Lesson 14-6

Example 1 Double-Angle Formulas

Find the exact value of each expression if $\cos \theta = -\frac{2}{5}$ and θ is between 180° and 270°.

a. $\sin 2\theta$

Use the identity $\sin 2\theta = 2 \sin \theta \cos \theta$. First, find the value of $\cos \theta$.

$$\sin^{2} \theta = 1 - \cos^{2} \theta \qquad \cos^{2} \theta + \sin^{2} \theta = 1$$

$$\sin^{2} \theta = 1 - (-\frac{2}{5})^{2} \qquad \cos \theta = -\frac{2}{5}$$

$$\sin^{2} \theta = \frac{21}{25} \qquad \text{Subtract.}$$

$$\sin \theta = \pm \frac{\sqrt{21}}{5} \qquad \text{Take the square root of each side.}$$

Since θ is in the third quadrant, sin is negative. Thus, sin $\theta = -\frac{\sqrt{21}}{5}$.

Now find $\sin 2\theta$. $\sin 2\theta = 2 \sin \theta$ co

$$\sin 2\theta = 2 \sin \theta \cos \theta \qquad \text{Double-Angle Formula} \\ \sin 2\theta = 2(-\frac{\sqrt{21}}{5})(-\frac{2}{5}) \qquad \sin \theta = -\frac{\sqrt{21}}{5}, \cos \theta = -\frac{2}{5} \\ = \frac{4\sqrt{21}}{25} \qquad \text{Multiply.}$$

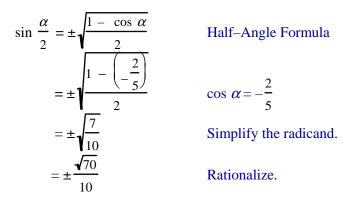
The value of
$$\sin 2\theta$$
 is $\frac{4\sqrt{21}}{25}$

b. $\cos 2\theta$

Use the identity
$$\cos 2\theta = 1 - 2 \sin^2 \theta$$
.
 $\cos 2\theta = 1 - 2 \sin^2 \theta$ Double-Angle Formula
 $= 1 - 2(-\frac{\sqrt{21}}{5})^2$ $\sin \theta = -\frac{\sqrt{21}}{5}$
 $= -\frac{17}{25}$ Simplify.

Example 2 Half–Angle Formulas

Find $\sin \frac{\alpha}{2}$ if $\cos \alpha = -\frac{2}{5}$ and α is in the second quadrant.



Since α is between 90° and 180°, $\frac{\alpha}{2}$ is between 45° and 90°. Thus, $\sin \frac{\alpha}{2}$ is positive and equals $\frac{\sqrt{70}}{10}$.

Example 3 Evaluate Using Half–Angle Formulas

Find the exact value of each expression by using the half–angle formulas. a. cos 112.5*

$$\cos 112.5 = \cos \frac{225}{2}$$

$$= -\sqrt{\frac{1+\cos 225^{\circ}}{2}}$$

$$= -\sqrt{\frac{1+\cos 225^{\circ}}{2}}$$

$$= -\sqrt{\frac{1+\left(-\frac{\sqrt{2}}{2}\right)}{2}}$$

$$= -\sqrt{\frac{1+\left(-\frac{\sqrt{2}}{2}\right)}{2}}$$

$$= -\sqrt{\frac{2-\sqrt{2}}{2}}$$

$$= -\sqrt{\frac{2-\sqrt{2}}{4}}$$
Simplify the radicand.
$$= -\frac{\sqrt{2-\sqrt{2}}}{2}$$
Simplify the denominator.

b.
$$\sin \frac{5\pi}{8}$$

 $\sin \frac{5\pi}{8} = \sin \frac{5\pi}{2}$
 $= \sqrt{\frac{1 - \cos \alpha}{2}}$
 $= \sqrt{\frac{1 - \left(-\frac{\sqrt{2}}{2}\right)}{2}}$
 $= \sqrt{\frac{2 + \sqrt{2}}{2}}$
 $= \frac{\sqrt{2 + \sqrt{2}}}{2}$
 $\sin \frac{\alpha}{2} = \pm \sqrt{\frac{1 - \cos \alpha}{2}}; \frac{5\pi}{8} \text{ is in the second quadrant where sine is positive}}$
 $\cos \frac{5\pi}{4} = -\frac{\sqrt{2}}{2}$
Simplify the radicand.
 $= \frac{\sqrt{2 + \sqrt{2}}}{2}$
Simplify the denominator.

Example 4 Verify Identities Verify that $\left(\sin\frac{x}{2}\right)\left(\cos\frac{x}{2}\right) = \frac{\sin x}{2}$ is an identity. $\left(\sin\frac{x}{2}\right)\left(\cos\frac{x}{2}\right) \stackrel{?}{=} \frac{\sin x}{2}$ Original equation $\frac{2 \sin \frac{x}{2} \cos \frac{x}{2}}{2} \stackrel{?}{=} \frac{\sin x}{2}$ Rewrite. $\frac{\sin 2\left(\frac{x}{2}\right)}{\frac{2}{2}} \stackrel{?}{=} \frac{\sin x}{\frac{2}{2}}$ Simplify. $\frac{\sin x}{2} = \frac{\sin x}{2}$ $\frac{x}{2}$.