Lesson 9-5

Example 1 Find the Number of Combinations
 ICE CREAM Susie's Ice Cream Shop offers a selection of four flavors of ice cream. How many different two-scoop cones are possible where the scoops are different flavors?

Method 1 Make a list.
The four flavors are labeled chocolate (c), vanilla (v), mint chocolate chip (m), and strawberry (s). List all of the permutations of the flavors taken two at a time.

CV	cm	CS	VC	vm	Vs	mC
mv	ms	SC	Sv	sm		

Then cross out the cones that are the same as one another. This leaves:

CV cm cs vm vs ms
So, there are 6 different two-scoop cones.
Method 2 Use a permutation.
Step 1 Find the number of permutations of the entire set.
$4 \cdot 3=12 \quad$ A permutation of 4 flavors taken 2 at a time.
Step 2 Find the number of ways of arranging the two scoops.

$$
2 \cdot 1=2
$$

Step 3 Find the number of combinations.

$$
\begin{aligned}
& \frac{12}{2} \text { or } 6 \quad \text { Divide the number of permutations of the entire set by the number of } \\
& \text { permutations of each smaller set. }
\end{aligned}
$$

So, there are 6 different two-scoop cones.

Example 2 Find the Number of Combinations
 BASKETBALL In how many ways can 5 players be chosen for a pick-up basketball game from a group of 14 students?

This is a combination because the order in which the players are selected is not important. There are $14 \cdot 13 \cdot 12 \cdot 11 \cdot 10=240,240$ ways to choose the five players.
There are $5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=120$ ways to arrange the five players.

$$
\frac{240,240}{120}=2,002
$$

So, there are 2,002 ways to choose the five players.

Example 3 Find Probability
 ICE CREAM If the two scoops are chosen randomly in the situation presented in Example 1, what is the probability that the cone will have a scoop of vanilla?

Since there are 6 possible two-scoop cones and 3 of them have a scoop of vanilla, the probability that a randomly chosen cone will have a scoop of vanilla is $\frac{3}{6}$ or $\frac{1}{2}$.

