sqrt{ }$ of each number.
$\square$ $<\sqrt{96}<$ $\square$
$\square$

$$
\square=10
$$

So, $\sqrt{96}$ is between $\square$ and $\square$. Since 96 is closer
$\square$ than 81 , the best whole number estimate is
$\square$ Verify with a calculator.

## Check Your Progress <br> Estimate each square root to the nearest whole number.

a. $\sqrt{41}$

b. $\sqrt{86}$

c. $\sqrt{138}$


## 12-1

## BUILD YOUR VOCABULARY (page 280)

A number that cannot be written as a $\square$ is an irrational number.

## EXAMPLE Use a Calculator to Estimate

## Remember It

Decimals used to represent irrational numbers are estimates, not exact values.

## Homework Assignment

Page(s):
Exercises:

2 Graph $\sqrt{37}$ on a number line.


Check $\square=36$ and $\square=49$. Since $\square$ is between 36 and 49, the answer, $\square$, is reasonable.

Check Your Progress Graph each number on a number line.
a. $\sqrt{78}$

b. $\sqrt{96}$

c. $\sqrt{188}$


## 12-2 The Pythagorean Theorem

## Main Idea

- Find length using the Pythagorean Theorem.


## KEY CoNCEPT

Pythagorean Theorem In a right triangle, the square of the length of the hypotenuse equals the sum of the squares of the lengths of the legs.

## BUILD YOUR VOGABULARY (page 280)

The two sides $\square$ to the right $\square$ of a right triangle are the legs. The side $\square$ the right $\square$ of a right triangle is the hypotenuse.

The Pythagorean Theorem describes the relationship between the length of the $\square$ and the lengths of the $\square$

## EXAMPLE Find the Length of the Hypotenuse

(1) Find the length of the hypotenuse of the triangle.


The length of the hypotenuse is about $\square$ millimeters.

Check Your Progress
Find the length of the hypotenuse of a right triangle if the legs are 5 centimeters and 7 centimeters.

## EXAMPLE

## REVIEW IT

How do you know if a triangle is a right triangle? (Lesson 10-4)
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
2
SPORTS A gymnastics tumbling floor is in the shape of a square. If a gymnast flips from one corner to the opposite corner, about how far has he flipped?


To solve, find the length of the hypotenuse $c$.


The gymnast will have flipped about $\square$

Check Your Progress SEWING Rose has a rectangular piece of fabric 28 inches long and 16 wide. She wants to decorate the fabric with lace sewn across both diagonals. How much lace will Rose need?

## EXAMPLE Find the Length of a Leg

(3) Find the missing measure of the triangle at the right.


$$
\begin{gathered}
c^{2}=a^{2}+b^{2} \\
\square^{2}=a^{2}+\square^{2}
\end{gathered}
$$

Pythagorean Theorem

$$
\begin{aligned}
& \square^{2}=a^{2}+\square^{2} \\
& =a^{2}+\square=a^{2}+81- \\
& \square=a^{2} \\
& \sqrt{144}=\sqrt{a^{2}}
\end{aligned}
$$

$$
\text { Replace } b \text { with } \square \text { and }
$$

$$
c \text { with } \square
$$

$$
\square=a^{2}+\square \quad \text { Evaluate } \square \text { and } \square
$$

$$
225-\square=a^{2}+81-\square \quad \text { Subtract } \square \text { from each side. }
$$

Simplify.
$\square$
of each side.

$$
\square=a
$$

Simplify.

## Homework ASSIGNMENT

Page(s):
Exercises:

The length of the leg is $\square$ centimeters.

## Check Your Progress

Find the missing measure of the triangle. Round to the nearest tenth if necessary.


## 12-3 Problem-Solving Investigation: Make a Model

## EXAMPLE Make a Model to Solve the Problem

## Main Idea

- Solve problems by making a model.


## HOMEWORK ASSIGNMENT



## STORAGE A daycare center plans to make simple

 wooden storage bins for the 3 -inch square alphabet blocks. If each bin will hold 30 blocks, give two possible dimensions for the inside of the bin.UNDERSTAND You know the dimensions of the blocks and that each bin holds 30 blocks. You need to give two possible dimensions for the inside of the bin.

PLAN Make a cardboard model of a cube with sides 3 inches long. Then use your model to determine the dimensions of the bin that will hold 30 cubes.

SOLVE


3 in.
A bin that holds 5 cubes in length, 3 cubes in width, and 2 cubes in height would hold 30 cubes. This bin would be 15 inches in length, 9 inches in width, and 6 inches in height. A bin that holds 6 cubes in length, 5 cubes in width, and 1 cube in height would also hold 30 cubes. This bin would be 18 inches in length, 15 inches in width, and 3 inches in height.
CHECK A bin that is $15 \mathrm{in} . \times 9 \mathrm{in} . \times 6 \mathrm{in}$. would hold $15 \div 3$ or $\square$ cubes by $9 \div 3$ or 3 cubes by
$6 \div 3$ or $\square$ cubes in height.

This is $5 \times 3 \times 2$ or $\square$ cubes.
A bin that is 18 in. $\times 15$ in. $\times 3$ in. would hold $18 \div 3$ or 6 cubes by $15 \div 3$ or 5 cubes by $3 \div 3$ or 1 cube. This is $6 \times 5 \times 1$ or 30 cubes.

## Check Your Progress

FRAMES A photo that is 5 inches by 7 inches will be placed in a frame that has a metal border of 1.5 inches on each side. What are the dimensions of the frame?

## 12-4 Surface Area of Rectangular Prisms

| MAIN IDEA |
| :---: |
| - Find the surface areas |
| of rectangular prisms. |

BUILD YOUR VOCABULARY (page 280)
The $\square$ of the areas of all of the $\square$
or faces, of a $\square$
surface area.

## EXAMPLE Use a Net to Find Surface Area

## Key Concept

Surface Area of Rectangular Prisms The surface area $S$ of a rectangular prism with length $\ell$, width $w$, and height $h$ is the sum of the areas of the faces.

## (1) Find the surface area of the rectangular prism.

You can use a net of the rectangular prism to find its surface area. There are three pairs of congruent faces.

- top and bottom

- front and back
- two sides


The surface area is $\square$
$\square$ or $\square$ centimeters. square

Check Your Progress
Find the surface area of the rectangular prism.


## FOLDABLES

## Organize IT

Include information in words and symbols on how to find the surface area of rectangular prisms in the appropriate section of your Foldable table.

| $\begin{aligned} & c h . \\ & 12 \\ & 12 \end{aligned}$ | Rectangular Prisms | Culinders |
| :---: | :---: | :---: |
| Some |  |  |
| beime |  |  |
|  |  |  |

## EXAMPLE Use a Formula to Find Surface Area

2 Find the surface area of the rectangular prism.


Replace $\ell$ with $\square$ $w$ with $\square$ and $h$ with $\square$ surface area $=2 \ell w+2 \ell h+2 w h$


The surface area of the prism is $\square$

Check Your Progress
Find the surface area of the rectangular prism.

3) BOXES Drew is putting together a cardboard box that is 9 inches long, 6 inches wide, and 8 inches high. He bought a roll of wrapping paper that is 1 foot wide and 3 feet long. Did he buy enough to wrap the box? Explain.
Step 1 Find the surface area of the box.

$=\square$
Step 2 Find the area of the wrapping paper.


Since 432 $\square$ 348, Drew bought enough wrapping paper.

## Check Your Progress

FABRIC Angela needs to cover a cardboard box that is 15 inches long, 5 inches wide, and 4 inches high with felt. She bought a piece of felt that is 1 foot wide and $2 \frac{1}{2}$ feet long. Did she buy enough felt to cover the box? Explain.

## Homework ASSIGNMENT

Page(s):
Exercises:

## 12-5 Surface Area of Cylinders

## EXAMPLE Find Surface Area of a Cylinder

## Main IDEA

- Find the surface areas of cylinders.


## KEY CoNCEPT

## Surface Area of a

 Cylinder The surface area $S$ of a cylinder with height $h$ and radius $r$ is the sum of the areas of circular bases and the area of the curved surface.1 Find the surface area of the cylinder. Round to the nearest tenth.

$S=\square \quad$ Surface area of a cylinder
$\square$


The surface area is about $\square$ square centimeters.

## EXAMPLE

2 GIFT WRAP A poster is contained in a cardboard cylinder that is 10 inches high. The cylinder's base has a diameter of 8 inches. How much paper is needed to wrap the cardboard cylinder if the ends are to be left uncovered?

Since only the curved side of the cylinder is to be covered, you do not need to include the areas of the top and bottom of the cylinder.


About 251.3 $\square$ of paper is needed.

FOLDABLES

## Organize IT

Include information in words and symbols about how to find the surface area of a cylinder in the appropriate section of your Foldable table.


Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

## Homework

 AssignmentPage(s): Exercises:


## Check Your Progress

a. Find the surface area of the cylinder. Round to the nearest tenth.

b. LABELS A can of fruit juice is in the shape of a cylinder with a diameter of 6 inches and a height of 12 inches. How much paper is needed to create the label if the ends are to be left uncovered?

## STUDY GUIDE

## OLDABLES

Use your Chapter 12 Foldable to help you study for your chapter test.

## VOCABULARY PUZZLEMAKER

To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 12, go to:
glencoe.com

## BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (page 280) to help you solve the puzzle.

12-1

## Estimating Square Roots

Estimate each square root to the nearest whole number.

3. $\sqrt{150}$

2. $\sqrt{51}$

4. $\sqrt{230}$


## 12-2

The Pythagorean Theorem
State whether each sentence is true or false. If false, replace the underlined word to make a true sentence.
5. The Pythagorean Theorem states that $c^{2}=a^{2}+b^{2}$, where $\underline{a}$ represents the length of the hypotenuse. $\square$
6. The hypotenuse is always the longest of the three sides of a right triangle. $\square$
Find the missing measure of each right triangle. Round to the nearest tenth if necessary.
7.

8.


$\square$

12-3
Problem-Solving Investigation: Make a Model
9. BOOKS A bookstore will arrange 4 books in a row in the store window. In how many different ways can the store arrange these 4 books?
$\square$

12-4
Surface Area of Rectangular Prisms
Find the surface area of each rectangular prism. Round to the nearest tenth if necessary.
10.

11.

12.


## 12-5

Surface Area of Cylinders
Write the formula to find each of the following.
13. the area of a circle $\square$
14. the circumference of a circle $\square$
15. the area of a rectangle $\square$
Find the surface area of the cylinder. Round to the nearest tenth if necessary.
16.


## ARE YOU READY FOR THE CHAPTER TEST?

## Checklist

## Math Online

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 12.

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 12 Practice Test on page 663 of your textbook as a final check.

I used my Foldable or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 12 Study Guide and Review on pages 660-662 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may want to take the Chapter 12 Practice Test on page 663 of your textbook.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 12 Foldable.
- Then complete the Chapter 12 Study Guide and Review on pages 660-662 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 12 Practice Test on page 663 of your textbook.


Student Signature


Parent/Guardian Signature


Teacher Signature

