Lesson 14-1

Example 1 Graph Trigonometric Functions

Find the amplitude and period of each function. Then graph the function.
a. $y=5 \sec \theta$

Since the secant function does not have a maximum or minimum value, it has no amplitude.
Since the angle is 1θ or θ, the period of this function is 360° or 2π radians.
Each value of the function is five times the value for the function $y=\sec \theta$. Use this information and the period to graph the function.

b. $y=4 \cos \frac{1}{2} \theta$

First, find the amplitude.
$|a|=|4| \quad$ The coefficient of $4 \cos \frac{1}{2} \theta$ is 4 .
Next, find the period.

$$
\begin{aligned}
\frac{360^{\circ}}{|b|} & =\frac{360^{\circ}}{\left|\frac{1}{2}\right|} \quad b=\frac{1}{2} \\
& =720^{\circ}
\end{aligned}
$$

Use the amplitude and period to graph the function.

c. $y=2 \boldsymbol{\operatorname { t a n }} \frac{1}{4} \theta$

Since the tangent function has no maximum or minimum value, it has no amplitude.
Find the period. The period of the tangent function is 180° or π radians.

$$
\begin{aligned}
\frac{180^{\circ}}{|b|} & =\frac{180^{\circ}}{\left|\frac{1}{4}\right|} \quad b=\frac{1}{4} \\
& =720^{\circ}
\end{aligned}
$$

Use the amplitude and period to graph the function.

Example 2 Use Trigonometric Functions

MANUFACTURING A manufacturing company is experimenting with a slightly stretchy thin wire. This wire vibrates consistently a total of 5.5 inches. It reaches a horizontal equilibrium halfway between its highest and lowest points. The wire reaches equilibrium once every $\mathbf{1 5}$ seconds.
a. Write a function to represent the height h of the wire. Assume that the wire is at its highest point at $t=0$.

Since the wire is at its highest point at $t=0$, use a cosine function to model the movement of the wire.
The amplitude of the wire is 5.5 inches, so $a=\frac{5.5}{2}$ or 2.75 .
By examining the graph of a cosine function, you can see that it crosses the horizontal axis at a distance that is one-half of the period. Since the wire reaches equilibrium every 15 seconds, the period will be $2(15)$ or 30 . Find the value of b.
$b=\frac{2 \pi}{30}$ or $\frac{\pi}{15} \quad$ Solve for b.
Thus, an equation to represent the height of the wire is $h=2.75 \cos \frac{\pi}{15} t$.
b. Graph the function for the wire.

