Contributing Author

Dinah Zike

FOLDABLES'

Consultant

Douglas Fisher, Ph.D.
Director of Professional Development
San Diego, CA

The McGraw-Hill Companies

Copyright © by The McGraw-Hill Companies, Inc. All rights reserved. Printed in the United States of America. Except as permitted under the United States Copyright Act, no part of this book may be reproduced in any form, electronic or mechanical, including photocopy, recording, or any information storage or retrieval system, without prior written permission of the publisher.

Send all inquiries to:
The McGraw-Hill Companies
8787 Orion Place
Columbus, OH 43240-4027

Contents

CHAPTER 1
Foldables. 1
Vocabulary Builder 2
1-1 A Plan for Problem Solving 4
1-2 Powers and Exponents 6
1-3 Squares and Square Roots 8
1-4 Order of Operations 10
1-5 Problem-Solving Investigation: Guess and Check 12
1-6 Algebra: Variables and Expressions 13
1-7 Algebra: Equations 15
1-8 Algebra: Properties 18
1-9 Algebra: Arithmetic Sequences 20
1-10 Algebra: Equations and Functions. 23
Study Guide 26
CHAPTER 2
Foldables. 31
Vocabulary Builder 32
2-1 Integers and Absolute Value 34
2-2 Comparing and Ordering Integers 36
2-3 The Coordinate Plane 38
2-4 Adding Integers 41
2-5 Subtracting Integers 44
2-6 Multiplying Integers 46
2-7 Problem-Solving Investigation: Look for a Pattern 48
2-8 Dividing Integers 49
Study Guide 50
CHAPTER 3
Foldables 54
Vocabulary Builder. 55
3-1 Writing Expressions and Equations 57
3-2 Solving Addition and Subtraction Equations 59
3-3 Solving Multiplication Equations 61
3-4 Problem-Solving Investigation: Work Backward 63
3-5 Solving Two-Step Equations 64
3-6 Geometry: Perimeter and Area 67
3-7 Functions and Graphs 69
Study Guide 72
CHAPTER 4
Foldables 76
Vocabulary Builder 77
4-1 Prime Factorization 79
4-2 Greatest Common Factor 81
4-3 Problem-Solving Investigation: Make an Organized List 84
4-4 Simplifying Fractions 85
4-5 Fractions and Decimals. 87
4-6 Fractions and Percents 90
4-7 Percents and Decimals 92
4-8 Least Common Multiple 94
4-9 Comparing and Ordering Rational Numbers 96
Study Guide 98
CHAPTER 5
Foldables 102
Vocabulary Builder 103
5-1 Estimating with Fractions 104
5-2 Adding and Subtracting Fractions 106
5-3 Adding and Subtracting Mixed Numbers 108
5-4 Problem-Solving Investigation: Eliminate Possibilities 110
5-5 Multiplying Fractions and Mixed Numbers 111
5-6 Algebra: Solving Equations 113
5-7 Dividing Fractions and Mixed Numbers 115
Study Guide 117
CHAPTER 6
Foldables. 120
Vocabulary Builder. 121
6-1 Ratios 123
6-2 Rates 125
6-3 Measurement: Changing Customary Units 128
6-4 Measurement: Changing Metric Units 131
6-5 Algebra: Solving Proportions 134
6-6 Problem-Solving Investigation:
Draw a Diagram 136
6-7 Scale Drawings 137
6-8 Fractions, Decimals, and Percents 140
6-9 Percents Greater Than 100\% and Percents Less than 1\% 142
Study Guide 144

Contents

CHAPTER 7
Foldables 148
Vocabulary Builder 149
7-1 Percent of a Number 151
7-2 The Percent Proportion 153
7-3 Percent and Estimation 155
7-4 Algebra: The Percent Equation 157
7-5 Problem-Solving Investigation: Determine Reasonable Answers 159
7-6 Percent of Change 160
7-7 Sales Tax and Discount 162
7-8 Simple Interest 165
Study Guide 167
CHAPTER 8
Foldables 172
Vocabulary Builder 173
8-1 Line Plots 175
8-2 Measures of Central Tendency and Range 177
8-3 Stem-and-Leaf Plots 180
8-4 Bar Graphs and Histograms 184
8-5 Problem-Solving Investigation:
Use a Graph 188
8-6 Using Graphs to Predict 189
8-7 Using Data to Predict 191
8-8 Using Sampling to Predict 193
8-9 Misleading Statistics 195
Study Guide 197
CHAPTER 9
Foldables 201
Vocabulary Builder 202
9-1 Simple Events 204
9-2 Sample Spaces 206
9-3 The Fundamental Counting Principle 209
9-4 Permutations 210
9-5 Combinations 212
9-6 Problem-Solving Investigation:Act It Out.214
9-7 Theoretical and Experimental Probability 215
9-8 Compound Events 217
Study Guide 219

CHAPTER 10

Foldables 224
Vocabulary Builder 225
10-1 Angle Relationships 227
10-2 Complementary and Supplementary Angles 230
10-3 Statistics: Display Data in a Circle Graph 232
10-4 Triangles 236
10-5 Problem-Solving Investigation: Use Logical Reasoning 238
10-6 Quadrilaterals 239
10-7 Similar Figures 241
10-8 Polygons and Tessellations 243
10-9 Translations 245
10-10 Reflections. 247
Study Guide 250
CHAPTER 11
Foldables. 254
Vocabulary Builder 255
11-1 Area of Parallelograms 257
11-2 Area of Triangles and Trapezoids 258
11-3 Circles and Circumference 260
11-4 Area of Circles 262
11-5 Problem-Solving Investigation:
Solve a Simpler Problem 263
11-6 Area of Complex Figures 264
11-7 Three-Dimensional Figures 266
11-8 Drawing Three-Dimensional Figures 268
11-9 Volume of Prisms 270
11-10 Volume of Cylinders 271
Study Guide 273
CHAPTER 12
Foldables 278
Vocabulary Builder 279
12-1 Estimating Square Roots 280
12-2 The Pythagorean Theorem 282
12-3 Problem-Solving Investigation: Make a Model 285
12-4 Surface Area of Rectangular Prisms 286
12-5 Surface Area of Cylinders 289
Study Guide 291

Organizing Your Foldables

FOLDABLES

Have students make this Foldable to help them organize and store their chapter Foldables.
Begin with one sheet of 11 " $\times 17$ " paper.

STEP 1 Fold

Fold the paper in half lengthwise. Then unfold.

STEP 2 Fold and Glue

Fold the paper in half widthwise and glue all of the edges.

STEP 3 Glue and Label

Glue the left, right, and bottom edges of the Foldable to the inside back cover of your Noteables notebook.

Reading and Taking Notes As you read and study each chapter, record notes in your chapter Foldable. Then store your chapter Foldables inside this Foldable organizer.

Using Your Noteables" Interactive Study Notebook

This note-taking guide is designed to help you succeed in California Mathematics Grade 6. Each chapter includes:

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

NOTE-TAKING TIPS

Notes are a reminder to the students as to what they learned in class. Taking good notes can help students succeed in mathematics. The following tips will help students take better classroom notes.

- Before class, ask what your teacher will be discussing in class. Review mentally what you already know about the concept.
- Be an active listener. Focus on what your teacher is saying. Listen for important concepts. Pay attention to words, examples, and/or diagrams your teacher emphasizes.
- Write your notes as clear and concise as possible. The following symbols and abbreviations may be helpful in your note-taking.

Word or Phrase	Symbol or Abbreviation	Word or Phrase	Symbol or Abbreviation
for example	e.g.	not equal	\neq
such as	i.e.	approximately	\approx
with	w/	therefore	\therefore
without	w/o	versus	vs
and	+	angle	\angle

- Use a symbol such as a star (\star) or an asterisk (*) to emphasize important concepts. Place a question mark (?) next to anything that you do not understand.
- Ask questions and participate in class discussion.
- Draw and label pictures or diagrams to help clarify a concept.
- When working out an example, write what you are doing to solve the problem next to each step. Be sure to use your own words.
- Review your notes as soon as possible after class. During this time, organize and summarize new concepts and clarify misunderstandings.

Note-Taking Don'ts

- Don't write every word. Concentrate on the main ideas and concepts.
- Don't use someone else's notes as they may not make sense.
- Don't doodle. It distracts you from listening actively.
- Don't lose focus or you will become lost in your note-taking.

1 Introduction to Algebra and Functions

GOLDABLES
Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin this Interactive Study Notebook to help you in taking notes.

Begin with eleven sheets of notebook paper.

STEP 1 Staple the eleven sheets together to form a booklet.

STEP 2 Make each one 2 lines longer than the one before it.

Begin with eleven sheets of

STEP 3 Write the chapter title on the cover and label each tab with the lesson number.

NOTE-TAKING TIP: When taking notes, it is often a good idea to write a summary of the lesson in your own words. Be sure to paraphrase key points.

1

BUILD YOUR VOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 1.
As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

Vocabulary Term	Found on Page	Definition	Description or Example
algebra			
algebraic expression [al-juh-BRAY-ihk]			
arithmetic sequence [air-ith-MEH-tik]			
base			
coefficient			
defining the variable			
domain			
equation			
[ih-KWAY-zhuhn]			
equivalent expression			
exponent			

Vocabulary Term	Found on Page	Definition	Description or Example
factors			
function			
function rule			
numerical expression			
order of operations			
perfect square			
powers			
radical sign			
range			
sequence			
solution			
square			
square root			
term			
variable			

1-1 A Plan for Problem Solving

EXAMPLE Use the Four-Step Plan

Main Idea

Solve problems using the four-step plan.

Standard 6MR1.1 Analyze problems by identifying relationships, distinguishing relevant from irrelevant information, identifying missing information, sequencing and prioritizing information, and observing patterns. Reinforcement of 5NS2.1 Add, subtract, multiply, and divide with decimals; add with negative integers; subtract positive integers from negative integers; and verify the reasonableness of the results.

FOLDABLES

ORGANIZE IT

Summarize the four-step problem-solving plan on the Lesson 1-1 page of your Foldable.

1) SPENDING A can of soda holds 12 fluid ounces. A 2-liter bottle holds about 67 fluid ounces. If a pack of six cans costs the same as a 2 -liter bottle, which is the better buy?

EXPLORE What are you trying to find? You know the number of fluid ounces of soda in one can of soda. You need to know the number of fluid ounces of soda in a pack of six cans.

PLAN You can find the number of fluid ounces of soda in a pack of six cans by \square the number of fluid ounces in one can by \square
SOLVE
$12 \times$ \square $=$ \square
There are \square fluid ounces of soda in a pack of six cans. The number of fluid ounces of soda in a 2 -liter bottle is about \square. Therefore, the \square is the better buy because you get more soda for the same price.

CHECK The answer makes sense based on the facts given in the problem.

Check Your Progress FIELD TRIP The sixth grade class at Meadow Middle School is taking a field trip to the local zoo. There will be 142 students plus 12 adults going on the trip. If each school bus can hold 48 people, how many buses will be needed for the field trip?
\square

EXAMPLE Use a Strategy in the Four-Step Plan

2 POPULATION For every 100,000 people in the United States, there are 5,750 radios. For every $\mathbf{1 0 0 , 0 0 0}$ people in Canada, there are 323 radios. Suppose Sheamus lives in Des Moines, Iowa, and Alex lives in Windsor, Ontario. Both cities have about 200,000 residents. About how many more radios are there in Sheamus's city than in Alex's city?

Key Concepts

Problem-Solving Strategies

- guess and check
- look for a pattern
- make an organized list
- draw a diagram
- act it out
- solve a simpler problem
- use a graph
- work backward
- eliminate possibilities
- estimate reasonable
- use logical reasoning
- make a model

EXPLORE You know the approximate number of radios per 100,000 people in both Sheamus's city and Alex's city.

PLAN You can find the approximate number of radios in each city by \square the estimate per 100,000 people by two to get an estimate per 200,000 people. Then, \square to find how many more radios there are in Des Moines than in Windsor.

SOLVE
Des Moines: $5,750 \times 2=\square$
Windsor: $323 \times 2=\square$

So, Des Moines has about \square
more radios than Windsor.
CHECK Based on the information given in the problem, the answer seems to be reasonable.

Check Your Progress READING Ben borrows a 500-page

 book from the library. On the first day, he reads 24 pages. On the second day, he reads 39 pages and on the third day he reads 54 pages. If Ben follows the same pattern of number of pages read for seven days, will he have finished the book at the end of the week?
1-2 Powers and Exponents

Reinforcement of Standard 5NS1.3 Understand and compute positive integer powers of nonnegative integers; compute examples as repeated multiplication.

BUILD YOUR VOCABULARY (pages 2-3)

MAIN IDEA

- Use powers and exponents.

FOLDABLES

ORGANIZE IT
On the Lesson 1-2 page of your Foldable, explain the difference between the terms power and exponent.

EXAMPLES Write Powers as Products

Write each power as a product of the same factor.
(1) 8^{4}

Eight is used as a factor \square times. $8^{4}=$ \square
(2) 4^{6}
\square

Check Your Progress

Write each power as a product of the same factor.
a. 3^{6} \square b. 7^{3} \square

BUILD YOUR VOGABULARY (pages 2-3)

You can evaluate, or find the \square of, \square by multiplying the factors.
 standard form.

Numbers written \square are in exponential form.

Copyright \odot Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Write IT

Explain how you would use a calculator to evaluate a power.
\qquad
\qquad
\qquad
\qquad
\qquad
\square

Homework

 AssignmentPage(s):
Exercises:

EXAMPLES Write Powers in Standard Form

Evaluate each expression.
(3) $8^{3}=\square=\square$
(4) $6^{4}=\square=\square$

Check Your Progress Evaluate each expression.
a. 4^{4} \square
b. 5^{5} \square

EXAMPLE Write Numbers in Exponential Form

(5) Write $9 \cdot 9 \cdot 9 \cdot 9 \cdot 9 \cdot 9$ in exponential form.

So the exponent is \square
\square

Check Your Progress
Write $3 \cdot 3 \cdot 3 \cdot 3 \cdot 3$ in exponential form.

1-3 Squares and Square Roots

MAIN IDEA

- Find squares of numbers and square roots of perfect squares.

Preparation for Standard 7NS2.4
Use the inverse relationship between raising to a power and extracting the root of a perfect square; for an integer that is not square, determine without a calculator the two integers between which its square root lies and explain why.

BUILD YOUR VOGABULARY (pages 2-3)

The \square of a number and \square is the square of the number.

Perfect squares like 9, 16, and 225 are squares of \square numbers.

The \square multiplied to form perfect squares are called square roots.

A radical sign, $\sqrt{ }$, is the symbol used to indicate the positive \square of a number.

EXAMPLES Find Squares of Numbers

FOLDABLES

ORGANIZE IT

On the Lesson 1-3 page of your Foldable, explain in words and symbols how you find squares of numbers and square roots of perfect squares.

(1) Find the square of 5 .

$\square \cdot \square=25$
(2) Find the square of 19.

METHOD 1 Use paper and pencil.

METHOD 2 Use a calculator.

Check Your Progress

Find the square of each number.
a. 7

b. 21

Key Concept

Square Root A square root of a number is one of its two equal factors.

EXAMPLES Find Square Roots

3 Find $\sqrt{36}$.

What number times itself is $36 ?$

$$
\square \cdot \square=36, \text { so } \sqrt{36}=\square
$$

(4) Find $\sqrt{676}$.

Use a calculator.

So, $\sqrt{676}=\square$.

Check Your Progress

Find each square root.
a. $\sqrt{64}$ \square
b. $\sqrt{529}$ \square
(5) GAMES A checkerboard is a square with an area of 1,225 square centimeters. What are the dimensions of the checkerboard?

The checkerboard is a square. By finding the square root of the area, 1,225 , you find the length of one side.

The dimensions of the checkerboard are \square centimeters
by \square centimeters.

Check Your Progress
GARDENING Kyle is planting a new garden that is a square with an area of 42.25 square feet. What are the dimensions of Kyle's garden?

1-4
 Order of Operations

MAIN IDEA

- Evaluate expressions using the order of operations.

Key Concept

Order of Operations

1. Evaluate the expressions inside grouping symbols.
2. Evaluate all powers.
3. Multiply and divide in order from left to right.
4. Add and subtract in order from left to right.

Foldables Be sure to include the order of operations on the Lesson 1-4 page of your Foldable.

Standard 6AF1.3
Apply algebraic order of operations and the commutative associative, and distributative properties to evaluate expressions; and justify each step in the process. 6AF1.4 Solve problems manually by using the correct order of operations or by using a scientific calculator.

BUILD YOUR VOCABULARY (pages 2-3)

The expressions $4 \cdot 6-(5+7)$ and $8 \cdot(9-3)+4$ are
\square expressions.

Order of operations are \square that ensure that numerical expressions have only one value.

EXAMPLES Evaluate Expressions

Evaluate each expression.

(1) $27-(18+2)$
$\begin{aligned} 27-(18+2) & =27-\square \quad \begin{array}{l}\text { Add first since } 18+2 \\ \text { in parentheses. }\end{array} \\ & =\square \quad\end{aligned}$

2 $15+5 \cdot 3-2$
$15+5 \cdot 3-2=15+\square-2 \quad$ Multiply 5 and 3.
$=\square-2 \quad$ Add 15 and 15.
$=\square \quad$ Subtract 2 from 30.

Check Your Progress
Evaluate each expression.
a. $45-(26+3)$
b. $32-3 \cdot 7+4$

EXAMPLES Use Order of Operations

Evaluate each expression.

(3) $12 \times 3-2^{2}$
$12 \times 3-2^{2}=12 \times 3-\square$

$$
\begin{aligned}
& =\square-4 \\
& =\square
\end{aligned}
$$

Find the value of 2^{2}.

Multiply 12 and 3.
Subtract 4 from 36.
$28 \div(3-1)^{2}$
$28 \div(3-1)^{2}=28 \div \square$ $=28 \div \square \quad$ Find the value of 2^{2}.
$=\square$

Remember It
If an exponent lies outside of grouping symbols, complete the operations within the grouping symbols before applying the power.

Homework ASSIGNMENT

Page(s):
Exercises:

EXAMPLE Evaluate an Expression

5 VIDEO GAMES Use the table shown below. Taylor is buying two video game stations, five extra controllers, and ten games. What is the total cost?

Item	Quantity	Unit Cost
game station	2	$\$ 180.00$
controller	5	$\$ 24.00$
game	10	$\$ 35.00$

$2 \times 180+5 \times 24+10 \times 35=360+\square+350$ or $\$ 830$

Check Your Progress
Evaluate each expression.
a. $9 \times 5+3^{2}$ \square b. $36 \div(14-11)^{2}$ \square
c. Use the table in Example 5. What is the total cost of buying 1 game station, 3 controllers, and 7 games? \square

1-5 Problem-Solving Investigation: Guess and Check

EXAMPLE Use Guess and Check Strategy

Main IDEA

Solve problems using the guess and check strategy.

Standard 6MR1.1 Analyze problems by identifying relationships, distinguishing relevant from irrelevant information, identifying missing information, sequencing and prioritizing information and observing patterns. Reinforcement of 5NS2.1 Add, subtract, multiply, and divide with decimals; add with negative integers; subtract positive integers from negative integers; and verify the reasonableness of the results.

Homework Assignment

CONCESSIONS The concession stand at the school play sold lemonade for $\$ 0.50$ and cookies for $\$ 0.25$. They sold 7 more lemonades than cookies, and they made a total of $\$ 39.50$. How many lemonades and cookies were sold?

EXPLORE You know the cost of each lemonade and cookie.
You know the total amount made and that they sold
\square more lemonades than cookies. You need to know how many lemonades and cookies were sold.

PLAN Make a guess and check it. Adjust the guess until you get the correct answer.

SOLVE Make a guess.

CHECK 48 cookies cost $\$ 12$ and 55 lemonades cost $\$ 27.50$. Since $\$ 12+\$ 27.50=\$ 39.50$ and 55 is 7 more than 48 , the guess is correct.

Check Your Progress ZOO A total of 122 adults and

 children went to the zoo. Adult tickets cost $\$ 6.50$ and children's tickets cost $\$ 3.75$. If the total cost of the tickets was $\$ 597.75$, how many adults and children went to the zoo?

1-6 Algebra: Variables and Expressions

Standard 6AF1.2 Write and evaluate an algebraic expression for a given situation, using up to three variables. Standard 6AF1.4 Solve problems manually by using the correct order of operations or by using a scientific calculator.

MAIN IDEA

- Evaluate simple algebraic expressions.

BUILD YOUR VOCABULARY (pages 2-3)

You can use a placeholder, or variable, in an expression.
The expression $7+n$ is called an \square expression.
The branch of mathematics that involves expressions with \square is called algebra.

The \square factor of a term that contains a variable is called a coefficient.

EXAMPLES Evaluate Expressions

(1) Evaluate $t-4$ if $t=6$.
$t-4=6-\square$
Replace t with \square
$=\square$
Subtract.

2 Evaluate $5 x+3 y$ if $x=7$ and $y=9$.

$$
\begin{aligned}
5 x+3 y & =5 \cdot \square+3 \cdot \square & & \text { Replace } x \text { with } \square \\
& =\square+\square & & \text { and } \square \square \text { with } 9 .
\end{aligned}
$$

Organize IT

Record and evaluate an example of a simple algebraic expression on the Lesson 1-6 page of your Foldable.

(3) Evaluate $5+a^{2}$ if $a=5$.

$$
\begin{aligned}
5+a^{2} & =5+5^{2} & & \text { Replace a with } \square . \\
& =5+\square . & & \text { Evaluate the } \square \\
& =\square & & \text { Add. }
\end{aligned}
$$

Check Your Progress

Evaluate each expression.

a. $7+m$ if $m=4$. \square
b. $4 a-2 b$ if $a=9$ and $b=6$. \square
c. $24-s^{2}$ if $s=3$. \square

EXAMPLE Evaluate an Expression

(4) TEMPERATURE The formula for rewriting a Fahrenheit temperature as a Celsius temperature is $\frac{5(F-32)}{9}$, where F equals the temperature in degrees Fahrenheit. Find the Celsius equivalent of $99^{\circ} \mathrm{F}$.

$$
\begin{array}{rlrl}
\frac{5(F-32)}{9} & =\frac{5(99-32)}{9} & & \text { Replace } F \text { with } 99 . \\
& =\frac{5(67)}{9}=\frac{335}{9} & & \text { Subtract } \square \\
& \approx \begin{array}{l}
\text { and multiply. } \\
\text { from } 99
\end{array} \\
& & \text { Divide } 335 \text { by } 9 .
\end{array}
$$

The Celsius equivalent of $99^{\circ} \mathrm{F}$ is about $37.2^{\circ} \mathrm{C}$.

Check Your Progress
BOWLING David's cost for bowling can be described by the formula $1.75+2.5 g$, where g is the number of games David bowls. Find the total cost of bowling if David bowls 3 games.

1-7 Algebra: Equations

- Standard 6AF1.1 Write and solve one-step linear equations in one variable.

MAIN IDEA

- Write and solve equations using mental math.

BUILD YOUR VOCABULARY (pages 2-3)

An equation is a \square in mathematics that contains an equal sign.

The solution of an equation is a number that makes the sentence \square
The process of finding a \square is called

solving an equation.

When you choose a \square to represent one of the unknowns in an equation, you are defining the variable.

EXAMPLE Solve an Equation Mentally

OrgANIZE IT
On the Lesson 1-7 page of your Foldable, record and solve an example of an algebraic equations.

(1) Solve $p-14=5$ mentally.

$$
p-14=5 \quad \text { Write the equation. }
$$

The solution is \square

Check Your Progress Solve $p-6=11$ mentally.

1-7

EXAMPLE

2 STANDARDS EXAMPLE A store sells pumpkins for $\$ 2$ per pound. Paul has $\$ 18$. Use the equation $2 x=18$ to find how large a pumpkin Paul can buy with $\$ 18$.
A 6 lb
B 7 lb
C 8 lb
D 9 lb

Read the Test Item

Solve \square to find how many pounds the pumpkin can weigh.

Solve the Test Item
\square
$2 \cdot \square=18$ You know that $2 \cdot 9$ is 18 .

Paul can buy a pumpkin as large as \square pounds.

The answer is \square

Check Your Progress A store sells notebooks for $\$ 3$ each. Stephanie has $\$ 15$. Use the equation $3 x=15$ to find how many notebooks she can buy with $\$ 15$.
A 4
B 5
C 6
D 7

EXAMPLE Write an Equation to Solve a Problem

ReVIEW IT

Explain how to add a decimal and a whole number. (Prerequisite Skill)
\qquad
\qquad
\qquad
3 ENTERTAINMENT An adult paid $\mathbf{\$ 1 8 . 5 0}$ for herself and two students to see a movie. If the two student tickets cost $\$ 11$ altogether, what is the cost of the adult ticket?

The cost of one adult ticket and two student tickets is $\$ 18.50$.

Equation $\quad a+11=18.50$
Let a represent the cost of an adult movie ticket.

$$
a+11=18.50
$$

The number \square is the solution of the equation. So, the cost of an adult movie ticket is \square

Check Your Progress

ICE CREAM Julie spends $\$ 9.50$ at the ice cream parlor. She buys a hot fudge sundae for herself and ice cream cones for each of the three friends who are with her. Find the cost of Julie's sundae if the three ice cream cones together cost $\$ 6.30$.

Homework Assignment

[^0]
1-8 Algebra: Properties

Standard 6AF1.3 Apply algebraic order of operations and the commutative, associative, and distributive properties to evaluate expressions; and justify each step in the process.

MAIN IDEA

- Use addition and multiplication properties to solve problems.

Key Concept

Distributive Property To multiply a sum by a number, multiply each addend of the sum by the number outside the parentheses.

FOLDABLES

ORGANIZE IT

On the Lesson 1-8 page your Foldable, be sure to include examples showing the addition and multiplication properties.

BUILD YOUR VOCABULARY (pages 2-3)

The expressions $5(\$ 9+\$ 2)$ and $5(\$ 9)+5(\$ 2)$ are equivalent expressions because they have the \square value.

EXAMPLES Use the Distributive Property

Use the Distributive Property to rewrite each expression. Then evaluate it.

1) $8(5+7)$

Multiply.

Add.
$26(9)+6(2)$

| $6(9)+6(2)$ | $=\square+\square \quad$ Multiply. |
| ---: | :--- | ---: |
| | $=\square \quad$ Add. |

Check Your Progress
Use the Distributive Property to evaluate each expression.
a. $4(6+3)$

b. $(5+3) 7$

KEY Concepts

Commutative Property The order in which two numbers are added or multiplied does not change their sum or product.

Associative Property The way in which three numbers are grouped when they are added or multiplied does not change their sum or product.

Identity Property The sum of an addend and zero is the addend. The product of a factor and one is the factor.

HoMEWORK ASSIGNMENT

Page(s):
Exercises:

EXAMPLE

(3) VACATIONS Mr. Harmon has budgeted $\mathbf{\$ 1 5 0}$ per day for his hotel and meals during his vacation. If he plans to spend six days on vacation, how much will he spend?

$$
\begin{array}{rlr}
6(150) & =6(100+\square) & \\
& 150=100+50 \\
& =\square(100)+\square(50) & \\
\text { Distributive Property } \\
& =600+\square \text { or } 900 & \text { Multiply, then add. }
\end{array}
$$

Mr. Harmon will spend about \square on a six-day vacation.

Check Your Progress COOKIES Heidi sold cookies for $\$ 2.50$ per box for a fundraiser. If she sold 60 boxes of cookies, how much money did she raise?

EXAMPLE Use Properties to Evaluate Expressions

4) Find 5•13 • 20 mentally. Justify each step.
$5 \cdot 13 \cdot 20=5$ \square - 13

Commutative Property of Multiplication
$=(5 \cdot 20) \cdot \square$
Associative Property of Multiplication
$=100 \cdot 13$ or \square
Multiply 100 and 13 mentally.

Check Your Progress Name the property shown by

 each statement.a. $4+(6+2)=(4+6)+2$

b. $15+9=9+15$

1-9 Algebra: Arithmetic Sequences

Standard 6AF1.2 Write and evaluate an algebraic expression for a given situation, using up to three variables.

Main IDEA

- Describe the relationships and extend terms in arithmetic sequences.

BUILD YOUR VOGABULARY (pages 2-3)

In an arithmetic sequence, each term is found by
\square

EXAMPLES Describe Patterns in Sequences

Describe the relationship between the terms in each arithmetic sequence. Then write the next three terms in the sequence.

1 $7,11,15,19, \ldots$

Foldables

ORGANIZE IT

Write an example of an arithmetic sequence on the Lesson 1-9 page of your Foldable.

Each term is found by
 4 to the previous term.

Continue the pattern to find the next three terms.
$19+4=\square \quad 23+4=\square \quad 27+4=\square$
The next three terms are 23, 27, and 31.
(2) $0.1,0.5,0.9,1.3, \ldots$

Each term is found by adding \square to the previous term.
Continue the pattern to find the next three terms.
$1.3+\square=1.7$
$1.7+\square$ \square
$2.1+0.4=$ \square

The next three terms are 1.7, 2.1, and 2.5.

Check Your Progress
Describe the relationship
between the terms in each arithmetic sequence. Then write the next three terms in the sequence.
a. $13,24,35,46, \ldots$
\square
b. $0.6,1.5,2.4,3.3, \ldots$
\square

WRITE IT

In your own words, explain how to determine the pattern in a sequence.
\qquad
\qquad
\qquad
\qquad
\qquad

EXAMPLE Use a Table

3 EXERCISE Mehmet started a new exercise routine. The first day, he did 2 sit-ups. Each day after that, he did 2 more sit-ups than the previous day. If he continues this pattern, how many sit-ups will he do on the tenth day?

Position	Operation	Value of Term
1	\square	2
2	$2 \cdot 2$	\square
\square	$3 \cdot 2$	6
d	$d \cdot 2$	$2 d$

1-10 Algebra: Equations and Functions

Main Idea

- Make function tables and write equations.

BUILD YOUR VOGABULARY (pages 2-3)

A relationship where one thing depends on another is called a function.
You can organize the \square numbers, \square numbers, and the function rule in a function table.

Remember IT

When x and y are used in an equation, x usually represents the input and y usually represents the output.

Standard 6AF1.2 Write and evaluate an algebraic expression for a given situation, using up to three variables. 6MR2.4 Use a variety of methods, such as words, numbers, symbols, charts, graphs, tables, diagrams, and models, to explain mathematical reasoning.

EXAMPLE Make a Function Table

Asha earns $\$ 6.00$ an hour working at a grocery store. Make a function table that shows Asha's total earnings for working $1,2,3$, and 4 hours.

Input	Function	Output
Number of Hours	Multiply by 6	Total Earnings (\$)
1	\square	6
2	6×2	\square
\square	6×3	18
4		\square

Check Your Progress

MOVIE RENTAL Dave goes to the video store to rent a movie. The cost per movie is $\$ 3.50$. Make a function table that shows the amount Dave would pay for renting $1,2,3$, and 4 movies.

BUILD YOUR VOGABULARY (pages 2-3)
The set of input values is called the domain.
The set of output values is called the range.

EXAMPLES

2 READING Melanie read 14 pages of a detective novel each hour. Write an equation using two variables to show how many pages p she read in h hours.

Input	Function	Output
Number of Hours (h)	Multiply by 14	Number of Pages Read (p)
1	1×14	\square
2	\square	28
\square	$\square \times 14$	42
h		$14 h$

3 READING Use your equation above to find how many pages Melanie read in $\mathbf{7}$ hours.

Write the equation.
$p=14(\square) \quad$ Replace h with 7 .
$p=\square$ Multiply.
Melanie read 98 pages in 7 hours.

Homework Assignment

Page(s):
Exercises:

Check Your Progress

a. TRAVEL Derrick drove 55 miles per hour to visit his grandmother. Write an equation using two variables to show how many miles m he drove in h hours.

b. TRAVEL Use your equation from above to find how many miles Derrick drove in 6 hours.

1 BRINGING IT ALL TOGETHER

STUDY GUIDE

OLDABLES

Use your Chapter 1 Foldable to help you study for your chapter test.

Vocabulary PUZZLEMAKER

To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 1, go to:
glencoe.com

BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (pages 2-3) to help you solve the puzzle.

1-1

A Plan for Problem Solving

Underline the correct term to complete each sentence.

1. The (Plan, Solve) step is the step of the four-step plan in which you decide which strategy you will use to solve the problem.
2. According to the four-step plan, if your answer is not correct, you should (estimate the answer, make a new plan and start again).
3. Once you solve a problem, make sure your solution contains any appropriate (strategies, units or labels).

1-2

Powers and Exponents
Identify the exponent in each expression.
4. 5^{8} \square
5. 8^{3} \square

Evaluate each expression.

6. 4^{3}

7. 8^{5} \square

Complete the sentence.

8. Numbers written with exponents are in \square form, whereas numbers written without exponents are in
\square form.

1-3

Squares and Square Roots
Complete each sentence.
9. The square of 3 means \square \times \square
10. Nine units squared means 9 \square with \square of \square unit each.

Find the square of each number.
11. 16 \square 12. 28 \square
Find the square root of each number.
13. $\sqrt{121}$ \square
14. $\sqrt{484}$ \square

1-4

Order of Operations

Evaluate each expression.

15. $9+18 \div 6$

16. $2 \times 4^{2} \div 4-1$

17. $(7-4)^{2} \div 3$

18. $8+2(9-5)-(2 \cdot 3)$

1-5

Problem-Solving Investigation: Guess and Check
Solve using the guess and check strategy.
19. MONEY Gary deposited $\$ 38$ into his savings account every week for eight weeks. At the end of this time, the total amount in his account was $\$ 729$. How much money did Gary have in his account before the deposits?

1-6
Algebra: Variables and Expressions
Evaluate each expression if $a=5$ and $b=6$.
20. $2 a+3 b$ \square
21. $\frac{a b}{5}$ \square
22. $a^{2}-3 b$ \square

1-7

Algebra: Equations

Solve each equation mentally.
23. $5+b=12$
24. $h-6=3$ \square
25. $12 \cdot 4=n$ \square
26. $2=\frac{x}{4}$ \square
27. $9 t=54$ \square
28. $35 \div c=7$ \square

1-8

Algebra: Properties

Match the statement with the property it shows.
29. $5+(3+6)=(5+3)+6$ \square a. Distributive

Property
30. $8+0=8$

b. Commutative Property of Addition
31. $4(7-2)=4(7)-4(2)$ \square c. Associative Property of Addition
$32.10+9=9+10$
d. Identity Property of Addition

1-9

Algebra: Arithmetic Sequences

Complete the sentence.
33. In an arithmetic sequence, each term is found by \square the same number to the previous term.
34. In a geometric sequence, each term is found by the same number by the previous term.

What is the next term in each of the following sequences?

36. $7,10,13, \ldots$ \square
1-10

Algebra: Equations and Functions

37. Complete the function table. Identify the domain and range.

x	$2 x-1$	y
-1		\square
0		\square
1		\square

$$
\begin{aligned}
& \text { Domain }=\square \\
& \text { Range }=\square
\end{aligned}
$$

ARE YOU READY FOR

 THE CHAPTER TEST?
Checklist

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 1.

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 1 Practice Test on page 75 of your textbook as a final check.

I used my Foldables or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 1 Study Guide and Review on pages 70-74 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may want to take the Chapter 1 Practice Test on page 75 of your textbook.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 1 Foldables.
- Then complete the Chapter 1 Study Guide and Review on pages 70-74 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 1 Practice Test on page 75 of your textbook.

Integers

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.

STEP 1 Fold one sheet in half from top to bottom. Cut along fold from edges to margin.

STEP 2 Fold the other sheet in half from top to bottom. Cut along fold between margins.

STEP 3 Insert first sheet through second sheet and align folds.

STEP 4 Label each page with a lesson number and title.

NOTE-TAKING TIPS: When you take notes, it is helpful to list ways in which the subject matter relates to daily life.

BUILD YOUR VOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 2.
As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

Vocabulary Term	Found on Page	Definition	Description or Example
absolute value			
additive inverse			
coordinate plane			
graph			
integer			
[IHN-tih-juhr]			
negative integer			

Vocabulary Term	Found on Page	Definition	Description or Example
ordered pair			
origin			
positive integer			
quadrant			
x-axis			
x-coordinate			
y-axis			
y-coordinate			

2-1 Integers and Absolute Value

Preparation for Standard 6NS1.1 Compare and order positive and negative fractions, decimals, and mixed numbers and place them on a number line.

Main Idea

- Read and write integers, and find the absolute value of a number.

BUILD YOUR VOGABULARY (pages 32-33)

An integer is any \square from the set $\{\ldots,-4, \square,-2$, $-1,0,1$, \square $3,4, \ldots\}$. To graph a \square on the number line, draw a point on the line at its \square. Negative integers are integers \square than zero. Positive integers are integers \square than zero.

EXAMPLES Write Integers for Real-Life Situations

Write an integer for each situation.

1) a total rainfall of 2 inches below normal

Because it represents below normal, the integer is \square
a seasonal snowfall of 3 inches above normal Because it represents \square normal, the integer is \square

Check Your Progress
Write an integer for each situation.
a. a total snowfall of 5 inches above normal

b. an average monthly temperature of 4 degrees below normal

BUILD YOUR VOGABULARY (pages 32-33)

The numbers \square and 5 are the same \square from 0 , so -5 and 5 have the same absolute value.

EXAMPLE Graph Integers

(3) Graph the set of integers $\{-1,3,-2\}$ on a number line.

Draw a number line. Then draw a \square at the location of each integer.
each integer. the location of
\square
\square

2-2 Comparing and Ordering Integers

Preparation for Standard 6NS1.1 Compare and order positive and negative fractions, decimals, and mixed numbers and place them on a number line.

EXAMPLE Compare Integers

Main IDEA

- Compare and order integers
(1) Replace the with $<$ or $>$ to make $-9-5$ a true sentence.

Graph each integer on a number line.

Since \square is to the \square of $-5,-9 \square-5$.

Check Your Progress
Replace the with < or > to make $-3-6$ a true sentence.

EXAMPLE Order Integers

2 STANDARDS EXAMPLE The lowest temperatures in Europe, Greenland, Oceania, and Antarctica are listed in the table. Which list shows the temperatures in order from coolest to warmest?

Continent	Record Low Temperature (${ }^{\circ}$ F)
Europe	-67
Greenland	-87
Oceania	14
Antarctica	-129

Source: The World Almanac
A - 67, - 87, 14, -129
C - 129, -87, -67, 14
B 14, -67, -87, -129
D -67, -87, -129, 14

Foldables

ORGANIZE IT

Under Lesson 2-2 in your Foldable, explain how to compare integers. Be sure to include examples.

Integers and -Absolute Value

To order the integers, graph them on a number line.

Order the integers from least to greatest by reading from left to right. The order from least to greatest is \square
\square

Check Your Progress
The lowest temperatures on a given day in four cities in the United States are listed in the table. Which of the following lists the temperatures in order from coolest to warmest?

City	Low Temperature
Portland, OR	-12
New York City, NY	-6
Denver, CO	7
Newport, RI	-3

$\mathbf{A}-3,-6,7,12$
C $-12,7,-6,-3$
B $-12,-6,-3,7$
D $-3,-6,7,-12$

2-3 The Coordinate Plane

Main Idea

- Graph points on a coordinate plane.

FOLDABLES'

ORGANIZE IT

Under Lesson 2-3 in your Foldable, record and define key terms about the coordinate system and give examples of each.

BUILD YOUR VOCABULARY (pages 32-33)

A coordinate plane is a plane in which a \square
number line and a vertical number line intersect at their zero points.

The \square number line of a coordinate plane is called the x-axis.

The \square number line of a coordinate plane is called the y-axis.

The origin is the point at which the number lines intersect in a coordinate grid.

An ordered pair is a pair of numbers such as $(5,-2)$ used to locate a point in the coordinate plane. The x-coordinate is the \square number. The y-coordinate is the \square number.

EXAMPLE Naming Points Using Ordered Pairs

(1) Write the ordered pair that corresponds to point R. Then state the quadrant in which the point is located.

- Start at the origin.
- Move \square to find the x-coordinate of point R, which is

- Move up to find the

So, the ordered pair for point R is \square Point R is located in Quadrant \square

Write It

When no numbers are shown on the x - or y-axis, how long is each interval?
\qquad
Check Your Progress
Write the ordered pair that names point M. Then name the quadrant in which the point is located.

EXAMPLES Graph an Ordered Pair

2 Graph and label the point $M(3,5)$.

- Draw a coordinate plane.
- Start at the

- Move \square units to the right.

Then move 5 units

- Draw a dot and label it M \square

Check Your Progress Graph and label the point $G(-2,-4)$.

BUILD YOUR VOGABULARY (pages 32-33)

The coordinate plane is separated into \square sections called quadrants.

EXAMPLES Identify Quadrants

3) GEOGRAPHY Use the map of Utah shown below.

In which quadrant is Vernal located?
Vernal is located in the \square right quadrant, Quadrant \square
(4) Which of the cities labeled on the map of Utah is located in quadrant IV?

Quadrant
 is the bottom-right quadrant. So, \square in Quadrant IV.

Check Your Progress
Refer to the map of Utah shown above.
a. In which quadrant is Tremonton located?

Homework Assignment
Page(s):
Exercises: is located in Quadrant III?

2-4. Adding Integers

EXAMPLES Add Integers with the Same Sign

Main Idea

Add integers.

- Standard 6NS2.3 Solve addition, subtraction, multiplication, and division problems, including those arising in concrete situations, that use positive and negative integers and combinations of these operations.

Key Concepts

Adding Integers with the Same Sign. The sum of two positive integers is positive. The sum of two negative integers is negative.

Additive Inverse
Property. The sum of any number and its additive inverse is 0 .
(1) Find $-6+(-3)$.

Use a number line.

- Start at \square
- Move 6 units \square to show -6.
- From there, move \square units left to show \square.

$$
\text { So },-6+(-3)=\square .
$$

2 Find $-34+(-21)$.

$$
-34+(-21)=\square
$$

Both integers are negative, so the

Check Your Progress

Find each sum.

a. $-5+(-2)$
b. $-27+(-19)$

BUILD YOUR VOGABULARY (pages 32-33)

The integers 5 and -5 are called opposites of each other because they are the same distance from 0 , but on
\square sides of 0 .

Key Concept

Adding Integers with Different Signs. To add integers with different signs, subtract their absolute values. The sum is:

- positive if the positive integer has the greater absolute value.
- negative if the negative integer has the greater absolute value.

FOLDABLES'

Organize It

Summarize the steps for adding integers. Be sure to include examples.

2-1
Integers and
Absolute Value

EXAMPLES Add Integers with Different Signs

3 Find $8+(-7)$.
Use a number line.
Start at

Move \square units right.
Then move \square units left.

So, $8+(-7)=\square$.

4 Find $-5+4$.
Use a number line.

Start at \square

Move \square units left.

Then move 4 units

So,$-5+\square=-1$

Check Your Progress
Add.
a. $6+(-2)$

b. $-3+5$

EXAMPLES Add Integers with Different Signs

5 Find $2+(-7)$.

Subtract absolute values;
 greater absolute value, the sum is

Find $-9+6$

$$
-9+6=\square
$$

the absolute values;
$9-6=3$. Since -9 has the \square absolute value, the sum is negative.

Compare the absolute value of the addends when determining the sign of the sums.

Remember IT

Add.
a. $5+(-9)$
b. $7+(-3)$

EXAMPLE Use the Additive Inverse Property

7 Find $11+(-4)+(-11)$.

$$
\left.\begin{array}{rl}
11+(-4)+(-11) & =11+(-11)+(-4) \\
& =\square+(-4) \\
& =-4 \\
& \begin{array}{l}
\text { Commutative } \\
\text { Property }(+)
\end{array} \\
\text { Additive Inverse } \\
\text { Property }
\end{array}\right\} \begin{aligned}
& \text { Identity Property } \\
& (+)
\end{aligned}
$$

Check Your Progress Simplify $5+9+(-5)$.

Homework Assignment

Page(s):
Exercises:

2-5 Subtracting Integers

- Standard 6NS2.3 Solve addition, subtraction, multiplication, and division problems, including those arising in concrete situations, that use positive and negative integers and combinations of these operations.

EXAMPLES Subtract Positive Integers

Main IDEA

- Subtract integers.

KEY Concept

Subtracting Integers To subtract an integer, add its opposite.

FOLDABLES Write this concept in your Foldable. Be sure to include examples.
(1) Find 2-15.

$$
\begin{aligned}
2-15 & =2+(-15) & & \text { To subtre } \\
& =-13 & & \text { Simplify. }
\end{aligned}
$$

2 Find - $13-8$.

$$
-13-8=-13+\square
$$

To subtract 8, add \square

$$
=-21
$$

Check Your Progress Subtract.
a. 13-21

b. $-9-11$

EXAMPLES Subtract Negative Integers

(3) Find 12 - (-6).

4) Find -21 - (-8).

$$
\begin{aligned}
-21-(-8) & =-21+8 \\
& =-13
\end{aligned}
$$

Simplify.

Check Your Progress

Subtract.

a. $9-(-4)$
b. $17-(-6)$

EXAMPLE Evaluate an Expression

5 ALGEBRA Evaluate $\boldsymbol{g}-\boldsymbol{h}$ if $\boldsymbol{g}=-\mathbf{2}$ and $\boldsymbol{h}=\mathbf{- 7}$.
$g-h=\square-\square$
Replace \square with -2 and h with

$$
=-2+\square
$$

$$
=\square
$$

Simplify.
Subtract -7, add

Check Your Progress
Evaluate $m-n$ if $m=-6$ and $n=4$.

Write IT

Explain how you can use a number line to check the results of subtracting integers.

Homework

 ASSIGNMENTPage(s):
Exercises:

EXAMPLE

6 GEOGRAPHY In Mongolia, the temperature can fall to $-45^{\circ} \mathrm{C}$ in January. The temperature in July may reach $40^{\circ} \mathrm{C}$. What is the difference between these two temperatures in Mongolia?

To find the difference in temperatures, subtract the lower temperature from the higher temperature.
$40-(-45)=40$ \square
\square 45 \square
Simplify. 45.

So, the difference between the temperatures is \square

Check Your Progress

On a particular day in Anchorage,
Alaska, the high temperature was $15^{\circ} \mathrm{F}$ and the low temperature was $-11^{\circ} \mathrm{F}$. What is the difference between these two temperatures for that day?

2-6 Multiplying Integers

- Standard 6NS2.3 Solve addition, subtraction, multiplication, and division problems, including those arising in concrete situations, that use positive and negative integers and combinations of these operations.

EXAMPLES Multiply Integers with Different Signs

Main IDEA

- Multiply integers.

KEy CONCEPTS

Multiplying Integers

 with Different Signs The product of two integers with different signs is negative.Multiply Integers with the Same Sign The product of two integers with the same sign is positive.

FOLDABLES Include these concepts on the Lesson 2-6 tab of your Foldable

EXAMPLES Multiply Integers with the Same Sign

3 Find $-6(-8)$.
$-6(-8)=\square$

The product is

(4) Find $(-8)^{2}$.

$$
\begin{aligned}
(-8)^{2} & =(-8) \square \\
& =\square \text { There are } \square \\
& \text { The product is } \square
\end{aligned}
$$

5 Find $-2(-5)(-6)$.

Check Your Progress Multiply.
a. $(-5)^{2}$
b. $-4(-7)$

c. $-7(-3)(-4)$

EXAMPLE

Remember It

When three variables are written without an operations sign, it means multiplication.

Homework

 ASSIGNMENTPage(s):
Exercises:

6 MINES A mine elevator descends at a rate of 300 feet per minute. How far below the earth's surface will the elevator be after 5 minutes?

If the elevator descends \square feet per minute, then after 5 minutes, the elevator will be $-300(\square)$ or $-1,500$ feet below the surface. Thus, the elevator will descend to
\square

Check Your Progress

RETIREMENT Mr. Rodriguez has $\$ 78$ deducted from his pay every month for his retirement.
What integer represents the change for these deductions after six months?

EXAMPLE Evaluate Expressions

(7) ALGEBRA Evaluate $a b c$ if $a=-3, b=5$, and $c=-8$.

$a b c$	$=(-3)(5)(-8)$		Replace \square with $-3, b$
	$=(-15)(-8)$		with \square, and c with \square.
	$=\square$ Multiply \square and 5.		
		Multiply -15 and -8.	

Check Your Progress

Evaluate $x y z$ if $x=-6, y=-2$, and $z=4$.

2-7 Problem-Solving Investigation: Look for a Pattern

EXAMPLE Use the Look for a Pattern Strategy

Main Idea

Solve problems by looking for a pattern.

Standard 6MR1.1 Analyze problems by identifying relationships, distinguishing relevant from irrelevant information, identifying missing information, sequencing and prioritizing information, and observing patterns.

- Standard 6NS2.3

Solve addition, subtraction, multiplication, and division problems, including those arising in concrete situations, that use positive and negative integers and combinations of these operations.

Homework Assignment

HAIR Lelani wants to grow an 11-inch ponytail. She has a 3-inch ponytail now, and her hair grows about one inch every two months. How long will it take for her ponytail to reach 11 inches?

EXPLORE You know the length of Lelani's ponytail now. You know how long Lelani wants her ponytail to grow and you know how fast her hair grows. You need to know how long it will take for her ponytail to reach
\square inches.

PLAN Look for a pattern. Then extend the pattern to find the solution.

SOLVE After the first two months, Lelani's ponytail will be 3 inches $+\square$ inch, or 4 inches. Every \square months, her hair grows according to the pattern below.

3 in. 4 in. 5 in. 6 in. 7 in. 8 in.

It will take eight sets of two months, or 16 months total, for Lelani's ponytail to reach \square inches.

CHECK Lelani's ponytail grew from 3 inches to 11 inches, a difference of eight inches, in \square months. Since one inch of growth requires two months and $8 \times \square=16$, the answer is correct.

Check Your Progress RUNNING Samuel ran 2 miles

 on his first day of training to run a marathon. On the third day, Samuel increased the length of his run by 1.5 miles. If this pattern continues every three days, how many miles will Samuel run on the $27^{\text {th }}$ day?
2-8 Dividing Integers

- Standard 6NS2.3 Solve addition, subtraction, multiplication, and division problems, including those arising in concrete situations, that use positive and negative integers and combinations of these operations.

EXAMPLES Dividing Integers with Different Signs

Main Idea

Divide integers.

KEy CONCEPTS

Dividing Integers with Different Signs The quotient of two integers with different signs is negative.

Dividing Integers with the Same Sign The quotient of two integers with the same sign is positive.

Homework Assignment

Page(s):
Exercises:
(1) Find $51 \div(-3)$.
$51 \div(-3)=\square$

The
 is negative.

2 Find $\frac{-121}{11}$.

$$
\frac{-121}{11}=\square
$$

The \square have different signs.

The quotient is \square

EXAMPLES Dividing Integers with the Same Sign

3 Find $-12 \div(-2)$.

Check Your Progress Find each quotient.

a. $36 \div(-9)$
b. $\frac{45}{-9}$
c. $-24 \div(-8)$

EXAMPLE

(4) ALGEBRA Evaluate $-18 \div x$ if $x=-2$.
$-18 \div x=-18 \div(\square)$
Replace x with -2 .
\square Divide. The quotient is positive.

Check Your Progress

ALGEBRA Evaluate $g \div h$ if $g=21$ and $h=-3$.

STUDY GUIDE

FOLDABLES

Use your Chapter 2 Foldable to help you study for your chapter test.

VOCABULARY PUZZLEMAKER

To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 2, go to:
glencoe.com

BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (pages 32-33) to help you solve the puzzle.

2-1

Integers and Absolute Value
Express each of the following in words.

1. +7 \square
2. -7 \square
3. $|7|$ \square
4. On the following number line, draw an oval around the negative integers and label them negative. Draw a rectangle around the positive integers and label them positive.

2-2

Comparing and Ordering Integers
Write each expression in words.
5. $-1<0$ \square
6. $3>-2$ \square

2-3

The Coordinate Plane

Look at the coordinate plane at the right. Name the ordered pair for each point graphed.
7. A

8. B

9. C

In the coordinate plane above, identify the quadrant in which each lies.
10. A \square
11. B \square
12. C \square

2-4

Adding Integers

Tell how you would solve each of the following on a number line, then add.
13. $-7+(-9)$

14. $-7+9$

15. How many units away from 0 is the number 17 ?

16. How many units away from 0 is the number -17 ? \square
17. What are 17 and -17 called?

2-5

Subtracting Integers

Find each difference. Write an equivalent addition sentence for each.
18. $1-5$ \square
19. $-2-1$ \square
20. $-3-4$ \square

2-6

Multiplying Integers

Choose the correct term to complete each sentence.
21. The product of two integers with different signs is (positive, negative).
22. The product of two integers with the same sign is (positive, negative).

Find each product.
23. (-6)(-4) \square 24. $-8(5)$ \square
25. $-2(3)(-4) \square$

2-7

Problem-Solving Investigation: Look for a Pattern
26. CANS A display of soup cans at the end of a store aisle contains 1 can in the top row and 2 cans in each additional row beneath it. If there are 6 rows in the display, how many cans are in the sixth row?
\square

2-8

Dividing Integers

Write two division sentences for each of the following multiplication sentences.
\square

ARE YOU READY FOR THE CHAPTER TEST?

Checklist

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 2.

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 2 Practice Test on page 123 of your textbook as a final check.

I used my Foldables or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 2 Study Guide and Review on pages 119-122 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may want to take the Chapter 2 Practice Test on page 123 of your textbook.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 2 Foldables.
- Then complete the Chapter 2 Study Guide and Review on pages 119-122 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 2 Practice Test on page 123 of your textbook.

Student Signature

Teacher Signature

Algebra: Linear Equations and Functions

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.

BUILD YOUR VOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 3. As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

Vocabulary Term	Found on Page	Definition	Description or Example
Addition Property of Equality			
Division Property of Equality			
formula			
inverse operations			

(continued on the next page)

Vocabulary Term	Found on Page	Definition	Description or Example
linear equation			

3-1 Writing Expressions and Equations

Standard 6AF1.2 Write and evaluate an algebraic expression for a given situation, using up to three variables.

EXAMPLE Write a Phrase as an Expression

Main Idea

- Write verbal phrases and sentences as simple algebraic expressions and equations.

FOLDABLES

ORGANIZE IT

Write two phrases and their algebraic expressions under the Expressions tab.

(1) Write the phrase twenty dollars less the price of a movie ticket as an algebraic expression.

twenty dollars less the price of a movie ticket

Let \square $=$ the price of a movie ticket.

Check Your Progress
Write the phrase five more inches of snow than last year's snowfall as an algebraic expression.

EXAMPLES Write Sentences as Equations

Write each sentence as an algebraic equation.
(2) A number less 4 is 12.

A number less 4 is 12 .
Let \square represent a number.
\square

3 Twice a number is 18.

Homework Assignment

3-2 Solving Addition and Subtraction Equations

- Standard 6AF1.1 Write and solve one-step linear equations in one variable. Standard 6MR2.4 Use a variety of methods, such as words, numbers, symbols, charts, graphs, tables, diagrams, and models, to explain mathematical reasoning.

Main Idea

- Solve addition and subtraction equations.

BUILD YOUR VOCABULARY (pages 55-56)

Inverse operations, such as $\square 2$ from the equation $x+2=6$, \square each other.

EXAMPLES Solve an Addition Equation

(1) Solve $14+y=20$. Check your solution.
$14+y=20 \quad$ Write the equation.

Key Concepts

Subtraction Property of Equality. If you subtract the same number from each side of an equation, the two sides remain equal.

Addition Property of Equality. If you add the same number to each side of an equation, the two sides remain equal.

FOLDABLES Write these properties in your own words under the Equations tab.

each side. Simplify.

Check

$$
14+y=20
$$

$14+\square=20$

$$
\square=20
$$

Write the original equation.
Replace y with \square

The solution is \square.
(2) Solve $a+7=6$. Check your solution.

Check

$$
a+7=6
$$

Write the equation.
Subtract \square from each side.
Simplify.

Write the original equation.
Replace a with

Simplify. The solution is

Check Your Progress

Solve each equation.
a. $-6=x+4$

b. $m+9=22$

EXAMPLE

3 FRUIT A grapefruit weighs 11 ounces, which is 6 ounces more than an apple. How much does the apple weigh?

Words	A grapefruit's is weight		more tha	an apple's weight.
Variable	Let a represent the apple's weight			
Equation	11	$=6$	$+\quad a$	
	Write the equation.			
$\underline{-6=-6}$	Subtract		from each side.	
$5=a$	Simplify.			

The apple weighs \square ounces.

Check Your Progress EXERCISE Cedric ran 17 miles this week, which is 9 more miles than he ran last week. How many miles did he run last week?

EXAMPLE Solve a Subtraction Equation

4) Solve $12=z-8$.

12 $=z-8$ +8 +8	Write the equation.	
\square	Add 8 to each side.	
\square		Simplify.

The solution is \square.

Check Your Progress
Solve $w-5=27$.

3-3 Solving Multiplication Equations

- Standard 6AF1.1 Write and solve one-step linear equations in one variable. Standard 6AF2.3 Solve problems involving rates, average speed, distance, and time.

EXAMPLES Solving Multiplication Equations

Main Idea

- Solve multiplication equations.

Key Concept

Division Property of Equality If you divide each side of an equation by the same nonzero number, the two sides remain equal.

FOLDABLES Record the Division Property of Equality in your own words under the Equation tab.
(1) Solve $39=3 y$. Check your solution.
$39=3 y$

Check

$39=3 y$
Write the equation.
$39 \stackrel{?}{=} 3$ \square Replace y with \square . Is this sentence true?
\square
$39=$

So, the solution is \square
2) Solve $-4 z=60$. Check your solution.

$$
-4 z=60
$$

$$
z=\square
$$

Write the equation.

Divide each side of the equation by \square
$60 \div(-4)=\square$

Check

$$
-4 z=60 \quad \text { Write the equation. }
$$

$$
-4(\square) \stackrel{?}{=} 60
$$

Replace z with \square Is this sentence true?

$$
\square=60
$$

So, the solution is \square

3-4 Problem-Solving Investigation: Work Backward

EXAMPLE Use the Work Backward Strategy

Main Idea

- Solve problems by working backward.

Standard 6MR2.7 Make precise calculations and check the validity of the results from the context of the problem.

- Standard 6NS2.3 Solve addition, subtraction, multiplication, and division problems, including those arising in concrete situations, that use positive and negative integers and combinations of these operations.

HOMEWORK ASSIGNMENT

Exercises: work to go home before he heads to the airport. He needs to be at the airport at 1:15 P.M. It takes him 45 minutes to drive to the airport from home, 30 minutes to pack at home, and 20 minutes to drive from work to home. What time should he leave work?

3-5 Solving Two-Step Equations

Preparation for Standard 7AF4.1 Solve two-step linear equations and inequalities in one variable over the rational numbers, interpret the solution or solutions in the context from which they arose, and verify the reasonableness of the results.

MAIN IDEA

- Solve two-step equations.

BUILD YOUR VOGABULARY (pages 55-56)

 A two-step equation has \square different \square
EXAMPLES Solve Two-Step Equations

Solve $4 x+3=19$. Check your solution.

Check

Write the original equation.

Simplify.

The solution is

Solve $6+5 y=26$.

Write the equation.

$$
\frac{5 y}{5}=\frac{20}{5}
$$

Simplify.

$$
y=\square
$$

Remember It

Always check your solutions by replacing the variable with your answer and simplifying.
(3) Solve $-3 c+9=3$.

The solution is \square
4) Solve $0=6+3 t$.

Check Your Progress

Solve each equation.
a. $3 t-7=14$

c. $-8 k+7=31$

b. $4+2 w=18$

d. $0=-4 x+32$

EXAMPLE

PARKS There are 76 thousand acres of state parkland in Georgia. This is 4 thousand acres more than three times the number of acres of state parkland in Mississippi. How many acres of state parkland are there in Mississippi?

$+4,000=76,000$

Write the equation.
 each side.

Simplify.

Divide each side by \square.

Simplify.

There are \square acres of state parkland in Mississippi.

Check Your Progress

 BASEBALL Matthew had 64 hitsseason. This was 8 less than twice
ry had. How many hits did Gregory during last year's baseball season. This was 8 less than twice the number of hits Gregory had. How many hits did Gregory have during last year's baseball season?

Homework Assignment

3-6 Measurement: Perimeter and Area

MAIN IDEA

- Find the perimeters and areas of figures.

Standard 6AF3.1 Use variables in expressions describing geometric quantities (e.g., $P=2 w$ $+2 \ell, A=\frac{1}{2} b h, C=\pi d$ -the formulas for the perimeter of a rectangle, the area of a triangle, and the circumference of a circle, respectively). Standard 6AF3.2 Express in symbolic form simple relationships arising from geometry.

KEy CONCEPT

Perimeter of a Rectangle The perimeter P of a rectangle is twice the sum of the length ℓ and width w.

BUILD YOUR VOGABULARY (pages 55-56)

The \square around a geometric figure is called the perimeter.

EXAMPLE Find the Perimeter of a Rectangle

(1) Find the perimeter of the figure.

$P=2 \ell+2 w$
Perimeter of a rectangle
$P=2(18)+2(2)$

$$
\ell=\square, w=\square
$$

Multiply.
$P=\square$ Add.
The perimeter is 40 \square

Check Your Progress Find the perimeter of a rectangle whose length is 2.35 centimeters and width is 11.9 centimeters.

EXAMPLE

(2) ART A painting has a perimeter of 68 inches. If the width of the painting is 13 inches, what is its length?
$P=2 \ell+2 w$
$68=2 \ell+2(\square)$
Perimeter of a rectangle
Replace P with 68 and w with 13.
$68=2 \ell+\square$
$68-26=2 \ell+26-26 \quad$ Subtract 26 from each side.

$21=\ell$

Simplify.
Divide each side by 2.

Check Your Progress

GARDENS A tomato garden has a perimeter of 22.2 feet. If the length of the garden is 6.3 feet, find the width.

BUILD YOUR VOCABULARY (pages 55-56)

The area is the measure of the \square enclosed by a figure.

EXAMPLE Find The Area of a Rectangle

Key Concept

Area of a Rectangle The area A of a rectangle is the product of the length ℓ and width w.

Homework Assignment

(3) FRESHWATER Find the area of the surface of the reservoir shown below.

$A=\ell \cdot w$

Replace ℓ with 4 and w with

The area is 2.5

Check Your Progress

PAINTING Sue is painting a wall that measures 18.25 feet long and 8 feet high. Find the area of the surface Sue will be painting.

18.25 ft

3-7 Functions and Graphs

Standard 6AF2.3 Solve problems involving rates, average speed, distance, and time. 6MR2.4 Use a variety of methods, such as words, numbers, symbols, charts, graphs, tables, diagrams, and models, to explain mathematical reasoning.

EXAMPLE

Main Idea

Graph linear equations.

Remember It

When x and y are used in an equation, x usually represents the input and y usually represents the output.
(1) WORK The table shows the number of hours Abby worked and her corresponding earnings. Make a graph of the data to show the relationship between the number of hours Abby worked and her earnings.
The ordered pairs $(1,6),(\square, 12),(3, \square)$, and $(4,24)$ represent the function. Graph the ordered pairs.

Hours Worked and Earnings

Number of Hours	Earnings (\$)
1	6
2	12
3	18
4	24

Check Your Progress VIDEOS Make a graph of the data
in the table that shows the relationship between the amount David would pay and the number of movies he rents.

Number of Videos	Amount (\$)
1	$\$ 3.50$
2	$\$ 7.00$
3	$\$ 10.50$
4	$\$ 14.00$

WRITE IT

How many points are needed to graph a line? Why is it a good idea to graph more?
\qquad
\qquad
\qquad

EXAMPLE Graph Solutions of Linear Equations

2) Graph $y=x+3$.

Select any four values for the input x. We chose $2,1,0$, and -1 . Substitute these values for x to find the output y.

\boldsymbol{x}	$\boldsymbol{x}+\mathbf{3}$	\boldsymbol{y}	(x, y)
2	$\square+3$	\square	$(2,5)$
1	$\square+3$	4	\square
0	$0+3$	\square	\square
-1	$\square+3$	2	\square

Four solutions are
$(2,5)$,

Check Your Progress
Graph $y=3 x-2$

EXAMPLE Represent Real-World Functions

3 ANIMALS Blue whales can reach a speed of $\mathbf{3 0}$ miles per hour. The equation $d=30 t$ describes the distance d that a whale swimming at that speed can travel in time t. Assuming that a whale can maintain that speed, represent the function with a graph.

Step 1 Select four values for t. Select only positive numbers since t represents time. Make a function table.

\boldsymbol{t}	$\mathbf{3 0 t}$	\boldsymbol{d}	$(\boldsymbol{t}, \boldsymbol{d})$
2	$30(2)$	\square	$(2,60)$
3	$30(3)$	90	\square
5	$30(5)$	\square	\square
6	30	180	\square

Homework

 AssignmentPage(s):
Exercises:

BRINGING IT ALL TOGETHER

STUDY GUIDE

FOLDABLES

Use your Chapter 3 Foldable to help you study for your chapter test.

VOCABULARY PUZZLEMAKER

To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 3, go to:
glencoe.com

BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (pages 55-56) to help you solve the puzzle.

3-1

Writing Expressions and Equations

Match the phrases with the algebraic expressions that represent them.

1. seven plus a number \square a. $7-n$
2. seven less a number \square b. $7 \cdot n$
c. $n-7$
3. seven divided by a number

d. $\frac{n}{7}$
4. seven less than a number \square
Write each sentence as an algebraic equation.
5. The product of 4 and a number is 12 .
6. Twenty divided by y is equal to -10 .

\square

3-2

Solving Addition and Subtraction Equations

7. Explain in words how to solve $a-10=3$.
\square

Solve each equation. Check your solution.
8. $w+23=-11$

9. $35=z-15$

3-3

Solving Multiplication Equations

10. To solve $-27=-3 d$, divide each side by \square
Solve each equation. Check your solution.
11. $36=6 k$

12. $-7 z=28$

3-4

Problem-Solving Investigation: Work Backward
13. AGE Bradley is four years older than his brother Philip. Philip is 7 years younger than Kailey, who is 2 years older than Taneesha. If Taneesha is 11 years old, how old is Bradley?

3-5

Solving Two-Step Equations
14. Describe in words each step shown for solving $12+7 s=-9$.

$$
\begin{aligned}
12+7 s & =-9 \\
-12 & -12 \\
7 s & =-21 \\
\frac{7 s}{7} & =\frac{-21}{7} \\
s & =-3
\end{aligned}
$$

\square
\square
\square
\square
15. Number the steps in the correct order for solving the equation $-4 v+11=-5$.

3-6

Measurement: Perimeter and Area
Find the perimeter and area of each rectangle.
16.

17.

18. FRAMING Marcia wants to frame her favorite painting. If the frame is 3.25 feet wide and the perimeter is 15.7 feet, find the width of the frame.

3-7

Functions and Graphs

19. Complete the function table. Then graph the function.

x	$2 x-1$	y
-1		
0		
1		

ARE YOU READY FOR THE CHAPTER TEST?

Checklist

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 3.

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 3 Practice Test on page 173 of your textbook as a final check.

I used my Foldables or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 3 Study Guide and Review on pages 169-172 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may want to take the Chapter 3 Practice Test on page 173.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 3 Foldable.
- Then complete the Chapter 3 Study Guide and Review on pages 169-172 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 3 Practice Test on page 173.

Fractions, Decimals, and Percents

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin this Interactive Study Notebook to help you in taking notes.

Begin with five sheets of $8 \frac{1}{2} \times 11$ " paper.

STEP 1 Stack five sheets of paper $\frac{3}{4}$ inch apart.

STEP 2 Roll up bottom edges so that all tabs are the same size.

STEP 3 Crease and staple along the fold.

STEP 4 Write the chapter title on the front. Label each tab with a lesson number and title.

BUILD YOUR VOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 4. As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

Vocabulary Term	Found on Page	Definition	Description or Example
bar notation			
common denominator			
composite number [kahm-PAH-zuht]			
equivalent [ih-KWIH-vuh-luhnt] fractions			
factor tree			
greatest common factor (GCF)			
least common denominator (LCD)			
least common multiple (LCM)			
multiple			

(continued on the next page)

Vocabulary Term	Found on Page	Definition	Description or Example
percent			
prime factorization			
prime number			
ratio			
rational number			
repeating decimal			

Main Idea

- Find the prime factorization of a composite number.

Preparation for Standard 6NS2.4
Determine the least common multiple and the greatest common divisor of whole numbers; use them to solve problems with fractions (e.g., to find a common denominator to add two fractions or to find the reduced form for a fraction).

BUILD YOUR VOGABULARY (pages 77-78)

A prime number is a whole number greater than 1 that has exactly \square factors, \square and \square.

A composite number is a whole number greater than

Every \square number can be written as a product of prime numbers exactly one way called the prime factorization.

A factor tree can be used to find the factorization.

EXAMPLES Identify Numbers as Prime or Composite

Determine whether each number is prime or composite.
(1) 63

63 has six factors: 1 ,
 , 7, \square 21, and \square So, it is \square
(2) 29

29 has only two factors: \square and \square
So it is \square

Check Your Progress
Determine whether each number is prime or composite.
a. 41
b. 24

EXAMPLE Find the Prime Factorization

Remember It

Multiplication is commutative, so the order of factors does not matter.

Homework

 AssignmentPage(s):
Exercises:

4-2 Greatest Common Factor

Main Idea

- Find the greatest common factor of two or more numbers.

BUILD YOUR VOGABULARY (pages 77-78)

A Venn diagram uses \square to show how elements among sets of numbers or objects are related.

The \square number that is a common \square to two or more numbers is called the greatest common factor (GCF).

EXAMPIE Find the Greatest Common Factor

FOLDABLES

ORGANIZE IT

Under the tab for Lesson 4-2, take notes on finding the greatest common factor of two or more numbers.

(1) Find the GCF of 28 and 42.

METHOD 1 First, list the factors of 28 and 42.
factors of 28: \square
factors of 42: \square
The common factors are \square
So, the GCF is \square
METHOD 2 Use prime factorization.

The greatest common factor or GCF is 2×7 or \square

Check Your Progress

Find the GCF of 18 and 45.

EXAMPLE Find the GCF of Three Numbers

Write IT

Which method of finding the GCF of two or more numbers do you prefer using to find the GCF of small numbers? for large numbers?
\qquad
\qquad
\qquad
\qquad
\qquad

2 Find the GCF of 21, 42, and 63.

METHOD 1 First, list the factors of 21, 42, and 63.
factors of $21: 1,3,7$, \square
factors of $42: 1,2,3,6,7,14,21,42$
factors of 63: 1, 3, \square 9, 21, 63

The common factors of 21,42 , and 63 are \square
\square
\square and \square
So, the greatest common factor or GCF is \square
METHOD 2 Use prime factorization.
$21=$
$42=2 \times 3 \times\left(\begin{array}{l}3 \\ 63 \\ =3 \times 7 \\ 3\end{array} \times 7\right.$
Circle the common factors.

The common prime factors are 3 and 7 .
The GCF is \square \times \square , or \square

Find the GCF of each set of numbers.
a. 24,48 , and 60

b. 24,36

(3) ART Searra wants to cut a 15-centimeter by 25-centimeter piece of tag board into squares for an art project. She does not want to waste any of the tag board and she wants the largest squares possible. What is the length of the side of the squares she should use?
The largest length of side possible is the GCF of the dimensions of the tag board.

The \square of 15 and 25 is \square. So, Searra should use squares with sides measuring \square centimeters.

Check Your Progress

CANDY Alice is making candy baskets using chocolate hearts and lollipops. She has 32 chocolate hearts and 48 lollipops. She wants to have an equal number of chocolate hearts and lollipops in each basket. Find the greatest number of chocolate hearts and lollipops Alice can put in each basket.

Homework

 AssignmentPage(s):
Exercises:

4-3 Problem-Solving Investigation: Make an Organized List

EXAMPLE Make an Organized List

Main Idea

- Solve problems by making an organized list.

Standard 6MR1.1

 Analyze problems by identifying relationships, distinguishing relevant from irrelevant information, identifying missing information, sequencing and prioritizing information, and observing patterns. Preparation for 6SDAP3.1 Represent all possible outcomes for compound events in an organized way (e.g., tables, grids, tree diagrams) and express the theoretical probability of each outcome.
Homework Assignment

PASSWORD In order to log on to the computer at school, Miranda must use a password. The password is 2 characters. The first character is the letter A or B followed by a single numeric digit. How many passwords does Miranda have to choose from?

EXPLORE You know that the password has \square characters and that the first character is either the letter

or B. You know that the second character is a numeric digit. You need to know how many passwords can be created.

PLAN Make an organized list.
SOLVE

A	B	A	B	A	B		B	A	B
0	0		1	2	2	3	3	4	4

A	B	A	B	A		A	B	A	B
5	5		6	7	7	8	8	9	9

There are \square passwords.
CHECK Draw a tree diagram to check the result.

Check Your Progress

DELI At a deli, customers can choose from ham or turkey on wheat, rye, or multi-grain bread. How many sandwich possibilities are there?

4-4 Simplifying Fractions

Main Idea

- Write fractions in simplest form.

BUILD YOUR VOGABULARY (pages 77-78)

Fractions having the same \square are called equivalent fractions.

A fraction is in simplest form when the greatest common factor of the \square and the denominator is 1 .

EXAMPLES Write Fractions in Simplest Form

FOLDABLES

ORGANIZE IT

Under the tab for Lesson 4-4, take notes about simplifying fractions. Be sure to include an example.

Write each fraction in simplest form.

$\frac{12}{45}$
To write a fraction in simplest form, you can divide by common factors or divide by the \square Let's divide by the GCF.

First, find the GCF of the \square and
\square
factors of 12 : \square
factors of 45: \square

The GCF of 12 and 45 is \square
Then, divide the numerator and the denominator by \square
$\frac{12}{45}=\frac{12 \div \square}{45 \div \square}=\square$

So, $\frac{12}{45}$ written in simplest form is $\frac{4}{15}$.
(2) $\frac{40}{64}$
factors of 40: 1,2 , \square , 5, 8, 10, 20, \square factors of $64: 1,2,4,8, \square, 32,64$

The GCF of 40 and 64 is \square

So, $\frac{40}{64}$ written in simplest form is \square

Check Your Progress

Write each fraction in simplest form.
a. $\frac{32}{40}$
b. $\frac{28}{49}$ \square

EXAMPLE

3 MUSIC Two notes form a perfect fifth if the simplified fraction of the frequencies of the notes equals $\frac{3}{4}$. If note D $=294$ Hertz and note $G=392$ Hertz, do they form a perfect fifth?

$$
\begin{aligned}
\frac{\text { frequency of note } \mathrm{D}}{\text { frequency of note } \mathrm{G}} & =\square \\
& =\frac{\stackrel{1}{2} \times 3 \times \frac{1}{7} \times \frac{1}{7}}{\frac{2}{2} \times 2 \times 2 \times \underset{1}{7} \times \underset{1}{7}}=\square
\end{aligned}
$$

The fraction of the frequency of the notes D and G is So, the two notes do form a perfect fifth.

Check Your Progress

In a bag of 96 marbles, 18 of the marbles are black. Write the fraction of black marbles in simplest form.

4-5 Fractions and Decimals

Preparation for Standard 6NS1.1 Compare and order positive and negative fractions, decimals, and mixed numbers and place them on a number line.

EXAMPLES Use Mental Math

Main Idea

- Write fractions as terminating or repeating decimals and write decimals as fractions.

FOLDABLES

OrGANIZE IT

Under the tab for Lesson 4-5, take notes on writing fractions as decimals and writing decimals as fractions. Include examples.

Write each fraction or mixed number as a decimal. (1) $\frac{9}{10}$

So, $\frac{9}{10}=\square$
(2) $7 \frac{3}{5}$
$7 \frac{3}{5}=7+\square \quad$ Think of it as a sum.
$=7+\square$ You know that $\frac{3}{5}=0.6$.
$=7.6 \quad$ Add mentally.
So, $7 \frac{3}{5}=\square$.

Check Your Progress
Write each fraction or mixed number as a decimal.
a. $\frac{7}{25}$

b. $9 \frac{1}{5}$

EXAMPLE Use Pencil and Paper or a Calculator

(3) Write $\frac{1}{8}$ as a decimal.

METHOD 1 Use paper and pencil.
0.125
$8 \longdiv { 1 . 0 0 0 }$
Divide

by \square
-8
20
-16
40
-40
Division ends when the remainder is 0 .

Write IT

Write the following decimal equivalents: $\frac{1}{2}, \frac{1}{3}, \frac{2}{3}, \frac{1}{4}, \frac{3}{4}, \frac{1}{5}, \frac{1}{10}, \frac{1}{8}$.
\qquad
METHOD 2 Use a calculator.
$1 \div 8$ ENTER \square
So, $\frac{1}{8}=$ \square

Check Your Progress Write each fraction or mixed number as a decimal.
a. $\frac{2}{5}$

b. $3 \frac{5}{8}$

BUILD YOUR VOGABULARY (pages 77-78)

A terminating decimal is a decimal whose digits \square
Repeating decimals have a pattern in the digits that repeats \square.

Bar notation is used to indicate that a number repeats forever by writing a \square over the \square that repeat.

EXAMPLES Write Fractions as Repeating Decimals
(4) Write $\frac{1}{11}$ as a decimal.

METHOD 1 Use paper and pencil.
$\frac{0.0909 \ldots}{1 1 \longdiv { 1 . 0 0 0 0 }}$
$\frac{0}{100}$
100

99

METHOD 2 Use a calculator.
$1 \div 11$ ENTER 0.0909...
So, $\frac{1}{11}=\square$.
Check Your Progress Write $2 \frac{5}{11}$ as a decimal. Use bar notation if the decimal is a repeating decimal.

EXAMPLE Use a Power of 10

(5) CEREAL Jorge read that 0.72 of his favorite cereal was

Homework Assignment

Page(s):
Exercises:
\square
whole-grain wheat. Find what fraction of his cereal, in simplest form, is whole-grain wheat.
$0.72=\frac{72}{100} \quad$ The final digit, \square, , is in the hundredths place.
$=\frac{18}{25} \quad$ Simplify.
So, \square of the cereal is whole-grain wheat.

Check Your Progress

EXERCISE Jeanette ran 0.86 of a mile. What fraction of a mile did she run?

4-6 Fractions and Percents

Preparation for Standard 6NS1.1 Compare and order positive and negative fractions, decimals, and mixed numbers and place them on a number line.

MAIN IDEA

- Write fractions as percents and percents as fractions.

Key Concept

Percent A percent is a ratio that compares a number to 100.

EXAMPLES Write Ratios as Percents

Write each ratio as a percent.

(1) Diana scored 63 goals out of 100 attempts.

You can represent 63 out of 100 with a model.
$\frac{63}{100}=\square$

2 In a survey, 31.9 out of 100 people on average preferred crunchy peanut butter.

Check Your Progress

Write each ratio as a percent.
a. Alicia sold 34 of the 100 cookies at the bake sale.

b. On average, 73.4 out of 100 people preferred the chicken instead of the roast beef.

EXAMPLE Write a Fraction as a Percent

FOLDABLES

Organize IT

Under the tab for Lesson 4-6, take notes on writing fractions as percents and percents as fractions. Include examples.

Homework Assignment

Page(s):
Exercises:

EXAMPLE

(3) Write $\frac{16}{25}$ as a percent.

Since $100 \div 25=4, \ldots \rightarrow \frac{16}{25}=\frac{64}{100} \leftarrow \underbrace{\times 4}_{\times 4} \leftarrow \begin{aligned} & \ldots \text { multiply the } \\ & \text { numerator and } \\ & \text { denominator by } 4 .\end{aligned}$
$\frac{64}{100}=64 \%$
So, $\frac{16}{25}=64 \%$.

Check Your Progress Write $\frac{11}{20}$ as a percent.
\square
(4) FISHING William caught and released 20 trout on his fishing trip. Twelve of them were rainbow trout. What percent of the trout he caught were rainbow trout?

William caught \square rainbow trout out of 20 trout.

$$
=60 \% \quad \frac{60}{100}=60 \%
$$

So, \square of the trout William caught were rainbow trout.

Check Your Progress

READING Mitchell read 18 out of 25 chapters of a book during his winter vacation. What percent of chapters did he read?

4-7 Percents and Decimals

Preparation for Standard 6NS1.1 Compare and order positive and negative fractions, decimals, and mixed numbers and place them on a number line.

EXAMPLES Write Percents as Decimals

MAIN IDEA

Write percents as decimals and decimals as percents.

Key Concept

Writing Percents as Decimals To write a percent as a decimal, divide the percent by 100 and remove the percent symbol.

1) Write 47.8% as a decimal.

To write a percent as a decimal, you can either first write the percent as a \square or divide mentally. Let's divide mentally.

$$
\begin{aligned}
47.8 \% & =47.8 & & \text { Remove the \% symbol and divide by } 100 . \\
& =0.478 & & \text { Add leading zero. }
\end{aligned}
$$

So, $47.8 \%=$ \square
2 POPULATION According to the Administration on Aging, about $28 \frac{1}{5} \%$ of the population of the United States is 19 years of age or younger. Write $28 \frac{1}{5} \%$ as a decimal.

$28 \frac{1}{5} \%$	$=28.2 \%$		Write $\frac{1}{5}$ as 0.2.
	$=28.2$		Remove the \% symbol and divide by 100.
	$=\square$		Add leading zero.

So, $28 \frac{1}{5} \%=0.282$.

Check Your Progress
a. Write 83.2% as a decimal.
b. AMUSEMENT PARKS A popular amusement park reports that $17 \frac{1}{10} \%$ of its visitors will return at least three times during the year. Write $17 \frac{1}{10} \%$ as a decimal.

EXAMPLE Write Decimals as Percents
(3) Write 0.33 as a percent.

METHOD 1 Write the decimal as a fraction.

$$
\begin{aligned}
0.33 & =\frac{33}{100} \\
& =\square \quad \text { Write the fraction as a percent. }
\end{aligned}
$$

METHOD 2 Multiply mentally.

$$
\begin{aligned}
0.33 & =0.33 \\
& =33 \% \quad \text { Multiply by } 100 .
\end{aligned}
$$

So, $0.33=\square$

Check Your Progress
Write 0.7 as a percent.

EXAMPLE

4 POPULATION In 1790, about 0.05 of the population of the United States lived in an urban setting. Write 0.05 as a percent.

Homework

 AssignmentPage(s):
Exercises:

4-8 Least Common Multiple

Main Idea

- Find the least common multiple of two or more numbers.
- Standard 6NS2.4 Determine the least common multiple and the greatest common divisor of whole numbers; use them to solve problems with fractions (e.g., to find a common denominator to add two fractions or to find the reduced form for a fraction).

FOLDABLES

Organize IT

Under the tab for Lesson 4-8, take notes about least common multiples. Be sure to include examples.

BUILD YOUR VOCABULARY (pages 77-78)

A multiple is the \square of a number and any
\square
The least common denominator (LCM) of two or more numbers is the \square of their common multiples, excluding \square

EXAMPLES Find the LCM

1) Find the LCM of 4 and 6.

METHOD 1 List the nonzero multiples.
multiples of 4:

multiples of 6:

The common multiples are \square , 24, 36...

The LCM of 4 and 6 is \square
METHOD 2 Use prime factorization.

$6=\square$.

The LCM is $2 \cdot 2 \cdot 3$ or \square

(2) Find the LCM of 4 and 15.

Use Method 2. Find the prime factorization of each number.

$15=\square \times \square$
The prime factors of 4 and 15 are \square
The LCM of 4 and 15 is \square $\times 3 \times 5$, or \square

Check Your Progress

 of numbers.a. 6,14
\square
b. 8,12

EXAMPLE

3 WORK On an assembly line, machine A must be oiled every 18 minutes, machine B every 24 minutes, and machine C every 48 minutes. If all three machines are turned on at the same time, in how many minutes will all three machines need to be oiled at the same time?

First find the LCM of 18,24 , and 48.
$18=2 \times 3 \times 3$ or 2×3^{2}
$24=2 \times 2 \times 2 \times 3$ or $2^{3} \times 3$
$48=2 \times 2 \times 2 \times 2 \times \square$ or $2^{4} \times 3$
The LCM of 18,24 , and 48 is $2^{4} \times 3^{2}$ or $\square \times 9$, which is 144 .
So, all three machines will need to be oiled at the same time in
\square minutes.

Check Your Progress

LIGHTS Brenda put up three different strands of decorative blinking lights. The first strand blinks every 6 seconds while the second strand blinks every 8 seconds. The third strand blinks every 4 seconds. If all strands blink at the same time, in how many seconds will they again blink at the same time?

4-9 Comparing and Ordering Rational Numbers

Main Idea

Compare and order fractions, decimals, and percents.

Standard 6NS1.1 Compare and order positive and negative fractions, decimals, and mixed numbers and place them on a number line. - Standard 6NS2.4 Determine the least common multiple and the greatest common divisor of whole numbers; use them to solve problems with fractions (e.g., to find a common denominator to add two fractions or to find the reduced form for a fraction).

ReView It

Explain how to write $\frac{48}{60}$ as a decimal.
(Lesson 4-5)
\qquad
\qquad
\qquad
\qquad
\qquad

BUILD YOUR VOGABULARY (pages 77-78)

A common denominator is a common multiple of two or more \square.

The least common denominator (LCD) is the \square of the denominators.

Rational numbers are numbers that can be written as fractions and include fractions, terminating and repeating decimals, and integers.

EXAMPIES Compare Rational Numbers

Replace each \bigcirc with $<,>$, or $=$ to make a true sentence.
(1) $-3 \frac{3}{8}-3 \frac{7}{8}$

Graph each rational number on a number line.
Mark off equal size increments of \quad between -4 and \square

The number line shows that $-3 \frac{3}{8} \square-3 \frac{7}{8}$.
(2) $\frac{5}{12} \bigcirc \frac{7}{16}$

The LCD of the denominators, 12 and 16 , is 48.

Check Your Progress
Replace each with $<,>$, or $=$ to make a true sentence.
a. $-2 \frac{4}{5} \bigcirc-2 \frac{3}{5}$
b. $\frac{5}{8} \bigcirc \frac{7}{12}$

EXAMPLE

KEy Concept

Rational Numbers Rational numbers are numbers that can be written as fractions.

Foldables Takes notes on rational numbers. Be sure to include examples.

3 DOGS According to the Pet Food Manufacturer's Association, 11 out of 25 people own large dogs and 13 out of 50 people own medium dogs. Do more people own large or medium dogs?
Write $\frac{11}{25}$ and $\frac{13}{50}$ as decimals and compare.
$\frac{11}{25}=\square \quad \frac{13}{50}=\square$
Since $0.44>0.26, \frac{11}{25} \square \frac{13}{50}$. So, a greater fraction of people own \square dogs than own \square dogs.

Check Your Progress

A survey showed that 21 out of 50 people stated that summer is their favorite season and 13 out of 25 people prefer fall. Do more people prefer summer or fall?

Homework

 AssignmentPage(s):
Exercises:

BRINGING IT ALL TOGETHER

STUDY GUIDE

FOLDABLES

Use your Chapter 4 Foldable to help you study for your chapter test.

VOCABULARY PUZZLEMAKER

To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 4, go to:
glencoe.com

BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (pages 77-78) to help you solve the puzzle.

4-1
 Prime Factorization

Underline the correct terms to complete each sentence.

1. A factor tree is complete when all of the factors at the bottom of the factor tree are (prime, composite) factors.
2. The order of the factors in prime factorization (does, does not) matter.

Find the prime factorization of each number.
3. 36

4. 48

5. 250

6. 60

4-2

Greatest Common Factor

Complete each sentence.

7. A shows how elements of sets of numbers are related.
8. A prime factor is a factor that is a \square number.
9. You can find the \square of two numbers by
\square the common prime factors.

Find the common prime factors and GCF of each set of numbers.
10. 20,24 \square 11. 28,42 \square

4-3

Problem-Solving Investigation: Make an Organized List
12. CLOTHES Lucas has a pair of brown pants and a pair of black pants. He has a white dress shirt, a blue dress shirt, and a tan dress shirt. He has a striped tie and a polka-dotted tie. Assuming he can wear any combination, how many combinations of one pair of pants, one dress shirt, and one tie can Lucas wear?
\square

4-4
 Simplifying Fractions

Complete the sentence.

13. To find the simplest form of a fraction, \square the numerator and the denominator by the \square
Write each fraction in simplest form.
14. $\frac{18}{24}$
15. $\frac{15}{60}$
\square

4-5

Fractions and Decimals
Write each fraction or mixed number as a decimal. Use bar notation if the decimal is a repeating decimal.
16. $3 \frac{2}{3} \square$
17. $5 \frac{3}{4}$

18. $\frac{2}{5} \square$
19. $7 \frac{3}{8} \square$
20. $6 \frac{1}{2} \square$
21. $\frac{7}{10}$

4-6

Fractions and Percents

22. Write the ratio that compares 4 to 25 in three different ways.

23. Write the ratio in exercise 23 as a percent. \square
24. Write 88% as a fraction in simplest form. \square
25. Write $\frac{9}{20}$ as a percent. \square

4-7

Percents and Decimals
Write each percent as a decimal.
26. 69% \square
27. 3\% \square
28. $32 \frac{1}{4} \%$ \square

Write each decimal as a percent.
29. 0.47 \square

4-8

Least Common Multiple
30. 0.5775
\square
31. 0.09 \square

Find the LCM of each set of numbers.
32. 15,36 \square 33. 21, 70 \square
34. 16, 20 \square 35. 6, 9, 24 \square
36. $12,18,30$ \square 37. 14, 28, 35 \square

4-9

Comparing and Ordering Rational Numbers
Replace each - with $<$,$\rangle , or =$ to make each sentence true.
39. $\frac{21}{49} \bigcirc \frac{18}{63} \square$

Checklist

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 4.

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 4 Practice Test on page 225 of your textbook as a final check.

I used my Foldables or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 4 Study Guide and Review on pages 221-224 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may want to take the Chapter 4 Practice Test on page 225 of your textbook.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 4 Foldables.
- Then complete the Chapter 1 Study Guide and Review on pages 221-224 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 4 Practice Test on page 225 of your textbook.

Student Signature

Teacher Signature

Applying Fractions

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.

Begin with a sheet of 11 by 17 " paper, four index cards, and glue.

STEP 1 Fold the paper in half widthwise.

STEP 2 Open and fold along the length about $2 \frac{1}{2}^{\prime \prime}$ from the bottom.

STEP 3 Glue the edges on either side to form two pockets.

STEP 4 Label the pockets Fractions and Mixed Numbers, respectively. Place two index cards in each pocket.

NOTE-TAKING TIP: When you take notes, place a question mark next to any concepts you do not understand. Be sure to ask your teacher to clarify these concepts before a test.

5

BUILD YOUR VOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 5.
As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

Vocabulary Term	Found on Page	Definition	Description or Example
compatible numbers			
like fractions			
multiplicative inverse			
[MUHL-tuh-PLIH-kuh-tihv]			
reciprocal			
[rih-SIH-pruh-kuhl			

5-1 Estimating with Fractions

Standard 6NS2.1 Solve problems involving addition, subtraction, multiplication, and division of positive fractions and explain why a particular operation was used for a given situation.

EXAMPLES Estimate with Mixed Numbers

Main IDEA

- Estimate sums, differences, products, and quotients of fractions and mixed numbers.

Estimate.

(1) $5 \frac{1}{4}+3 \frac{5}{8}$

The sum is about \square
(2) $7 \frac{3}{4} \times 1 \frac{7}{8}$

The sum is about \square

Check Your Progress

Estimate.
a. $2 \frac{7}{9}+5 \frac{1}{4}$
b. $4 \frac{2}{3} \times 3 \frac{1}{8}$

EXAMPLES Estimate with Fractions

FOLDABLES

Organize IT

Record main ideas, definitions and other notes about estimating with fractions on study cards. Store these cards in the "Fractions" pocket of your Foldable.

Estimate.

3) $\frac{1}{3}+\frac{4}{7}$

$$
\frac{1}{3}+\frac{4}{7} \longrightarrow \square=\square
$$

The sum is about \square

Remember It

Some fractions are easy to round because they are close to 1. Examples of these kinds of fractions are ones where the numerator is one less than the denominator, such as $\frac{4}{5}$ or $\frac{7}{8}$.
(4) $\frac{5}{8}-\frac{1}{4}$

The difference is about

(5) $\frac{5}{6} \div \frac{4}{5}$
$\frac{5}{6} \div \frac{3}{4} \approx \square \div \square=1$
$\frac{5}{6} \approx \square$ and $\frac{3}{4} \approx \square$.

Check Your Progress
Estimate.
a. $\frac{8}{9}+\frac{1}{6}$
b. $\frac{11}{12}-\frac{2}{9}$
c. $\frac{3}{5} \div \frac{7}{8}$
\square
\square

BUILD YOUR VOGABULARY (page 103)

Numbers that are easy to compute \square are called compatible numbers.

EXAMPLE Use Compatible Numbers

(6) Estimate $\frac{3}{4} \times 21$ using compatible numbers.

Homework ASSIGNMENT

Page(s):
Exercises:
$\frac{3}{4} \times 21 \approx \frac{3}{4} \times 20$ or \square
Round 21 to 20, since 20 is divisible by 4

Check Your Progress numbers.

Estimate $\frac{2}{3} \times 17$ using compatible
\square

5-2 Adding and Subtracting Fractions

EXAMPLES Add and Subtract Like Fractions

Main Idea

- Add and subtract fractions.

KEy Concept

Adding and Subtracting Like Fractions To add or subtract like fractions, add or subtract the numerators and write the result over the denominator. Simplify if necessary.

Standard

6NS2.1 Solve problems involving addition, subtraction, multiplication, and division of positive fractions and explain why a particular operation was used for a given situation.

- Standard 6NS2.4 Determine the least common multiple and the greatest common divisor of whole numbers; use them to solve problems with fractions (e.g., to find a common denominator to add two fractions or to find the reduced form for a fraction).

Add or subtract. Write in simplest form.
(1) $\frac{7}{12}+\frac{4}{12}$
$\frac{7}{12}+\frac{4}{12}=\frac{\square}{12}$
Add the \square

Write the sum over the denominator.
2. $\frac{5}{6}-\frac{1}{6}$
$\frac{5}{6}-\frac{1}{6}=\frac{\square}{6}$

numerators.

Write the difference over the \square. Simplify.

EXAMPLES Add and Subtract Unlike Fractions

Add or subtract. Write in simplest form.
3 $\frac{1}{3}+\frac{1}{9}$
To add or subtract unlike fractions, you can use a \square or the \square. Let's use the LCD.
The least common denominator of 3 and 9 is \square

$$
\frac{1}{3}=\frac{1 \times 3}{\square}=\frac{3}{9}
$$

Rename $\frac{1}{3}$ using the \square.

Write It

Explain what happens to denominators when adding like fractions.
\qquad
\qquad
\qquad
\qquad

Homework

 ASSIGNMENTPage(s):
Exercises:
(4) $\frac{3}{4}-\frac{1}{6}$

The LCD of 4 and 6 is

Rename each fraction using the LCD.

So, $\frac{3}{4}-\frac{1}{6}=\square$

Check Your Progress

 simplest form.a. $\frac{7}{15}+\frac{4}{15}$
b. $\frac{3}{8}+\frac{1}{4}$
c. $\frac{7}{9}-\frac{1}{6}$

EXAMPLE

5 ART A picture mounted on art board is $\frac{1}{8}$ inch thick. The frame for the picture is $\frac{1}{2}$ inch thick. How much thicker than the picture is the frame?
The phrase how much thicker suggests
 find $\frac{1}{2}-\frac{1}{8}$.
$\frac{1}{2}-\frac{1}{8}=\square-\square$ Rename the fractions using the LCD. $=\frac{3}{8} \quad$ Subtract the numerators.
The frame is \square inch thicker than the picture.
Check Your Progress RUNNING Gregory ran $\frac{3}{4}$ of a mile on Monday and $\frac{5}{6}$ of a mile on Tuesday. How much more of a mile did he run on Tuesday?

5-3 Adding and Subtracting Mixed Numbers

Add and Subtract Mixed Numbers

Main IdeA

- Add and subtract mixed numbers.

Standard 6NS2.1 Solve problems involving addition, subtraction, multiplication, and division of positive fractions and explain why a particular operation was used for a given situation.

- Standard 6NS2.4 Determine the least common multiple and the greatest common divisor of whole numbers; use them to solve problems with fractions (e.g., to find a common denominator to add two fractions or to find the reduced form for a fraction).

Foldables

ORGANIZE IT

Record main ideas, definitions, and other notes about adding and subtracting mixed numbers on study cards. Store the cards in the "Mixed Numbers" pocket of your Foldable.

Add or subtract. Write in simplest form.
(1) $3 \frac{1}{12}+14 \frac{7}{12}$

Estimate $3+15=\square$
$3 \frac{1}{12}$
$+14 \frac{7}{12}$

2) $9 \frac{7}{10}-4 \frac{3}{5}$

Estimate $10-5=\square$

Rename Mixed Numbers to Subtract

Subtract. Write in simplest form.
(3) $8 \frac{1}{5}-3 \frac{3}{5}$

Rename $8 \frac{1}{5}$ as \square.

First subtract the

and then the
(4) $11 \frac{5}{9}-8 \frac{2}{3}$

Remember It

When you are adding mixed numbers, you can add the whole numbers first and then add the fractions. Make sure if the fractions add to more than one, that you change the sum of the whole numbers.

Homework

 ASSIGNMENTPage(s):
Exercises:

5-4 Problem-Solving Investigation: Eliminate Possibilities

EXAMPIE Eliminate Possibilities

Main IdeA

- Solve problems by eliminating possibilities.

Standard

 6MR1.1 Analyze problems by identifying relationships, distinguishing relevant from irrelevant information, identifying missing information, sequencing and prioritizing information, and observing patterns. 6NS2.1 Solve problems involving addition, subtraction, multiplication, and division of positive fractions and explain why a particular operation was used for a given situation.
Homework

Assignment

GAMES On a television game show, the winning contestant must answer three questions correctly to win the grand prize. Each question is worth twice as many points as the question before it. The third question is worth 1,000 points. How much is the first question worth-250, 500, or 2,000 points?

EXPLORE You know that there are three questions and each question is worth \square as many points as the question before it. You know that the third question is worth 1,000 points.

PLAN Eliminate answers that are not \square
SOLVE The first question cannot be worth 2,000 points since each question after it would have to worth more than 2,000 points, and the third question is only \square points. So, eliminate that choice. If the first question is worth 500 points, then the second question would be worth 1,000 points and the third question would be worth

So, eliminate that choice. The reasonable answer is 250 points.

CHECK If the first question is worth 250 points, then the second question would be worth \square points, and the third question would be worth 1,000 points. So, the answer is correct.

Check Your Progress

CELL PHONES A cell phone company charges $\$ 35$ for 500 free minutes and $\$ 0.50$ for each additional minute. Using this plan, what is a reasonable price a customer would pay for using 524 minutes- $\$ 32$, $\$ 40$, or $\$ 47$?

5-5 Multiplying Fractions and Mixed Numbers

EXAMPLES Multiply Fractions

Main Idea

Multiply fractions and mixed numbers.

Standard 6NS2.1 Solve problems involving addition, subtraction, multiplication, and division of positive fractions and explain why a particular operation was used for a given situation.
Standard 6NS2.2 Explain the meaning of multiplication and division of positive fractions and perform the calculations (e.g., $\frac{5}{8} \div \frac{15}{16}=\frac{5}{8} \times \frac{16}{15}$ $=\frac{2}{3}$).

Multiply. Write in simplest form.

(1) $\frac{1}{8} \times \frac{1}{9}$
$\frac{1}{8} \times \frac{1}{9}=\square \longleftarrow \begin{array}{ll}\longleftarrow & \text { Multiply the numerators. } \\ & \text { Multiply the denominators. }\end{array}$

Simplify.
(2) $6 \times \frac{1}{3}$

$$
\begin{aligned}
6 \times \frac{1}{3} & =\square \times \frac{1}{3} \\
& =\frac{6 \times 1}{1 \times 3}
\end{aligned}
$$

Write 6 as \square.
Multiply the numerators and multiply the denominators

Simplify.

Check Your Progress

a. $\frac{1}{5} \times \frac{1}{7}$
b. $12 \times \frac{1}{6}$

\square

EXAMPLE Simplify Before Multiplying

Multiply. Write in simplest form.
(3) $\frac{3}{12} \times \frac{4}{5}$
$\frac{3}{12} \times \frac{4}{5}=\frac{3}{\frac{12}{3}} \times \frac{1}{5}$
Divide 4 and 12 by their GCF, 4.

$=\square$

Multiply the numerators and multiply the denominators.

Simplify.

Remember It

The Distributive
Property can help you do mental math. When you see a problem like $\frac{1}{4} \cdot 4 \frac{4}{9}$, you can think, "What is $\frac{1}{4}$ of 4 and what is $\frac{1}{4}$ of $\frac{4}{9}$?" This is equal to $\frac{1}{4}\left(4+\frac{4}{9}\right)$.

Homework Assignment

Page(s):
Exercises:

EXAMPLE Multiply Mixed Numbers

(4) Multiply $\frac{1}{3} \times 6 \frac{6}{7}$. Write in simplest form.

METHOD 1 Rename the mixed number.

$$
\frac{1}{3} \times 6 \frac{6}{7}=\frac{1}{万} \times \frac{16}{1} \times \frac{48}{7}
$$

Rename $6 \frac{6}{7}$ as an

Multiply.

METHOD 2 Use mental math.

Write $6 \frac{6}{7}$ as a sum of its parts.
$=\left(\frac{1}{3} \times 6\right)+\left(\frac{1}{3} \times \frac{6}{7}\right)$

\square

Multiply.

Check Your Progress

Multiply. Write in simplest form.
a. $\frac{1}{6} \times 4 \frac{6}{9}$
b. $\frac{4}{9} \times \frac{6}{7}$

5-6 Algebra: Solving Equations

- Standard 6AF1.1 Write and solve one-step linear equations in one variable.

MAIN IDEA

- Solve equations with rational number solutions.

Key Concept

Multiplicative Inverse Property The product of a number and its multiplicative inverse is 1 .

BUILD YOUR VOCABULARY (pages 103)

Two numbers whose \square
\square are called multiplicative inverses.

Reciprocals is another name given to \square

EXAMPLES Find Multiplicative Inverses

Find the multiplicative inverse of each number.

(1) $\frac{4}{7}$
 product 1.

The multiplicative inverse of $\frac{4}{7}$ is

(2) $6 \frac{1}{4}$

The multiplicative inverse of $6 \frac{1}{4}$ is \square

Check Your Progress

Find the multiplicative inverse of each number.
a. $\frac{5}{8}$
b. $4 \frac{1}{3}$

Key Concept

Multiplication Property of Equality If you multiply each side of an equation by the same nonzero number, the two sides remain equal.

HOMEWORK AssignMent

Page(s):

Exercises:

EXAMPLE Solve a Division Equation

Solve $11=\frac{p}{6}$. Check your solution.

$$
11=\frac{p}{6} \quad \text { Write the equation. }
$$

$\begin{array}{rlr}11 \cdot \square & =\frac{p}{6} \cdot \square \\ =p & \text { Multiply } \\ = & \text { Simplify. }\end{array}$

Check

$11=\frac{p}{6} \quad$ Write the original equation.

$11=\square$ Simplify.
The solution is \square

EXAMPLE Use a Reciprocal to Solve an Equation

4. Solve $\frac{4}{5} y=-8$.

$$
\frac{4}{5} y=-8 \quad \text { Write the equation. }
$$

$$
y=\square \text { or } \square \quad \text { Simplify. }
$$

Check Your Progress
Solve.
a. $\frac{m}{9}=4$
b. $\frac{3}{8} x=-6$

5-7 Dividing Fractions and Mixed Numbers

EXAMPLE Divide by a Fraction

Main Idea

- Divide fractions and mixed numbers.

Key Concept

Division by a Fraction To divide by a fraction, multiply by its multiplicative inverse or reciprocal.
(1) Find $\frac{2}{3} \div \frac{4}{9}$. Write in simplest form.

$$
\begin{aligned}
& \frac{2}{3} \div \frac{4}{9}=\frac{2}{3} \text {. } \\
& =\frac{\stackrel{1}{2}}{\underset{1}{X}} \cdot \frac{\stackrel{3}{9}}{\frac{Y}{2}} \\
& \text { Multiply by the reciprocal } \frac{4}{9} \text {. } \\
& \text { Divide out common factors. } \\
& \text { Multiply and simplify. }
\end{aligned}
$$

EXAMPLE Divide by Mixed Numbers

Write It

Will the quotient $7 \frac{1}{6} \div 3 \frac{2}{3}$ be a fraction less than 1 or greater than 1? Explain.
\qquad
\qquad
2 Find $\frac{5}{6} \div 2 \frac{1}{2}$. Write in simplest form.
Estimate $1 \div \frac{5}{2}=1 \times \square$ or $\frac{2}{5}$
$\frac{5}{6} \div 2 \frac{1}{2}=\frac{5}{6} \div \square$

Rename $2 \frac{1}{2}$ as an \square fraction. Multiply by the reciprocal of $\frac{5}{2}$.

Divide out common factors.

Multiply. The quotient is close to the estimate.

Check Your Progress Find $\frac{3}{8} \div 2 \frac{1}{2}$. Write in simplest form.

EXAMPLE

3 FACTORY A bottling machine needs to be restocked with new lids every $2 \frac{3}{4}$ hours. If the machine runs $19 \frac{1}{4}$ hours, how many times will it have to be restocked with lids?

$$
\begin{array}{rlrl}
19 \frac{1}{4} \div 2 \frac{3}{4} & =\square \div \square & \begin{array}{l}
\text { Rename the mixed numbers as } \\
\text { improper fractions. }
\end{array} \\
& =\frac{77}{4} \cdot \frac{4}{11} & & \begin{array}{l}
\text { Multiply by the } \square \\
\text { of } \frac{11}{4}, \text { which is } \frac{4}{11} .
\end{array} \\
& =\frac{7^{7}}{4} \cdot \frac{1}{11} & & \text { Divide out common factors. } \\
& =\square \text { or } \square & \text { Multiply. }
\end{array}
$$

So, the machine will need to restocked \square times.

Check Your Progress

FURNITURE A rectangular table is $5 \frac{5}{6}$ feet long. If the area of the table is $20 \frac{5}{12}$ square feet, how wide is the table?

Homework Assignment

Page(s):
Exercises:

5

BRINGING IT ALL TOGETHER

STUDY GUIDE

Foldables

Use your Chapter 5 Foldable to help you study for your chapter test.

VOCABULARY
 PUZZLEMAKER

To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 5, go to:
glencoe.com

BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (page 103) to help you solve the puzzle.

5-1

Estimating with Fractions

Estimate.

1. $8 \frac{2}{3}+7 \frac{1}{4}$ \square 2. $11 \frac{7}{8} \div 3 \frac{5}{6}$ \square

5-2

Adding and Subtracting Fractions
Add or subtract. Write in simplest form.
3. $\frac{7}{8}+\frac{3}{8}$

4. $\frac{5}{6}-\frac{1}{3}$

5. $\frac{1}{5}+\frac{3}{4}$
\square

5-3

Adding and Subtracting Mixed Numbers
Add or subtract. Write in simplest form.
6. $3 \frac{7}{8}+6 \frac{1}{4}$
7. $7 \frac{1}{6}+2 \frac{5}{12}$

8. $8 \frac{3}{7}-4 \frac{5}{7}$
9. $9 \frac{2}{9}-1 \frac{2}{3}$

5-4

Problem-Solving Investigation: Eliminate Possibilities
10. READING Joel read $\frac{5}{8}$ of a novel. If the novel has 600 pages, is 250,300 , or 375 a reasonable number of pages that Joel has read?

5-5

Multiplying Fractions and Mixed Numbers
Multiply. Write in simplest form.
11. $\frac{2}{7} \times 4 \frac{1}{5}$
\square
12. $\frac{1}{6} \times \frac{3}{4}$

13. $5 \frac{1}{6} \times \frac{2}{5}$

14. $\frac{5}{8} \times \frac{4}{5}$

5-6

Algebra: Solving Equations

Find the multiplicative inverse of each number.
15. $\frac{3}{5}$

16. $1 \frac{1}{2}$

17. 3

Solve each equation.
18. $\frac{1}{3} a=\frac{5}{6}$ \square 19. $-4=\frac{k}{3}$ \square

5-7

Dividing Fractions and Mixed Numbers

Divide. Write in simplest form.
20. $\frac{1}{4} \div \frac{2}{3}$

21. $\frac{7}{8} \div \frac{2}{3}$

22. $6 \div 1 \frac{1}{3}$ \square 23. $5 \frac{3}{4} \div 2 \frac{1}{2}$

ARE YOU READY FOR THE CHAPTER TEST?

Checklist

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 5.

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 5 Practice Test on page 275 of your textbook as a final check.

I used my Foldable or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 5 Study Guide and Review on pages 271-274 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 5 Practice Test on page 275 of your textbook.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 5 Foldable.
- Then complete the Chapter 5 Study Guide and Review on pages 271-274 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 5 Practice Test on page 275 of your textbook.

Student Signature

Teacher Signature

Ratios and Proportions

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.

STEP 1 | Fold lengthwise |
| :--- |
| to the holes. |
| |
| |
| Cuts to form 6 tabs. |
| STEP 2 |
| Cut along the top line |

LTEP 3 | Label the major |
| :--- |
| topics as shown. |

NOTE-TAKING TIP: When you take notes, it may be helpful to include an example for each term or concept learned.

BUILD YOUR VOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 6.
As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

Vocabulary Term	Found on Page	Definition	Description or Example
cross products			
equivalent ratios			
gram			
kilogram			
liter			
meter			
metric system			
proportion			
rate			

Vocabulary Term	Found on Page	Definition	Description or Example
ratio			
scale			
scale drawing			
scale factor			
scale model			

- Standard 6NS1.2 Interpret and use ratios in different contexts (e.g., batting averages, miles per hour) to show the relative sizes of two quantities, using appropriate notations $\left(\frac{a}{b}\right.$, a to $\left.b, a: b\right)$.

MAIN IDEA

- Write ratios as fractions in simplest form and determine whether two ratios are equivalent.

BUILD YOUR VOGABULARY (pages 121-122)

EXAMPLE Write Ratios in Simplest Form
(1) APPLES Mr. Gale bought a basket of apples. Using the table, write a ratio comparing the Red Delicious apples to the Granny Smith apples as a fraction in simplest form.
$\begin{aligned} & \text { Red Delicious } \\ & \text { Granny Smith }\end{aligned} \frac{30}{9}=\frac{\begin{array}{c}10 \\ 3\end{array}}{\frac{30}{9}}$ or

Mr. Gale's Apples
12 Fuji
9 Granny Smith
30 Red Delicious

The ratio of Red Delicious apples to Granny Smith apples

Check Your Progress

FLOWERS A garden has 18 roses and 24 tulips. Write a ratio comparing roses to tulips as a fraction in simplest form.
\square

FOLDABLES

ORGANIZE IT

Record a term or concept from Lesson 6-1 under the Ratios tab and write a definition along with an example to the right of the definition.

EXAMPLE Identify Equivalent Ratios

2 Determine whether the ratios 12 onions to 15 potatoes and 32 onions to 40 potatoes are equivalent.

12 onions : 15 potatoes $=\frac{12 \div 3}{15 \div 3}$ or \square

32 onions: 40 potatoes $=\frac{32 \div 8}{40 \div 8}$ or \square

The ratios simplify to the same fraction. They are
\square

Check Your Progress Determine whether the ratios 3 cups vinegar to 8 cups water and 5 cups vinegar to 12 cups water are equivalent.

EXAMPL

Remember It

Ratios such as 120:1,800 can also be written in simplest form as 1:15.

Homework Assignment

3 POOLS It is recommended that no more than one person be allowed into the shallow end of an outdoor public pool for every 15 square feet of surface area. If a local pool's shallow end has a surface area of 1,800 square feet, are the lifeguards correct to allow 120 people into that part of the pool?
Recommended Ratio
$1: 15=\square$ persons per square feet
Actual Ratio
$120: 1,800=\frac{120}{1,800}$ or \square persons per square feet
Since the ratios simplify to the same fraction, they are

Check Your Progress SCHOOL A district claims that

they have 1 teacher for every 15 students. If they actually have 2,700 students and 135 teachers, is their claim correct?

6-2 Rates

BAIN IDEA - Betermine unit rates.	A ratio that \square kinds of units is called a rate. When a rate is simplified so that it has a \square of 1 unit, it is called a unit rate.

EXAMPLES Find Unit Rates

FOLDABLES

ORGANIZE IT

Under the rate tab, take notes on rate and unit rate. Be sure to include examples.

1) READING Julia read 52 pages in 2 hours. What is the average number of pages she read per hour?

Write the rate as a fraction. Then find an equivalent rate with a denominator of 1 .

52 pages in 2 hours $=\frac{52 \text { pages }}{2 \text { hours }}$

Write the rate as a fraction.

Divide the numerator and denominator by

Simplify.

2 SODA Find the unit price per can if it costs $\$ 3$ for 6 cans of soda. Round to the nearest hundredth if necessary.
$\$ 3$ for 6 cans $=\frac{\$ 3}{6 \text { cans }} \quad$ Write the rate as a fraction.
$=\frac{\$ 3 \div 6}{6 \text { cans } \div 6} \quad \begin{aligned} & \text { Divide the numerator and the } \\ & \text { denominator by } 6 .\end{aligned}$

Simplify.

Remember It

The word rate is often understood to mean unit rate.

Check Your Progress

a. 16 laps in 4 minutes

b. $\$ 3$ for one dozen cookies

EXAMPLE Compare Using Unit Rates

3 STANDARDS EXAMPLE The costs of 4 different sizes of orange juice are shown in the table. Which container costs the least per ounce?

Amount	Total Cost
16 oz	$\$ 1.28$
32 oz	$\$ 1.92$
64 oz	$\$ 2.56$
96 oz	$\$ 3.36$

A 96-oz container
C 32-oz container
B 64-oz container
D 16-oz container

Read the Test Item

Find the unit price, or the cost per ounce of each size of orange juice. Divide the price by the number of ounces.

Solve the Test Item
$\$ 1.28 \div \square$ ounces $=\square$ per ounce.
$\$ 1.92 \div$ ounces $=\square$ per ounce.
$\$ 2.56 \div \square$ ounces $=\square$ per ounce.
$\$ 3.36 \div \square$ ounces $=\square$ per ounce.

The \square -ounce container of orange juice costs the least per ounce. The answer is

Check Your Progress

The costs of different sizes of bottles of laundry detergent are shown in the table. Which bottle costs the least per ounce?

A 96-oz container
B 64-oz container
C 32-oz container

Amount	Total Cost
16 oz	$\$ 3.12$
32 oz	$\$ 5.04$
64 oz	$\$ 7.04$
96 oz	$\$ 11.52$

D 16-oz container

EXAMPLE Use a Unit Rate

4) POTATOES An assistant cook peeled 18 potatoes in 6 minutes. At this rate, how many potatoes can he peel in 50 minutes?
Find the unit rate.
18 potatoes in 6 minutes $=\frac{18 \div 6}{6 \div 6}=\frac{3}{1}$
The unit rate is \square potatoes per minute.
$\frac{3 \text { potatoes }}{1 \text { min }} \cdot 50 \min =\square$ potatoes
He can peel \square potatoes in 50 minutes.

Check Your Progress TRAVEL Ciera drove 348 miles in

 6 hours. At this rate, how far could she drive in 8 hours?
Homework ASSIGNMENT

Page(s):
Exercises:

6-3 Measurement: Changing Customary Units

Standard 6AF2.1 Convert one unit of measurement to another (e.g., from feet to miles, from centimeters to inches).

MAIN IDEA

- Change units in the customary system.

Remember It

You multiply to change from larger units of measure because it takes more smaller units than larger units to measure an object.

BUILD YoUR Vocasulary (pages 121-122)

A pound is made up of \square smaller customary units of weight called ounces (oz).

A ton (T) is a customary unit of weight that is equal to \square pounds.
A cup (c) is a unit of \square in the customary system of measures that is equal to \square fluid ounces (fl. oz).

A pint (pt) is a customary unit of \square which is equal to \square cups.

A quart (qt) is a customary unit of capacity which is equal to 2 \square
A gallon (gal) is a customary unit of capacity equal to
 quarts.

EXAMPLES Convert Larger Units to Smaller Units

(1) Convert 2 miles into feet.

Since 1 mile $=5,280$ feet, the unit ratio is

$$
2 \mathrm{mi}=2 \mathrm{mi} \cdot \frac{5,280 \mathrm{ft}}{1 \mathrm{mi}} \quad \text { Multiply by } \frac{5,280 \mathrm{ft}}{1 \mathrm{mi}} .
$$

$$
=2 \mathrm{mǐ} \cdot \frac{5,280 \mathrm{ft}}{1 \mathrm{~min}} \quad \text { Divide out common units. }
$$

$$
=\square \mathrm{ft} \text { or } 10,560 \mathrm{ft} . \quad \text { Multiply. }
$$

So, 2 miles $=\square$ feet.
(2) ELEVATOR The elevator in an office building has a weight limit posted of one and a half tons. How many pounds can the elevator safely hold?
Explain how estimating can help you solve a problem. (Lesson 6-1)

$$
\begin{array}{rlrl}
1 \frac{1}{2} \mathrm{~T} & =1 \frac{1}{2} \mathrm{~T} \cdot \square & & \text { Multiply by } \\
& & \begin{array}{l}
\text { since there } \\
\text { pounds in } 1
\end{array} \\
& =1 \frac{1}{2} \cdot 2,000 \mathrm{lb} \text { or } 3,000 \mathrm{lb} & & \text { Multiply. }
\end{array}
$$

since there are
\square pounds in 1 ton.

So, the elevator can safely hold \square pounds.

Check Your Progress

Complete.
a. $7.75 \mathrm{gal}=\square \mathrm{pt}$
b. $4 \frac{1}{2} \mathrm{~T}=\square \mathrm{lb}$
\square
\square

EXAMPLES Convert Smaller Units to Larger Units

3 Convert 11 cups into pints.

Since 1 pint $=2$ cups, the unit ratio is $\frac{2 \mathrm{c}}{1 \mathrm{pt}}$, and its reciprocal is

$$
\begin{array}{rlrl}
11 \mathrm{c} & =11 \mathrm{c} \cdot \frac{1 \mathrm{pt}}{2 \mathrm{c}} & & \text { Multiply by } \square \\
& =11 \ell \cdot \frac{1 \mathrm{pt}}{2 \ell} & & \text { Divide out common units. } \\
& =11 \cdot \square \\
& =\frac{11}{2} \mathrm{pt} & & \begin{array}{l}
\text { Multiplying } 11 \text { by } \frac{1}{2} \text { is the same } \\
\text { as dividing } 11 \text { by } 2 .
\end{array} \\
& =\square \mathrm{pt} &
\end{array}
$$

\square

So, 11 cups $=\square$ pints.
4) SOCCER Tracy kicked a soccer ball $\mathbf{1 , 0 0 0}$ inches. How many feet did she kick the ball?

Since 1 foot $=12$ inches, multiply by \square. Then divide out
common units.
$1,000 \mathrm{in} .=1,000 \mathrm{irg} . \cdot \frac{1 \mathrm{ft}}{12 \mathrm{irg} .}$
$=1,000 \mathrm{in} \cdot \square \mathrm{ft}$
$=\frac{1000}{12} \mathrm{ft}$ or $\square \mathrm{ft}$

So, Tracy kicked the soccer ball

Check Your Progress
Complete.
a. $124 \mathrm{c}=\square \mathrm{gal}$
b. $78 \mathrm{oz}=\square \mathrm{lb}$

Homework Assignment

Page(s):
Exercises:

6-4 Measurement: The Metric System

Standard 6AF2.1 Convert one unit of measurement to another (e.g., from feet to miles, from centimeters to inches).

MAIN IDEA

- Change metric units of length, capacity, and mass.

BUILD YOUR VOGABULARY (pages 121-122)

The \square is the base unit of length in the metric system.

The base unit of mass in the metric system is the

EXAMPLES Convert Units in the Metric System

(1) Complete $7.2 \mathrm{~m}=\square \mathrm{mm}$.

To convert from meters to millimeters, \square
\square
by
$7.2 \times$ \square $=$ \square

So, $7.2 \mathrm{~m}=$ \square mm .
2. Complete $40 \mathrm{~cm}=$ m.

To convert from centimeters to meters, \square by \square
\square So, $40 \mathrm{~cm}=$ \square m.

Your Turn
Complete.
a. $3,400 \mathrm{~mm}=\square \mathrm{cm}$

b. $7.5 \mathrm{~m}=\square \mathrm{cm}$

WRITE IT

Explain how you can multiply a number by a power of ten.

Homework

Assignment

Page(s):

Exercises:

132

5 Convert 925.48 grams to pounds. Round to the nearest hundredth if necessary.

Since 1 pound $\approx \square$ grams, the unit ratio is $\frac{1 \mathrm{lb}}{453.6 \mathrm{~g}}$.

$$
\approx \frac{925.48 \mathrm{lb}}{453.6} \text { or } \square \mathrm{lb} \quad \text { Simplify. }
$$

So, 925.48 grams is approximately \square pounds.

Check Your Progress Complete. Round to the nearest hundredth if necessary.
a. $8.15 \mathrm{gal}=\square \mathrm{L}$
b. $5.75 \mathrm{~m}=\square \mathrm{yd}$

6-5 Algebra: Solving Proportions

MAIN IDEA

- Solve proportions.

KEY CONCEPT

Proportion A proportion is an equation stating that two ratios are equivalent.
> - Standard 6NS1.3 Use proportions to solve problems (e.g. determine the value of n if $\frac{4}{7}=\frac{N}{21}$, find the length of a side of a polygon similar to a known polygon). Use cross-multiplication as a method for solving such problems, understanding it as the multiplication of both sides of an equation by a multiplicative inverse.

BUILD YoUR VocA BULARY (pages 121-122)

Two quantities are \square if they have a constant rate or ratio.

In a proportion, a cross-product is the \square of the numerator of one ratio and the denominator of the other ratio.

EXAMPLE Identify Proportional Relationships

(1) MATH Before dinner, Mohammed solved 8 math problems in 12 minutes. After dinner, he solved 2 problems in 3 minutes. Is the number of problems he solved proportional to the time?
To identify proportional relationships, you can compare unit rates or compare ratios by comparing cross products. Let's compare ratios by comparing \square

$$
\begin{aligned}
\begin{array}{l}
\text { problems } \longrightarrow \\
\text { minutes } \longrightarrow
\end{array} \frac{8}{12} & \stackrel{?}{=} \frac{2}{3} \longleftarrow \text { problems } \\
8 \cdot 3 & =\square \cdot 2 \\
24 & =24
\end{aligned}
$$

Since the cross products are \square, the number of problems solved is proportional to the time.

Choose Your Method

Determine if the quantities $\$ 30$ for 12 gallons of gasoline and $\$ 10$ for 4 gallons of gasoline are proportional.

EXAMPLES Solve a Proportion

(2) Solve $\frac{5}{8}=\frac{18}{x}$.

FOLDABLES

ORGANIZE IT

Under the proportions tab, take notes on how to solve a proportion. Include examples.

Homework

 ASSIGNMENTPage(s):
Exercises:

Check Your Progress

Solve each proportion.
a. $\frac{9}{15}=\frac{k}{18}$

b. $\frac{4.6}{w}=\frac{4}{5}$

6-6 Problem-Solving Investigation: Draw a Diagram

EXAMPLE Draw a Diagram.

Main Idea

- Solve problems by drawing a diagram.

Standard

6MR2.5 Use a variety of methods, such as words, numbers, symbols, charts, graphs, tables, diagrams, and models, to explain mathematical reasoning.

Homework Assignment

ROCK CLIMBING A rock climber stops to rest at a ledge 90 feet above the ground. If this represents 75% of the total climb, how high above the ground is the top of the rock?

EXPLORE You know that \square feet is 75% of the total height. You need to find the total height.

PLAN Draw a diagram showing the part already climbed.
SOLVE

You know that $75 \% \div 3=25 \%$. If 75% of the total height is 90 feet, then 25% of the total height would be $90 \div 3$, or 30 , feet. You know that $75 \%+25 \%=$ \square, so 90 feet +30 feet $=120$ feet, which is the height of the top of the rock.

CHECK Since 75\%, or 0.75, of the total height is 90 feet, and $90 \div 120=\square$, the solution checks.

Check Your Progress

HOMEWORK Gerry completed $\frac{3}{8}$ of his homework assignment. If he completed 12 problems, how many problems were assigned?

6-7 Scale Drawings

EXAMPLE Use a Map Scale

MAIN IDEA

- Solve problems involving scale drawings.

FOLDABLES

ORGANIZE IT

Under the scale tab, explain how to solve a problem involving scale drawings. Be sure to include an example.

(1) MAPS What is the actual distance between Portland

 and Olympia?

Step 1 Use a ruler to find the map distance between the two cities. The map distance is about

Step 2 Write and solve a proportion using the scale. Let d represent the actual distance between the cities.

$$
\begin{aligned}
& \begin{array}{l}
\text { map } \longrightarrow \\
\text { actual } \longrightarrow
\end{array} \frac{\frac{3}{8} \text { inch }}{23 \mathrm{mi}}=\frac{1.5 \text { inches }}{d \mathrm{mi}} \longleftarrow \text { map } \\
& \frac{3}{8} \times d=23 \times 1.5 \quad \text { Cross products } \\
& 0.375 d=34.5 \\
& d=\square \\
& \text { Multiply. Write } \frac{3}{8} \\
& \text { as a decimal. } \\
& \text { Divide both sides } \\
& \text { by } 0.375 \text {. }
\end{aligned}
$$

The distance between the cities is about \square kilometers.

Check Your Progress

MAPS On a map of California, the distance between San Diego and Bakersfield is about $11 \frac{2}{5}$ centimeters. What is the actual distance if the scale is 1 centimeter $=30$ kilometers?

Write It

Explain why these two scales are equivalent scales:
$\frac{1}{2}$ inch $=4$ miles
1 inch $=8$ miles
\qquad
\qquad

EXAMPLE Use a Blueprint Scale

2 ARCHITECTURE On the blueprint of a new house, each square has a side length of $\frac{1}{4}$ inch. If the length of a bedroom on the blueprint is $1 \frac{1}{2}$ inches, what is the actual length of the room?

Write and solve a proportion.

$\begin{aligned} \text { blueprint } & \\ \text { actual } & \end{aligned}$	Scale	Length	
	$\frac{1}{4} \mathrm{inch}$	t feet	blueprint\qquad actual
	$\frac{1}{4} \cdot t=$		Cross products
	$\frac{1}{4} t=$		Multiply.
	$t=$		Simplify.

The length of the room is \square

Check Your Progress
On a blueprint of a new house, each square has a side length of $\frac{1}{4}$ inch. If the width of the kitchen on the blueprint is 2 inches, what is the actual width of the room?

EXAMPLE Find a Scale Factor

(3) Find the scale factor of a blueprint if the scale is $\frac{1}{2}$ inch $=3$ feet.
 the fraction in the numerator.

Divide out the common units.

Check Your Progress Find the scale factor of a blueprint if the scale is 1 inch $=4$ feet.

Homework

 AssignmentPage(s):
Exercises:

6-8 Fractions, Decimals, and Percents

Reinforcement of 5NS1.2 Interpret percents as a part of a hundred; find decimal and percent equivalents for common fractions and explain why they represent the same value; compute a given percent of a whole number.

EXAMPLES Percents as Fractions

Main IDEA

Write percents as fractions and decimals and vice versa

FOLDABLES

Organize IT

Under the Fractions, Decimals, and Percents tab, take notes on writing percents as fractions and fractions as percents. Include examples.

1 NUTRITION In a recent consumer poll, 41.8% of the people surveyed said they gained nutrition knowledge from family and friends. What fraction is this? Write in simplest form.

$$
\begin{aligned}
41.8 \% & =\frac{41.8}{100} \\
& =\frac{41.8}{100} \cdot \square \\
& =\square \text { or } \square \quad
\end{aligned}
$$

2 Write $12 \frac{1}{2} \%$ as a fraction in simplest form.
$12 \frac{1}{2} \%=\frac{12 \frac{1}{2}}{100} \quad$ Write a fraction.

$$
=12 \frac{1}{2} \div 100 \quad \text { Divide }
$$

$$
=\square \div 100 \quad \text { Write } 12 \frac{1}{2} \text { as an improper fraction. }
$$

Check Your Progress
a. ELECTION In a recent election, 64.8% of registered voters actually voted. What fraction is this? Write in simplest form.

b. Write $62 \frac{1}{2} \%$ as a fraction in simplest form.

KEy CONCEPTS

> Common Fraction/ Decimal/Percent Equivalents
> $\frac{1}{3}=0 . \overline{3}=33 \frac{1}{3} \%$
> $\frac{2}{3}=0 . \overline{6}=66 \frac{2}{3} \%$
> $\frac{1}{8}=0.125=12 \frac{1}{2} \%$
> $\frac{3}{8}=0.375=37 \frac{1}{2} \%$
> $\frac{5}{8}=0.625=62 \frac{1}{2} \%$
> $\frac{7}{8}=0.875=87 \frac{1}{2} \%$

Homework

 AssignmentPage(s):
Exercises:

EXAMPLES Fractions as Percents
3 PRODUCE In one shipment of fruit to a grocery store, 5 out of 8 bananas were still green. Find this amount as a percent.
$\frac{5}{8}=\frac{n}{100} \quad$ Write a proportion.
$500=8 n \quad$ Find the cross products.
$\frac{500}{\square}=\frac{8 n}{\square}$
Divide each side by \qquad

Simplify.

So, $\frac{5}{8}=62 \frac{1}{2} \%$ or \square
(4) Write $\frac{5}{12}$ as a percent. Round to the nearest hundredth if necessary.
$\frac{5}{12}=\frac{n}{100} \quad$ Write a proportion.
$\square=\square$ Find the cross products.
$500 \div 12$ ENTER 41.66666667 Use a calculator.
So, $\frac{5}{12}$ is about \square
5 Write $\frac{3}{7}$ as a percent. Round to the nearest hundredth. $\frac{3}{7}=0.4285714 \ldots \quad$ Write $\frac{3}{7}$ as a decimal.
\square

Check Your Progress Write each fraction as a percent. Round to the nearest hundredth.
a. $\frac{11}{15}$

b. $\frac{13}{25}$

6-9 Percents Greater Than 100\% and Percents Less Than 1\%

EXAMPLES Percents as Decimals or Fractions

Main Idea

- Write percents greater than 100\% and percents less than 1% as fractions and as decimals, and vice versa.

Reinforcement of 5NS1.2 Interpret percents as a part of a hundred; find decimal and percent equivalents for common fractions and explain why they represent the same value; compute a given percent of a whole number.
(1) Write 0.6% as a decimal and as a fraction.
$0.6 \%=00.6$
Divide by 100 and remove \% symbol.

Decimal form

$$
=\frac{6}{1000} \text { or }
$$

Fraction form

2 STOCKS During a stock market rally, a company's stock increased in value by 430%. Write 430% as a mixed number and as a decimal.

Definition of percent
$\begin{array}{ll}=4 \frac{30}{100} \text { or } \square \quad \text { Mixed number form } \\ & =\square \quad \text { Decimal form }\end{array}$

Check Your Progress
Write each percent as a decimal and as a mixed number or fraction in simplest form.
a. 0.4%

b. 375%

EXAMPLES Decimals as Percents

Write each decimal as a percent.
(3) 5.12
$5.12=5.12$
Multiply by \square
$=\square$
Add \% symbol.
(4) 0.0015

$$
\begin{aligned}
0.0015 & =0.0015 \quad \text { Multiply by } \square . \\
& =\square \quad \text { Add \% symbol. }
\end{aligned}
$$

5 RUNNING On Sunday, Marjorie ran 0.875 of her goal, in miles. What percent of her goal did Marjorie run on Sunday?

$$
\begin{aligned}
0.875 & =0.875 & \text { Multiply by } 100 . \\
& =\square & \text { Add \% symbol. }
\end{aligned}
$$

Marjorie ran 87.5% of her goal.

Check Your Progress Write each decimal as a percent.
a. 0.0096

b. 9.35

6

BRINGING IT ALL TOGETHER

STUDY GUIDE

FOLDABLES

Use your Chapter 6 Foldable to help you study for your chapter test.

VOCABULARY PUZZLEMAKER

To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 6, go to:
glencoe.com

BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (pages 121-122) to help you solve the puzzle.

6-1
Ratios
State whether each sentence is true or false. If false, replace the underlined word to make it a true sentence.

1. When you simplify a ratio, write a fraction as a mixed number.
\square
2. To write a ratio comparing measures, both quantities should have the same unit of measure.
\square

Write each ratio as a fraction in simplest form.
3. $63: 7$

4. $15: 54$

6-2
 Rates

Complete.
5. A \square is a ratio that compares two quantities with different kinds of units.

Write each ratio as a fraction in simplest form.
6. 36 inches: 48 inches \square
7. 15 minutes to 3 hours \square

6-3

Measurement: Changing Customary Units

Complete.

8. $3 \frac{3}{4} \mathrm{pt}=\square \mathrm{c}$
9. $90 \mathrm{ft}=\square \mathrm{yd}$

10. $156 \mathrm{oz}=\square \mathrm{lb}$

6-4

Measurement: The Metric System

Complete.
11. $4.3 \mathrm{~cm}=$ \square mm
12. $42.7 \mathrm{~g}=\square$ mg

6-5

Algebra: Solving Proportions

Complete each sentence.
13. The cross products of a \square are equal.
14. If you know \square parts of a proportion, you can solve for the fourth part by \square and then \square both sides by the coefficient of the unknown.

Solve each proportion.
15. $\frac{15}{n}=\frac{3}{8}$ \square
16. $\frac{6}{20}=\frac{x}{80}$ \square
17. $\frac{b}{16}=\frac{3}{48}$ \square
6-6

Problem-Solving Investigation: Draw a Diagram

18. LADDERS A ladder leans against a wall. The top of the ladder rests against the wall at a point 12 feet above the ground. If this distance represents 80% of the height of the wall, how tall is the wall?

6-7

Scale Drawings

On a map, the scale is $\frac{1}{4}$ inch $=10$ miles. For each map distance, find the actual distance.
21. 6 inches \square 22. $\frac{3}{8}$ inch \square
23. $2 \frac{1}{2}$ inches \square 24. 1 inch \square

6-8

Fractions, Decimals, and Percents
Complete the table of equivalent fractions.

Fraction	Decimal	Percent	
25.	$\frac{1}{3}$	\square	\square
			\square
26.	$\frac{3}{8}$	$\square \frac{1}{2} \%$	
28.	\square	\square	

6-9

Percents Greater Than 100\% and Percents Less Than 1\%
Write each percent as a decimal and as a mixed number or fraction in simplest form.

Write each decimal as a percent.
31. 2.75 \square 32. 0.0043 \square

Write each number as a percent.
33. $5 \frac{1}{4}$ \square 34. $\frac{4}{2,000}$ \square

Visit glencoe.com to access examples, self-check quizzes, your textbook, more and practice tests to help you study the concepts in Chapter 6. .

ARE YOU READY FOR THE CHAPTER TEST?

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 6 Practice Test on page 337 of your textbook as a final check.

I used my Foldable or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 6 Study Guide and Review on pages 333-336 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 6 Practice Test on page 337 of your textbook.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 6 Foldable.
- Then complete the Chapter 6 Study Guide and Review on pages 333-336 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 6 Practice Test on page 337 of your textbook.

Applying Percents

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.

Begin with a piece of $11^{\prime \prime} \times 17^{\prime \prime}$ paper.

STEP 1 Fold the paper in half lengthwise.

STEP 2 Open and refold the paper into fourths along the opposite axis.

STEP 3 Trace along the fold lines and label each section with a lesson title or number.

$7-1$	$7-2$
$7-3$	$7-4$
$7-5$	$7-6$
$7-7$	$7-8$

NOTE-TAKING TIP: When you take notes, it is often helpful to reflect on ways the concepts apply to your daily life.

BUILD YOUR VOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 7. As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

Vocabulary Term	Found on Page	Definition	Description or Example
discount			
percent equation			
percent of change			
percent of decrease			
percent of increase			

(continued on the next page)

Vocabulary Term	Found on Page	Definition	Description or Example
percent proportion			
principal			
sales tax			
simple interest			

7-1 Percent of a Number

- Standard 6NS1.4 Calculate given percentages of quantities and solve problems involving discounts at sales, interest earned, and tips.

EXAMPLE Find the Percent of a Number

Main Idea

- Find the percent of a number.

Remember It

Finding the percent of a number means to multiply.

1) Find 8% of 125.

METHOD 1 Write the percent as a fraction.
$8 \%=\frac{8}{100}$ or

$\frac{2}{25}$ of $125=\frac{2}{25} \times 125$ or \square
METHOD 2 Write the percent as a decimal.
$8 \%=\frac{8}{100}$ or \square
0.08 of $125=0.08 \times 125$ or \square
So, 8% of 125 is \square

Check Your Progress
Find 72% of 350 .

You can either write the percent as a \square or as a
\square Let's write the percent as a decimal.
$125 \%=\frac{125}{100}=\square$
1.25 of $64=1.25 \times 64$ or \square
So, 125% of 64 is \square

EXAMPLE

3) LANGUAGES The graph below shows that 30% of the people in a community speak Spanish as their first language. If a community has 800 people, how many people can be expected to speak Spanish as their first language?

To find 30% of 800 , write the percent as a \square Then multiply.
30% of $800=30 \% \cdot 800$

$$
\begin{aligned}
& =\square \cdot 800 \\
& =240
\end{aligned}
$$

So, about \square people in the community speak Spanish as their first language.

Homework Assignment

Page(s):
Exercises:

Check Your Progress
Find 225% of 50 .
\square

Check Your Progress SLEEP The average person sleeps 33% of their adult life. If their adult life consists of 62 years, how many years does the average person spend sleeping?

7-2 The Percent Proportion

MAIN IDEA

- Solve problems using the percent proportion.

BUILD YOUR VOGABULARY (pages 149-150)

A percent proportion compares part of a quantity to the whole quantity, called the base, using a percent.

EXAMPLE Find the Percent

Key Concept

(1) What percent of 24 is $\mathbf{1 8}$?

18 is the part, and 24 is the whole. You need to find the percent.

Percent Proportion The percent proportion
is $\frac{\text { part }}{\text { whole }}=\frac{\text { percent }}{100}$.

$$
\frac{p}{w}=\frac{n}{100}
$$

$$
=\frac{n}{100}
$$

$18 \cdot 100=24 \cdot n$

$$
1,800=24 n
$$ 6NS1.3 Use proportions to solve problems (e.g. determine the value of n if $\frac{4}{7}=\frac{N}{21}$, find the length of a side of a polygon similar to a known polygon). Use crossmultiplication as a method for solving such problems, understanding it as the multiplication of both sides of an equation by a multiplicative inverse. - Standard 6NS1.4 Calculate given percentages of quantities and solve problems involving discounts at sales, interest earned, and tips.

Write It

Write an example of a real-world percent problem.
\qquad
$3 \mathbf{1 2}$ is $\mathbf{8 0 \%}$ of what number?
12 is the part and 80 is the percent. You need to find the base.

So, 12 is 80% of 15 .

Check Your Progress

a. What percent of 80 is 28 ?
b. What number is 65% of 180 ?

c. 36 is 40% of what number?

7-3 Percent and Estimation

- Standard 6NS1.4 Calculate given percentages of quantities and solve problems involving discounts at sales, interest earned, and tips.

EXAMPL:

Main Idea

- Estimate percents by using fractions and decimals.
(1) CONCERTS A town sold 407 tickets to a chamber music concert in the town square. Of the tickets sold, 61% were discounted for senior citizens. About how many senior citizens bought tickets for the concert?

You need to estimate 61% of 407.
61% is about 60%, and 407 is about 400 .

$$
\approx 240 \quad \text { Multiply. }
$$

So, about \square senior citizens bought tickets.

Check Your Progress
TAXES Michelle discovered that 27% of her paycheck was deducted for taxes. If her paycheck before taxes was $\$ 590$, about how much was deducted for taxes?

EXAMPLE

2) COINS Melinda calculated that 40% of the coins in her coin collection were minted before 1964. If there are 715 coins in her collection, about how many of them were minted before 1964 ?

You can use a fraction or 10% of a number to estimate. Let's use 10% of a number.
STEP 1 Find 10\% of the number.

$$
10 \% \text { of } 700=0.1 \cdot 700
$$

7-3

STEP 2 Multiply.
40% of 700 is $4 \cdot 10 \%$ of 700 .
$4 \times 70=\square$
So, about \square coins were minted before 1964.

Check Your Progress SAVINGS Suki saves 70% of her monthly allowance. If her monthly allowance is $\$ 58$, about how much does she save?

EXAMPLES Percents Greater Than 100 or Less Than 1

Remember It

To estimate the percent of a number, round the percent, round the number, or round both.

Homework

 AssignmentPage(s):
Exercises:

(3) Estimate $\mathbf{1 7 3 \%}$ of $\mathbf{6 0}$.

173% is about 175%.

$$
\begin{aligned}
175 \% \text { of } 60 & =(100 \% \text { of } 60)+(75 \% \text { of } 60) \\
& =(1 \cdot 60)+\left(\frac{3}{4} \cdot 60\right) \\
& =60+45 \text { or }
\end{aligned}
$$

So, 173% of 60 is about \square
4 Estimate $\frac{1}{3} \%$ of 898.
$\frac{1}{3} \%$ is one third of $1 \% .898$ is about 900.

$$
\begin{aligned}
1 \% \text { of } 900 & =0.01 \cdot 900 & & \text { Write } 1 \% \text { as } \square . \\
& =9 & & \text { Multiply. }
\end{aligned}
$$

One third of 9 is $\frac{1}{3} \cdot 9$ or \square
So, $\frac{1}{3} \%$ of 898 is about \square

Check Your Progress

Estimate.

a. 142% of 80
b. $\frac{1}{5} \%$ of 197

7-4 Algebra: The Percent Equation

- Standard 6NS1.4 Calculate given percentages of quantities and solve problems involving discounts at sales, interest earned, and tips. Standard 6AF1.1 Write and solve one-step linear equations in one variable.

Main IdeA

- Solve problems by using the percent equation.

BUILD YOUR VOGABULARY (pages 149-150)

The equation $\square=$ percent $\cdot \square$ is called the percent equation.

EXAMPLE Find the Part

FOLDABLES

Organize It

Record the main ideas, and give examples about the percent equation in the section for Lesson 7-4 of your Foldable.

$7-1$	$7-2$
$7-3$	$7-4$
$7-5$	$7-6$
$7-7$	$7-8$

(1) What number is $\mathbf{4 6 \%}$ of 200 ?

Let p represent the \square
$\underbrace{\text { part }}=\underbrace{\text { percent }} \cdot \underbrace{\text { whole }}$
$p=\square \cdot 200 \quad$ Write an equation.
$p=\square$ Multiply.
So, 46% of 200 is

EXAMPLE Find the Percent

(2) 26 is what percent of 32 ?

Let n represent the percent.

Simplify.
Write as a percent.

So, 26 is \square of 32 .

EXAMPLE Find the Whole

(3) 12 is $\mathbf{4 0 \%}$ of what number?

Let w represent the whole.

Divide each side by \square
\square

$$
=w
$$

So, 12 is 40% of \square

Check Your Progress

a. What number is 72% of 500 ?

b. 18 is what percent of 80 ?

Homework Assignment

7-5 Problem-Solving Investigation: Determine Reasonable Answers

EXAMPLE Solve. Use the Reasonable Answer Strategy.

Main Idea

- Solve problems by determining reasonable answers.

- Standard 6NS1.4 Calculate given percentages of quantities and solve problems involving discounts at sales, interest earned, and tips. Standard 6MR3. 1 Evaluate the reasonableness of the solution in the context of the problem.

Homework ASSIGNMENT

Page(s):
Exercises:

FUND-RAISER A soccer team is having a candy sale to raise funds to buy new shirts. The team gets to keep 25\% of the sales. Each candy bar costs $\$ 1.50$, and the team has sold 510 bars so far. If the shirts cost a total of $\mathbf{\$ 1 7 5}$, should the team order the shirts yet? Explain.

EXPLORE You know the shirts cost a total of $\$ 175$ and that each candy bar costs $\$ 1.50$. You know that the team has sold \square bars so far and that they get to keep 25% of the sales. You need to know if the team has enough money to order the shirts yet.

PLAN Find how much the team has earned so far. Then find \square of their sales.

SOLVE
$\$ 1.50 \cdot 510=\square$
Find 25% of $\$ 765$.
25% of $765=0.25 \cdot 765$

The team gets to keep \square Since this is more than the cost of the shirts, they should order the shirts.

CHECK Use a calculator to check. 0.25×765 ENTER The result is 191.25 , so the answer is reasonable.

Check Your Progress

FIELD TRIP There are 392
students in the seventh grade at Hamilton Middle School. If 35% of the seventh grade will attend the class field trip, is it reasonable to say that about 170 students will attend the field trip? Explain.

7-6 Percent of Change

- Standard 6NS1.2 Interpret and use ratios in different contexts (e.g., batting averages, miles per hour) to show the relative sizes of two quantities, using appropriate notations $\left(\frac{a}{b}\right.$, a to $\left.b, a: b\right)$.

BUILD YOUR VOGABULARY (pages 149-150)

MAIN IDEA

- Find the percent of increase or decrease.

Key Concept

A percent of change is a ratio that compares the change in quantity to the original amount.

1 SHOPPING Last year a sweater sold for $\$ 56$. This year the same sweater sells for $\$ 60$. Find the percent of change in the cost of the sweater. Round to the nearest whole percent if necessary.

Since the new price is \square than the original price, this is a percent of \square. The amount of increase is

percent of increase $=\frac{\text { amount of increase }}{\square}$

Write as a

The percent of \square in the price of the sweater is about \square

Check Your Progress
DVDs Last year a DVD sold for $\$ 20$. This year the same DVD sells for $\$ 24$. Find the percent of change in the cost of the DVD. Round to the nearest whole percent if necessary.

Find Percent of Decrease

FOLDABLES

Organize It

Record the main ideas, and give examples about percent of change in the section for Lesson 7-6 of your Foldable.

$7-1$	$7-2$
$7-3$	$7-4$
$7-5$	$7-6$
$7-7$	$7-8$

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Homework

 AssignmentPage(s):
Exercises:

2 ATTENDANCE On the first day of school this year, 435 students reported to Howard Middle School. Last year on the first day, 460 students attended. Find the percent of change for the first day attendance. Round to the nearest whole percent if necessary.

Since the new enrollment figure is \square than the figure for \square year, this is a percent of \square. The amount of decrease is $\square-435$ or \square students. percent of decrease $=\frac{\square}{\text { original amount }}$

The percent of \square in the enrollment is about \square

Check Your Progress ZOO At the beginning of the

 summer season, the local zoo reported having 385 animals in its care. At the beginning of last year's summer season the zoo had reported 400 animals. Find the percent of change in the number of animals at the zoo. Round to the nearest whole percent if necessary.
7-7 Sales Tax and Discount

- Standard 6NS1.4 Calculate given percentages of quantities and solve problems involving discounts at sales, interest earned, and tips.

MAIN IDEA

- Solve problems involving sales tax and discount.

FOLDABLES

Organize IT

Record the main ideas, and give examples about sales tax and discount in the section for Lesson 7-7 of your Foldable.

$7-1$	$7-2$
$7-3$	$7-4$
$7-5$	$7-6$
$7-7$	$7-8$

BUILD YOUR VOGABULARY (pages 149-150)

Discount is the amount by which the regular \square of an item is \square

EXAMPLE Find the Total Cost

(1) GOLF A set of golf balls sells for $\$ 20$, and the sales tax is 5.75\%. What is the total cost?

To find the total cost, you can add sales tax to the regular price or add the percent of tax to 100%. Let's add sales tax to the regular price.

First, find the \square tax.

Next, add the sales tax to the regular price.

The \square cost of the set of golf balls is \square

Check Your Progress

BOOKS A set of three paperback books sells for $\$ 35$ and the sales tax is 7%. What is the total cost of the set?

EXAMPIE Find the Sale Price

Remember It

The cost of an item with sales tax will always be greater than the regular price. The discounted price of an item is always less than the regular price.

2) OUTERWEAR Whitney wants to buy a new coat that has

 a regular price of $\$ 185$. This weekend, the coat is on sale at a 33% discount. What is the sale price of the coat?
METHOD 1

First, find the amount of the $\square d$.

So, the sale price is $\$ 185-\square$ or \square.

METHOD 2

First, subtract the \square of discount from 100%.

So, the sale price is \square of the regular price.

So, the sale price of the coat is \square

Check Your Progress
ELECTRONICS Alex wants to buy a DVD player that has a regular price of $\$ 175$. This weekend, the DVD player is on sale at a 20% discount. What is the sale price of the DVD player?

EXAMPLE Find the Percent of the Discount

3 WATCHES A sports watch is on sale for $\mathbf{\$ 6 0 . 2 0}$ after a $\mathbf{3 0 \%}$ discount. What is the original price?

First, find the percent paid.

$$
100 \%-30 \%=\square
$$

Homework Assignment

Page(s):
Exercises:

Check Your Progress FURNITURE A rocking chair is on sale for $\$ 318.75$ after a 15% discount. What is the original price?

7-8 Simple Interest

- Standard 6NS1.4 Calculate given percentages of quantities and solve problems involving discounts at sales, interest earned, and tips.

MAIN IDEA

- Solve problems involving simple interest.

BUILD YOUR VOGABULARY (pages 149-150)

Simple Interest is the amount \square or earned for the use of money.

Principal is the amount of \square deposited or

EXAMPLES Find Interest Earned

SAVINGS Brandon found a bank offering a certificate of deposit that pays 4% simple interest. He has $\$ 1,500$ to invest. How much interest will he earn in each amount of time?
(1) 3 years

FOLDABLES

Record the main ideas, and give examples about simple interest in the section for Lesson 7-8 of your Foldable.

$7-1$	$7-2$
$7-3$	$7-4$
$7-5$	$7-6$
$7-7$	$7-8$

$I=p r t$
$I=$
 -

$I=$ \square

Formula for simple interest

Replace the variables.

Simplify.

Brandon will earn \square in interest in \square years.
2. 30 months

30 months	$=\square=\square$ yearsWrite the time as years.
$I=p r t$	Formula for simple interest.
$I=\square \cdot \square \quad$Replace the variables.	
$I=\square$	Simplify.

Brandon will earn \square in interest in 30 months.

Write It

Which is better: a higher percentage of interest on your credit card or on your savings account? Explain.
\qquad
\qquad
\qquad
\qquad

Homework

 Assignment

Check Your Progress

a. SAVINGS Cheryl opens a savings account that pays 5\% simple interest. She deposits $\$ 600$. How much interest will she earn in 2 years?
\square
b. SAVINGS Micah opens a savings account that pays 4% simple interest. He deposits $\$ 2,000$. How much interest will he earn in 42 months?

EXAMPLE Find Interest Paid on a Loan

3 LOANS Laura borrowed $\$ 2,000$ from her credit union to buy a computer. The interest rate is 9% per year. How much interest will she pay if it takes 8 months to repay the loan?
$I=\square \quad$ Formula for simple interest
$I=2,000 \cdot 0.09 \cdot \frac{8}{12}$
Replace p with \square, r with

Simplify.

Laura will pay \square in interest in \square months.

Check Your Progress
LOANS Juan borrowed \$7,500 from the bank to purchase a used car. The interest rate is 15% per year. How much interest will he pay if it takes 2 years to repay the loan?
\square

BRINGING IT ALL TOGETHER

STUDY CUIDE

Foldables

Use your Chapter 7 Foldable to help you study for your chapter test.

VOCABULARY
 PUZZLEMAKER

To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 7, go to:
glencoe.com

BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (pages 149-150) to help you solve the puzzle.
3. Find 200% of 17 .

2. Find 15% of $\$ 24$.

4. What is 0.6% of 800 ?

7-2

The Percent Proportion
5. In the formula $\frac{p}{w}=\frac{n}{100}, p$ is the \square w is the \square and n is the \square
6. What number is 30% of 15 ?
\square
7. 32.5 is 65% of what number?

7-3

Percent and Estimation

Write fraction equivalents in simplest form for the following percents.

8. 20%

9. 40%

10. 60%

11. 80%

12. 25%

13. 50%

14. 75%

15. 100%

Estimate.

16. 49% of 80

17. 78% of 25

18. 153% of 10

19. 0.5% of 200

7-4

Algebra: The Percent Equation

Write an equation for each problem. Then solve.
20. 40% of what number is 48 ?

22. Find 80% of 90 .

21. 18 is what percent of 72 ?

23. 12% of what number is 60 ?

7-5

Problem-Solving Investigation: Determine Reasonable Answers
24. TRAVEL The Winston family determined that lodging accounted for 48% of their total travel costs. If they spent $\$ 1,240$ total during their trip, would about $\$ 560, \$ 620$, or $\$ 750$ be a reasonable amount that they spent on lodging?

7-6
 Percent of Change

State whether each sentence is true or false. If false, replace the underlined word to make a true sentence.
25. If the new amount is less than the original amount, then there is a percent of increase.
\square
26. The amount of increase is the new amount minus the original amount.
\square
Find the percent of change. Round to the nearest whole percent. State whether the percent of change is an increase or decrease.
27. original: $\$ 48$; new $\$ 44.25$

28. original; $\$ 157$; new $\$ 181$

29. original; $\$ 17.48$; new $\$ 9.98$

7-7

Sales Tax and Discount

Find the total cost or sale price to the nearest cent.
30. $\$ 29.99$ jeans; 15% discount

31. $\$ 6.25$ lunch; 8.5% sales tax

Find the percent of discount to the nearest percent.
32. Pen: regular price, $\$ 9.95$; sale price, $\$ 6.95$

33. Sweatshirt: regular price, $\$ 20$; sale price, $\$ 15.95$
\square

7-8

Simple Interest
Find the interest earned to the nearest cent for each principal, interest rate, and time.
34. $\$ 15,000,9 \%$, 2 years, 4 months

35. $\$ 250,3.5 \%, 6$ years

ARE YOU READY FOR THE CHAPTER TEST?

Checklist

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 7.

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 7 Practice Test on page 389 of your textbook as a final check.

I used my Foldable or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 7 Study Guide and Review on pages 384-388 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 7 Practice Test on page 389 of your textbook.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 7 Foldable.
- Then complete the Chapter 7 Study Guide and Review on pages 384-388 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 7 Practice Test on page 389 of your textbook.

Student Signature

Teacher Signature

8

Statistics: Analyzing Data

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.

Begin with nine sheets of notebook paper.

STEP 1 Fold 9 sheets of paper in half along the width.

STEP 2 Cut a 1 " tab along the left edge through one thickness.

STEP 3 Glue the 1 " tab down. Write the lesson number and title on the front tab.

STEP 4 Repeat Steps 2 and 3 for the remaining sheets. Staple them together on the glued tabs to
 form a booklet.

NOTE-TAKING TIP: When you take notes, it is sometimes helpful to make a graph, diagram, picture, chart, or concept map that presents the information introduced in the lesson.

BUILD YOUR VOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 8. As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

Vocabulary Term	Found on Page	Definition	Description or Example
analyze			
bar graph			
biased sample			
cluster			
data			
histogram			
inferences			
leaf			
line graph			

(continued on the next page)

Vocabulary Term	Found on Page	Definition	Description or Example
mean			
measures of central tendency			
median			
mode			
outlier			
population			
random sample			
range			
scatter plot			
statistics			
stem			
survey			

8-1
 Line Plots

Standard 6SDP1.1 Compute the range, mean, median, and mode of data sets. Standard 6SDP1.2 Understand how additional data added to data sets may affect these computations of measures of central tendency.

Main Idea

- Display and analyze data using a line plot.

BUILD YOUR VOGABULARY (pages 173-174)

A line plot is a diagram that shows the frequency of data on a number line.

Data that is grouped closely together is called a cluster.
Outliers are numbers that are quite separated from the rest of the data in a data set.

Display Data Using a Line Plot

(1) PRESIDENTS The table below shows the ages of the U.S. presidents at the time of their inaugurations. Make a line plot of the data.

Age at Inauguration														
57	51	54	56	61	61	49	49	55	52	57	64	50	51	69
57	50	47	54	64	58	48	55	51	46	57	65	55	60	54
61	52	54	62	68	54	56	42	43	46	51	55	56		

FOLDABLES

ORGANIZE IT

Write a set of data that could be displayed in a line plot. Under the lab for Lesson 8-1, display the data in a line plot.

Step 1 Draw a number line. Use a scale of 40 to 70 and an interval of 1.

Step 2 Place an \times above the number that represents the age of each U.S. president.

Check Your Progress

STUDY TIME The table at the right shows the number of minutes each student in a math class spent studying the night before the last math exam. Make a line plot of the data.

Minutes Studying			
36	42	60	35
70	48	55	32
60	58	42	55
38	45	60	50

BUILD YOUR VOGABULARY (pages 173-174)

The range is the difference between the greatest and least numbers in the data set and is helpful in seeing how spread out the data are.

EXAMPLE Use a Plot to Analyze Data

Remember It

A line plot does not need to start at 0 , but you cannot leave out numbers on the number line when there are no x 's above them.

Homework
 Assignment

2 CLIMATE The line plot shows the number of inches of precipitation that fell in several cities west of the Mississippi River during a recent year. Identify any clusters, gaps, and outliers, and find the range of the data.

There are data clusters between \square and 13 inches and between 16 and \square inches. There are gaps: between 18 and \square; between \square and 32 . Since \square and 50 are apart from the rest of the data, they could be outliers.

The range is \square or \square inches.

Check Your Progress

AGE The line plot below shows the ages of students in an introductory computer course at the local community college. Identify any clusters, gaps, and outliers, and find the range of the data.

8-2 Measures of Central Tendency and Range

Main Idea

- Find the mean, median, mode, and range of a set of data.

KEY CoNCEPTS

Measures of Central Tendency

The mean of a set of data is the sum of the data divided by the number of items in the data set.

The median of a set of data is the middle number of the ordered data, or the mean of the middle two numbers.

The mode or modes of a set of data is the number or numbers that occur most often.

Standard 6SDP1.1
Compute the range, mean, median, and mode of data sets. Standard 6SDP1.2 Understand how additional data added to data sets may affect these computations of measures of central tendency.
Standard 6SDP1.4 Know why a specific measure of central tendency (mean, median, mode) provides the most useful information in a given context.

BUILD YOUR VOCABULARY (pages 173-174)

Measures of central tendency can be used to describe the \square of the data.

Find the Mean

(1) ANIMALS The table below shows the number of species of animals found at 30 major zoos across the United States. Find the mean.

Number of Species in Major U.S. Zoos				
300	400	283	400	175
614	700	700	715	280
800	290	350	133	400
195	347	488	435	640
232	350	300	300	400
705	400	800	300	659

Source: The World Almanac

The mean number of species of animals is \square

Check Your Progress

SLEEP The table below shows the results of a survey of 15 middle school students concerning the number of hours of sleep they typically get each night. Find the mean.

Nightly Hours of Sleep				
7	8	6	7	8
9	5	6	7	7
8	6	7	8	8

EXAMPLE Find the Mean, Median, and Mode.

FOLDABLES

ORGANIZE IT

Under the tab for Lesson 8-2, define and differentiate between mean, median, and mode.

2 OLYMPICS The table below shows the number of gold medals won by each country participating in the 2002 Winter Olympic games. Find the mean, median, and mode of the data.

2002 Winter Olympics: Gold Medals Won				
12	6	4	3	0
10	6	4	2	3
11	2	3	4	2
1	1	0	2	2
1	0	0	0	0

Source: CBSSportsline.com
mean: sum of data divided by

\square median: 13 th number of the \square data, or \square mode: number appearing \square often, or \square

So, the mean, median, and mode are \square and respectively.

Check Your Progress

PETS The table below shows the number of pets students in an art class at Green Hills Middle School have at home. Find the mean, median, and mode of the data.

Pets			
0	2	1	0
1	3	5	2
0	1	0	2
3	1	2	0

3 STANDARDS EXAMPLE The average weight in pounds of several breeds of dogs is listed below.

$$
15,45,26,55,15,30
$$

If the average weight of the Golden Retriever, 70 pounds, is added to this list, which of the following statements would be true?

A The mode would increase.
B The median would decrease.
C The median would increase.
D The mean would decrease.

Read the Test Item

You are asked to identify which statement would be true if the data value \square was added to the data set.

Solve the Test Item

Use number sense to eliminate possibilities.
The mode, \square, will remain unchanged since the new data value occurs only once. So, eliminate choice \square Since the new data value is \square than each value in the data set, neither the mean nor median will decrease. So, eliminate choices B and \square
Since 70 is greater than each value in the data set, the median will now \square. So, the answer is \square.

Check Your Progress
If the average weight of the
Chihuahua, 4 pounds, is added to the list above, which of the following statements would be true?
A The mean would decrease.
B The mode would decrease.
C The median would stay the same.
D The mean would increase.

8-3 Stem-and-Leaf Plots

Standard 6SDP1.3 Understand how the inclusion or exclusion of outliers affects measures of central tendency. Standard 6SDP1.1 Compute the range, mean, median, and mode of data sets.

MAIN IDEA

- Display and analyze stem-and-leaf plots.

BUILD YOUR VOGABULARY (pages 173-174)

In a stem-and-leaf plot, the data are organized from

The digits of the \square place value usually form the leaves and the next place value digits form the stems.

EXAMPLE Display Data in a Stem-and-Leaf Plot

(1) BASEBALL The table below shows the number of home runs that Babe Ruth hit during his career from 1914 to 1935. Make a stem-and-leaf plot of the data.

Home Runs			
0	54	25	46
4	59	47	41
3	35	60	34
2	41	54	6
11	22	46	
29	46	49	

Source: baberuth.com

Step 1 The digits in the \square place value will form the leaves and the remaining digits will form the \square. In this data, \square is the least value,
and \square is the greatest. So, the ones digit will form the \square and the \square digit will form the stems.

Step 2 List the stems 0 to \square in order from least to greatest in the Stem column. Write the leaves, the \square digits of the home runs, to the \square of the corresponding stems.

Step 3 Order the leaves and write a key that explains how to read the stems and leaves

Check Your Progress

BUSINESS The table shows the number of hours several business men and women spent aboard an airplane. Make a stem-and-leaf plot of the data.

Hours Aboard an Airplane						
4	18	0	23	12	7	9
35	14	6	11	21	19	6
15	26	9	0	13	22	10

EXAMPLE Describe Data

Write IT

Explain how to find how many items are on a stem-and-leaf plot.

2 FITNESS The stem-and-leaf plot below shows the number of miles that Megan biked each day during July. Find the range, median, and mode of the data.

Stem	Leaf										
0	5	5	5	6							
1	0	0	0	0	1	2	2	5	8	8	9
2	1	2	5	8							
3	0							$2 \mid 5=25$ miles			

range: greatest distance - least distance $=\square-\square$
or \square
median: middle value, or \square miles
mode: most frequent value, or \square miles

Check Your Progress SNOWFALL The stem-and-leaf plot

 below shows the number of inches of snow that fell in Hightown during the month of January for the past 15 years. Find the range, median, and mode.| Stem | Leaf | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 3 | 5 | 7 | 9 | | |
| 1 | 0 | 0 | 0 | 2 | 4 | 4 | 7 |
| 2 | 2 | 6 | | | 8 | | |
| 2 | 12 inches | | | | | | |

Effects of Outliers Animals' Life Spans

3 ANIMALS The average life span of several animal species is shown in the stem-and-leaf plot. Which measure of central tendency is most affected by the inclusion of the outlier?

Stem	Leaf									
0	3	4	6	8						
1	0	0	2	2	2	5	5	6	8	
2	0	0	0	0						
3										
4	8									
			$0=10$ years							

The mode, \square, is not affected by the inclusion of the outlier, \square.
Calculate the mean and median each without the
 40. Then calculate them including the outlier and compare.
without the outlier
including the outlier
mean: $\frac{3+4+\ldots+20}{17}=\square$
median: \square

\square

Homework

 AssignmentPage(s):
Exercises:

The mean increased by $15-13$, or \square while the median increased by $13.5-12$, or \square. So the \square is most affected by the inclusion of the outlier.

Check Your Progress

TEST SCORES The test scores earned by a class of middle school math students on a chapter test are shown. Which measure of central tendency is most affected by the inclusion of the outlier?

Test Scores

Stem	Leaf									
5	8									
6										
7	5	6	7	9						
8	0	0	1	2	2	5	5	6	6	7
9	0	2	3	3	3	4	4	6		

$$
7 \mid 5=75 \text { points }
$$

8-4 Bar Graphs and Histograms

Main IdeA

Construct and interpret bar graphs and histograms.

Standard 6SDP2.3 Analyze data displays and explain why the way in which the question was asked might have influenced the results obtained and why the way in which the results were displayed might have influenced the conclusions reached.

FOLDABLES

Organize it

Under the tab for Lesson 8-4, draw a sketch of a bar graph and a histogram and describe their similarities and differences.

BUILD YOUR VOGABULARY (pages 173-174)

A bar graph is one method of \square data by using solid bars to represent quantities.

EXAMPLE Display Data Using a Bar Graph

1) TOURISM The table below shows the average number of vacation days per year for people in various countries. Make a bar graph to display the data.

Country	Vacation Days per Year
Italy	42
France	37
Germany	35
Brazil	34
United Kingdom	28
Canada	26
Korea	25
Japan	25
United States	13

Source: The World Almanac
Step 1 Draw and label the axes. Then choose a \square on the vertical axis so that it includes all of the vacation days per year.

Step 2 Draw a \square to represent each category.

Vacation Days

WRITE IT

Explain when you would use a bar graph and when you would use a histogram.
\qquad

EXAMPLE Display Data Using a Histogram

2 BASKETBALL The number of wins for 29 teams of a basketball league for a season have been organized into a frequency table. Make a histogram of the data.

Number of Wins	Frequency
$11-20$	3
$21-30$	4
$31-40$	4
$41-50$	10
$51-60$	8

Step 1 Draw and \square horizontal and \square axes.
Add a \square

Step 2 Draw a bar to represent the \square of each interval.

Check Your Progress SPEED The speeds of cars on a stretch of interstate are clocked by a police officer and have been organized into a frequency table. Make a histogram of the data.

Speed (mph)	Frequency
$50-59$	2
$60-69$	14
$70-79$	18
$80-89$	3

EXAMPLE Analyze Data to Make Inferences
(3) AUTOMOBILES The bar graph shows average prices for different kinds of cars.

a. Which kind of car was most expensive? Justify your answer.
\square cars were most expensive. The bar graph shows that they cost almost
 more than the next most expensive car.

b. Compare the prices of mid-size cars and luxury cars.

Check Your Progress

HOUSING The bar graph shows the number of houses sold in various price ranges. Which price range had the largest number of homes sold?

Price (\$)

8-5 Problem-Solving Investigation: Use a Graph

Solve Problems by Using a Graph

Main Idea

- Solve problems by using a graph.

Standard 6MR2.3 Estimate unknown quantities graphically and solve for them by using logical reasoning and arithmetic and algebraic techniques.

- Standard 6SDP2.3 Analyze data displays and explain why the way in which the question was asked might have influenced the results obtained and why the way in which the results were displayed might have influenced the conclusions reached.

Homework Assignment

CASSETTE SALES Based on the information in the graph, how many music cassettes would you expect to be sold in 2004?

EXPLORE You know that the graph shows a rapid downward trend. You need to determine how many music cassettes would be expected to be sold in 2004.

PLAN Look at the trend of the graph. Predict the number of music cassette sales in 2004.

SOLVE If the trend continues, no music cassettes will be expected to be sold in 2004.

CHECK The graph rapidly decreases. The answer is reasonable.
The graph shows a rapid \square trend. If it continued,
\square

Check Your Progress

TEMPERATURE Refer to the graph below. Suppose the trends continue. Predict the average high temperature for the month of August.

Miami Average Temperatures

Main Idea

Make predictions and inferences from graphs.

Standard 6MR2.3 Estimate unknown quantities graphically and solve for them by using logical reasoning and arithmetic and algebraic techniques. - Standard 6SDP2.5 Identify claims based on statistical data, and in simple case, evaluate the validity of the claims.

BUILD YOUR VOGABULARY (pages 173-174)
Line graphs can be useful in predicting \square events when they show trends over \square

EXAMPLE Use a Line Graph to Predict

(1) TYPING The line graph shows the time it has taken Enrique to type a class paper so far. The paper is 600 words long. Use the graph to predict the total time it will take him to type his paper.
By looking at the pattern in the graph, you can predict that it will take Enrique about \square minutes to type his 600-word paper.

Check Your Progress

TRAVEL During a recent road trip, Helen kept track of the number of miles traveled after each hour of travel time was completed. The table shows her information. Use the line graph to predict how far Helen will travel in 12 hours of travel time.

Write It

Explain how a line graph can help you to make a prediction.
\qquad
\qquad
\qquad
\qquad
\qquad

Homework

 Assignment

BUILD YOUR VocABULARY (pages 173-174)

A scatter plot displays two sets of data on the same graph and are also useful in making \square

EXAMPLE Use a Scatter Plot to Predict

2) POLLUTION The scatter plot shows the number of days that San Bernardino, California, failed to meet air quality standards from 1990 to 1998 . Use it to predict the number of days of bad air quality in 2004.
By looking at the pattern, you can predict that the number of days of bad air quality in 2004
will be about \square days.

Check Your Progress GAS MILEAGE Use the scatter

 plot below to predict the gas mileage for a car weighing 5500 pounds.Gas Mileage of Cars

Weight (lb)

8-7 Using Data to Predict

Main Idea

Predict actions of a larger group by using a sample.

FOLDABLES

OrgANIZE IT

Under the tab for Lesson 8-7, give examples about using statistics to predict.

$8-1$	$8-2$	$8-3$
$8-4$	$8-5$	$8-6$
$8-7$	$8-8$	$8-9$

(1) PETS The table shows the results of a survey in which people were asked whether their house pets watch television. There are 540 students at McCloskey Middle School who own pets. Predict how many of them would say their pets watch TV.

Does your pet watch television?	
Response	Percent
yes	38%
no	60%
don't know	2%

You can use the percent proportion and the survey results to predict the number of people who said their pets watch TV.

Review It

Solve the proportion $\frac{7}{9}=\frac{x}{27}$.
\qquad

Homework

Assignment

EXAMPLE

2 SUMMER JOBS According to one survey, 25% of high school students reported they would not get summer jobs. Predict how many of the 948 students at Mohawk High School will not get summer jobs.

You need to predict how many of the \square students will not get summer jobs.

Check Your Progress

VIDEO GAMES In a survey of middle school students, 32% responded that playing video games was their favorite after-school activity. Predict how many of the 260 students surveyed said that playing video games was their favorite after-school activity.

So, you could predict that about \square of the students at Mohawk High School will not get summer jobs.

Check Your Progress

SEASONS According to one survey, 31% of adults consider spring to be their favorite season of the year. Predict how many of the 525 employees of a large corporation would respond that spring is their favorite season of the year.

8-8 Using Sampling to Predict

MAIN IDEA

Predict the actions of a larger group by using a sample.

> Standard 6SDP2.1 Compare different samples of a population with the data from the entire population and identify a situation in which it makes sense to use a sample.
> - Standard 6SDP2.2 Identify different ways of selecting a sample (e.g., convenience sampling, responses to a survey, random sampling) and which method makes a sample more representative for a population.
> - Standard 6SDP2.5 Identify claims based on statistical data and, in simple cases, evaluate the validity of the claims.

Determine Validity of Conclusions

Determine whether the conclusion is valid. Justify your answer.
(1) A newspaper asks its readers to answer a poll about whether or not an issue should be on the ballot in an upcoming election. 85% of the readers who responded said that they wanted the issue on the ballot, so the newspaper printed an article saying that 85% of people want the issue on the ballot.

The conclusion is \square. The population is restricted to readers and it is a voluntary response sample and is
\square The results of a voluntary response sample do not necessarily represent the entire \square

Check Your Progress

Determine whether each conclusion is valid. Justify your answer.
a. A coffee shop asks every tenth customer that comes in the door to identify their favorite coffee drink. 45% of the customers surveyed said the mocha coffee is their favorite drink. The manager of the store concluded that about half of the stores customers like the mocha coffee.

b. To determine readers favorite type of book, a library conducted an online survey. Of those who responded, 26% chose fiction as their favorite type of book. The librarian concluded that a fourth of the books checked out are fiction.

Changing the Interval of Graphs

2 VENDING MACHINES An office building manager

 randomly interviewed 60 of their employees to determine whether or not a vending machine should be placed in the break room. 45 of the employees said yes and 15 said no. If there are 255 employees in the building, predict how many employees would like a vending machine in the break room.The sample is an unbiased \square sample since employees were randomly selected. Thus, the sample is valid.
$\frac{45}{60}$ or $\square \%$ of the employees would like a vending machine in the break room. So, find 75% of \square
\square 75% of $255=0.75$ \square 255 So, about \square employees would like a vending machine in the break room.

Check Your Progress

CLUBS A Spanish teacher is trying to determine if students would be interested in joining a Spanish Club. She randomly asked 30 of her students. 18 of the students said yes and 12 said no. If the teacher has 105 students in her Spanish classes, predict how many would like to join a Spanish Club.

8-9 Misleading Statistics

EXAMPLE Changing the Interval of Graphs

Main Idea

Recognize when statistics and graphs are misleading.

- Standard

 6SDP2.3 Analyze data displays and explain why the way in which the question was asked might have influenced the results obtained and why the way in which the results were displayed might have influenced the conclusions reached. - Standard 6SDP2.4 Identify data that represent sampling errors and explain why the sample (and the display) might be biased.(1) BUSINESS The line graphs below show the last 10 weeks of sales for the Crumby Cookie Bakery.

Sales, Graph B

a. Do the graphs show the same data? If so, explain how the graphs differ.
The graphs show the \square data. However, the graphs differ in that Graph \square has greater intervals and a greater range.
b. Which graph makes it appear that the bakery's sales declined only slightly?
Graph \square makes it appear that the sales declined only slightly even though both graphs show the same decline.

Check Your Progress

SOCCER The graphs show the number of wins by four different soccer teams. Do the graphs show the same data? If so, explain how they differ.

Graph A
Wins by Soccer Teams in the Pony League

Graph B
Wins by Soccer Teams in the Pony League

Organize IT

Under the tab for Lesson 8-9, explain how to recognize misleading graphs and statistics.

Homework
 Assignment

EXAMPLE Misleading Statistics

2) GRADES Michael and Melissa both claim to be earning a C average, 70% to 79%, in their Latin class. One student is wrong. Which one? Explain how he or she is using a misleading statistic.
mean
Michael:

Melissa: \square
median
Michael:

Melissa:

Test	Grade (\%)	
	Michael	Melissa
1	80	88
2	76	83
3	73	75
4	70	70
5	40	60
6	25	65
7	10	62

Michael is wrong. He is using the \square to describe his grade rather than the \square Only Melissa's mean or average is 70% or better.

Check Your Progress

RETAIL SALES Two different grocery stores each claim to have the lowest average prices. Use the table to explain their reasoning and determine which store really has the lowest average prices.

Item	Store \mathbf{A}	Store \mathbf{B}
Milk	$\$ 1.29$	$\$ 1.34$
Bread	$\$ 1.99$	$\$ 1.85$
Eggs	$\$ 1.19$	$\$ 1.09$
Soda	$\$ 2.29$	$\$ 2.99$
Coffee	$\$ 7.99$	$\$ 5.29$
Ice Cream	$\$ 4.39$	$\$ 4.19$

BRINGING IT ALL TOGETHER

STUDY GUIDE

FOLDABlES

Use your Chapter 8 Foldable to help you study for your chapter test.

VOCABULARY
 PUZZLEMAKER

To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 8, go to:
glencoe.com

BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (pages 173-174) to help you solve the puzzle.

8-1
 Line Plots

The line plot shows prices for different running shoes.

1. What is the range of the prices? \square

8-2

Measures of Central Tendency and Range
Find the mean, median, and mode of each set of data.
2. $2,5,5,6,8,11,12$

3. $6,5,12,34,20,17$

8-3

Stem-and-Leaf Plots
4. The stem-and-leaf plot shows test scores for 13 students. Find the range, median, and mode of the data.
\qquad

Stem	Leaf						
0	7	8					
1	5	5	6	9			
2	0	2	2	3	3	3	4
						$1 \mid 5=15$	

8-4

Bar Graphs and Histograms

Write true or false for each statement. If the statement is false, replace the underlined words with words that will make the statement true.
5. A bar graph is used to compare data.
\square
6. A histogram shows categories on one of the axes.
\square

8-5
Problem-Solving Investigation: Use a Graph
The graph shows the results of a survey about favorite countries students would like to visit.
7. Which place was favored by most students? \square
8. Compare the number of students that would like to visit Italy verses Ireland.

Favorite Countries to Visit

8-6

Using Graphs To Predict

Refer to the graph shown.
9. Mark the City Zoo graph to show how to predict the attendance in 2005.
10. If the trend continues, predict the attendance in 2005. \square

City Zoo

8-7
Using Data To Predict
11. LUNCHES A survey of 7th graders showed that 44% bring their lunch to school. Predict how many of the 450 7th graders bring their lunch to school.

12. ZOO A survey of zoo visitors showed that 28% chose the lion exhibit as their favorite. If 338 people visited today, predict how many would choose the lion exhibit as their favorite.

8-8

Using Sampling To Predict

Determine whether each conclusion is valid. Justify your answer.

13. A researcher randomly surveys ten employees from each department of a large company to determine the number of employees that buy their lunch in the cafeteria. Of these, 82% said they do buy their lunch in the cafeteria. The researcher concludes that most of the employees do buy their lunch in the cafeteria.

14. Every tenth customer that purchases books from an online store is asked to take a survey. The majority of those who replied said they would like more shipping options. As a result, the store adds more shipping options for their customers.
\square

8-9

Misleading Statistics

The table lists the number of wrong answers a student had on her homework papers this year.
15. Which measure of central tendency might she use to emphasize her good work? \square

Wrong Answers				
1	8	2	7	2
6	8	7	2	4
7	2	5	8	6

16. Which measure of central tendency best represents her work? Explain.

ARE YOU READY FOR THE CHAPTER TEST?

Checklist

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 8.

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 8 Practice Test on page 455 of your textbook as a final check.

I used my Foldables or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 8 Study Guide and Review on pages 450-454 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may want to take the Chapter 8 Practice Test on page 455 of your textbook.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 8 Foldables.
- Then complete the Chapter 8 Study Guide and Review on pages 450-454 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 8 Practice Test on page 455 of your textbook.

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.

Begin with five sheets of $8 \frac{1}{2}$ " by 11 "paper.

STEP 1 Stack 5 sheets of paper $\frac{3}{4}$ inch apart.

STEP 2 Roll up bottom edges so that all tabs are the same size. along fold.

STEP 4 Write the chapter title on the front. Label each tab with a lesson number and title. Label the last tab Vocabulary.

NOTE-TAKING TIP: When taking notes, writing a paragraph that describes the concepts, the computational skills and the graphics will help you to understand the math in a lesson.

BUILD YOUR VOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 9.
As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description of these pages. Remember to add the textbook page number in the second column for reference when you study.

Vocabulary Term	Found on Page	Definition	Description or Example
combination			
complementary events [KAHM-pluh-MEHN- tuh-ree]			
compound events			
experimental probability [ihk-SPEHR-uh- MEHN-tuhl]			
Fundamental Counting Principle			

Vocabulary Term	Found on Page	Definition	Description or Example
independent event			
outcome			
permutation [PUHR-myu-TAYshuhn]			
probability [PRAH-buh-BIH-luhtee]			
random			
sample space			
simple event			
theoretical probability [thee-uh-REHT-uhkuhl]			
tree diagram			

9-1 Simple Events

- Standard 6SDP3.3 Represent probabilities as ratios, proportions, decimals between 0 and 1, and percentages between 0 and 100 and verify that the probabilities computed are reasonable; know that if P is the probability of an event, $1-P$ is the probability of an event not occuring.

BUILD YOUR VOGABULARY (pages 202-203)

MAIN IDEA

Find the probability of a simple event.

KEY Concept

Probability The probability of an event is a ratio that compares the number of favorable outcomes to the number of possible outcomes.

FOldabies On the tab for Lesson 9-1, take notes on how to find the probability of simple events. Include examples.

An outcome is any possible \square

A simple event is one \square or a collection of outcomes.

Outcomes occur at random if each outcome occurs by
\square

EXAMPLE Find Probability

1) If the spinner shown is spun once, what is the probability of its landing on an odd number?
$P($ odd number $)=\frac{\text { odd numbers possible }}{\text { total numbers possible }}$

The probability of spinning an odd number is $\frac{1}{2}$ or \square

Check Your Progress

What is the probability of rolling a number less than three on a number cube marked with $1,2,3$, 4,5 , and 6 on its faces?

EXAMPLE

REVIEW IT
Explain how to subtract a fraction from 1.
\qquad
\qquad
\qquad
\qquad

2 GAMES A game requires spinning the spinner shown
in Example 1. If the number spun is greater than 3, the player wins. What is the probability of winning the game?

The possible outcomes are \square
In order for the player to win, he/she needs to spin a 4.
Let $P(A)$ be the probability that the player will win.
$P(A)=\frac{\text { number of favorable outcomes }}{\text { number of possible outcomes }}$

$$
=\frac{1}{4}
$$

The probability of winning the game is \square

Check Your Progress

A game requires spinning the spinner shown in Example 1. If the number spun is less than or equal to 2 , the player wins. What is the probability of winning the game?

9-2 Sample Spaces

- Standard 6SDP3.1 Represent all possible outcomes for compound events in an organized way (e.g., tables, grids, tree diagrams) and express the theoretical probability of each outcome.

MAIN IDEA

- Find sample spaces and probabilities.

FOLDABLES

Organize IT

On the tab for Lesson 9-2, record what you learn about sample spaces. Explain how to find probability using a tree diagram.

BUILD YOUR YOGABULARY (pages 202-203)

A diagram used to show the total number of possible
\square is a tree diagram.

The sample space is the set of all \square outcomes.

EXAMPLE Find the Sample Space

(1) CHILDREN A couple would like to have two children. Find the sample space of the children's genders if having a boy is equally likely as having a girl.

Make a table that shows all of the possible outcomes.

girl	\square
girl	boy
boy	
boy	girl

Check Your Progress
CARS A dealer sells a car in red, black, or white. The car also can be 2 -door or 4 -door. Find the sample space for all possible cars available from this dealer.

EXAMPLE
2 STANDARDS EXAMPLE Amy was trying to decide what kind of sandwich to make. She had two kinds of bread, wheat and sourdough. And she had three kinds of lunchmeat, ham, turkey, and roast beef. Which list shows all the possible bread-lunchmeat combinations?

A

Outcomes	
wheat	ham
sourdough	turkey
wheat	turkey
sourdough	ham

B | Outcomes | |
| :--- | :--- |
| wheat | ham |
| wheat | turkey |
| wheat | roast beef |

C

Outcomes	
wheat	ham
wheat	turkey
wheat	roast beef
sourdough	ham
sourdough	turkey
sourdough	roast beef

D

Outcomes	
wheat	turkey
sourdough	turkey
wheat	turkey
sourdough	ham
wheat	ham
sourdough	ham

Read the Test Item

There are two bread choices and three lunchmeat choices. Find all of the bread-lunchmeat combinations.

Write It

In a probability game using two counters A and B, what would the outcome BA mean?
\qquad
\qquad
\qquad
\qquad

Homework Assignment

Page(s):
Exercises:

9-3 The Fundamental Counting Principle

- Standard 6SDP3.1 Represent all possible outcomes for compound events in an organized way (e.g., tables, grids, tree diagrams) and express the theoretical probability of each outcome.

EXAMPLE

Main Idea

- Use multiplication to count outcomes.

KEy Concept

The Fundamental Counting Principle If event M can occur in m ways and is followed by event N that can occur in n ways, then the event M followed by N can occur in $m \times n$ ways.

FOLDABLES Include this concept in your notes.

Homework Assignment

Page(s): Exercises:

1 CLOTHING The table below shows the shirts, shorts, and shoes in Gerry's wardrobe. How many possible outfitsone shirt, one pair of shorts, and one pair of shoes-can he choose?

Shirts	Shorts	Shoes
red	beige	black
blue	green	brown
white	blue	
yellow		

There are \square possible outfits that Gerry can choose.

Check Your Progress

SANDWICHES The table below shows the types of bread, types of cheese, and types of meat that are available to make a sandwich. How many possible sandwiches can be made by selecting one type of bread, one type of cheese, and one type of meat?

Bread	Cheese	Meat
White	American	Turkey
Wheat	Swiss	Ham
Rye	Mozzarella	Roast Beef

9-4 Permutations

- Standard 6SDP3.1 Represent all possible outcomes for compound events in an organized way (e.g., tables, grids, tree diagrams) and express the theoretical probability of each outcome.

MAIN IDEA

- Find the number of permutations of a set of objects.

Key Concept

Factorial The expression n factorial ($n!$) is the product of all counting numbers beginning with n and counting backward to 1 .

BUILD YoUR Vocabulary (pages 202-203)
A permutation is an \square, or listing of objects in which \square is important.

EXAMPLE Find a Permutation

(1) BOWLING A team of bowlers has five members, who bowl one at a time. In how many orders can they bowl?

There are \square choices for the first bowler.

There are \square possible arrangements, or permutations, of the five bowlers.

Check Your Progress
TRACK AND FIELD A relay team has four members who run one at a time. In how many orders can they run?

EXAMPLE Find a Permutation

FOLDABLES

ORGANIZE IT

On the tab for Lesson 9-4, record what you learn about permutations.

Homework

 AssignmentPage(s):
Exercises:

9-5 Combinations

- Standard 6SDP3.1 Represent all possible outcomes for compound events in an organized way (e.g., tables, grids, tree diagrams) and express the theoretical probability of each outcome.

MAIN IDEA

- Find the number of combinations of a set of objects.

BUILD YOUR YOGABULARY (pages 202-203)

An arrangement, or listing, of objects in which order is
\square is called a combination.

EXAMPLE Find the Number of Combinations

1 DECORATING Ada can select from seven paint colors for her room. She wants to choose two colors to paint stripes on her walls. How many different pairs of colors can she choose?

METHOD 1 Make a list.
Number the colors 1 through 7.

1,2	1,5	2,3	2,6	3,5	4,5	5,6
1,3	1,6	2,4	2,7	3,6	4,6	5,7
1,4	1,7	2,5	3,4	3,7	4,7	6,7

There are \square different pairs of colors.
METHOD 2 Use a permutation.
There are $7 \cdot 6$ permutations of two colors chosen from seven. There are $2 \cdot 1$ ways to arrange the two colors.

FOLDABLES

Organize it

On the tab for Lesson 9-5, record what you learn about combinations. Be sure to compare and contrast combinations and permutations.

There are \square different pairs of colors Ada can choose.

Check Your Progress HOCKEY The Brownsville Badgers hockey team has 14 members. Two members of the team are to be selected to be the team's co-captains. How many different pairs of players can be selected to be the co-captains?

Remember It

To find a combination you must divide the permutation by the number of ways you can arrange the items.

EXAMPLES

2 INTRODUCTIONS Ten managers attend a business meeting. Each person exchanges names with each other person once. How many introductions will there be?

There are $10 \cdot 9$ ways to choose 2 people.
There are $2 \cdot 1$ ways to arrange the 2 people.
$\frac{10 \cdot 9}{2 \cdot 1}=\frac{90}{2}$ or \square
There are \square introductions.

3 If the introductions in Example 2 are made at random, what is the probability that Ms. Apple and Mr. Zimmer will be the last managers to exchange names?

Since there are \square introductions and only one favorable outcome, the probability that Ms. Apple and Mr. Zimmer will be the last managers to exchange names is

Check Your Progress
INTRODUCTIONS What is the probability that Ms. Apple and Mr. Zimmer will be the last managers to exchange names if there are 15 managers at the business meeting?

9-6 Problem-Solving Investigation: Act it Out

EXAMPLE Solve Using the Act it Out Strategy

Main IDEA

- Solve problems by acting it out.

Standard 6SDP3.2
Use data to estimate the probability of future events (e.g., batting averages or number of accidents per mile driven). Standard 6SDP2.4 Use a variety of methods, such as words, numbers, symbols, charts, graphs, tables, diagrams, and models, to explain mathematical reasoning.

Homework
 Assignment

LUNCH Salvador is looking for his lunch money, which he put in one of the pockets of his backpack this morning. If the backpack has six pockets, what is the probability that he will find the money in the first pocket that he checks?

EXPLORE You know that there are \square pockets in Salvador's backpack and that one of the pockets contains his lunch money.

PLAN Toss a number cube several times. If the cube lands on 1, Salvador will find the money in the first pocket that he checks. If the cube lands on $2,3,4$, 5 , or 6 , Salvador will not find the money in the first pocket that he checks.

SOLVE Toss the cube and make a table of the results.

Trials	1	2	3	4	5	6	7	8	9	10	11	12
Outcome	4	5	1	2	2	3	6	4	5	2	1	3

The highlighted entries show that \square out of the 12 trials resulted in Salvador finding his lunch money in the first pocket that he checks. So, the probability is $\frac{2}{12}$ or \square.
CHECK Repeat the experiment several times to see whether the results agree.

Check Your Progress
PHOTOGRAPHS A photographer is taking a picture of the four members in Margaret's family. Margaret's grandmother will stand on the right. How many different ways can the photographer arrange the family members in a row for the photo?

9-7 Theoretical and Experimental Probability

Standard 6SDP3.2 Use data to estimate the probability of future events (e.g., batting averages or number of accidents per mile driven).

Main Idea

Find and compare experimental and theoretical probabilities.

FOLDABLES

ORGANIZE IT

On the tab for Lesson 9-7, take notes about theoretical and experimental probability. Be sure to describe their differences.

BUILD YOUR VOCABULARY (pages 202-203)

Experimental probability is based on what \square occurred during an experiment. Theoretical probability is based on what \square happen when conducting an experiment.

EXAMPLE Experimental Probability

(1) A spinner is spun 50 times, and it lands on the color blue 15 times. What is the experimental probability of spinning blue?

The experimental probability of spinning the color blue is

Check Your Progress A marble is pulled from a bag of colored marbles 30 times and 18 of the pulls result in a yellow marble. What is the experimental probability of pulling a yellow marble?

EXAMPLES Experimental and Theoretical Probability

The graph shows the results of an experiment in which a number cube is rolled 30 times.
2. Find the experimental probability of rolling a 5.

The experimental probability of rolling

3 Compare the experimental probability of rolling a 5 to its theoretical probability.
The theoretical probability of rolling a 5 on a number cube

So, the theoretical probability is close to the
experimental probability of

Check Your Progress The graph shows the result of an experiment in which a coin was tossed 150 times.
a. Find the experimental probability of tossing heads for this experiment.

b. Compare the experimental probability of tossing

Homework Assignment

Coin Toss
 probability.

9-8 Compound Events

MAIN IDEA

Find the probability of independent events.

Key Concept

Probability of Two Independent Events The probability of two independent events can be found by multiplying the probability of the first event by the probability of the second event.

FOLDABLES On the tab for Lesson 9-8, give an example of finding the probability of two independent events.

BUILD YOUR VOCABULARY (pages 202-203)

A compound event consists of two or more \square events.

If one event does not \square choosing a second event, both events are called independent events.

EXAMPLE Independent Events

(1) The spinner shown is spun and a number cube is tossed. Find the probability of spinning a C and rolling a number less than 5.
List the sample space.

A, 1
A, 2
A, 3
A, 4
A, 5
A, 6
B, 1
B, 2
B, 3
B, 4
B, 5
B, 6
C, 1
C, 2
C, 3
C, 4
C, 5
C, 6
$P(\mathrm{C}$ and a number less than 5$)=\frac{\text { number of favorable outcomes }}{\text { number of possible outcomes }}$

$$
=\square \text { or } \frac{2}{9}
$$

So, the probability is \square or about 22%.

Check Your Progress

The spinner above is shown and a number cube is tossed. Find the probability of spinning a consonant and an even number.

EXAMPLE

2) LUNCH For lunch, Jessica may choose from a turkey sandwich, a tuna sandwich, a salad, or a soup. For a drink, she can choose juice, milk, or water. If she chooses a lunch and a drink at random, what is the probability that she chooses a sandwich (of either kind) and juice?
$P($ sandwich $)=\square \quad P($ juice $)=\square$

So, the probability that she chooses a sandwich and juice is

Check Your Progress SWEATS Zachary has a blue, a red, a gray, and a white sweatshirt. He also has blue, red, and gray sweatpants. If Zachary randomly pulls a sweatshirt and a pair of sweatpants from his drawer, what is the probability that they will both be blue?

Homework Assignment

Page(s):
Exercises:

9

BRINGING IT ALL TOGETHER

STUDY CUIDE

FOLDABlES

Use your Chapter 9 Foldable to help you study for your chapter test.

VOCABULARY
 PUZZLEMAKER

To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 9, go to:
glencoe.com

BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (pages 202-203) to help you solve the puzzle.

Simple Events

For Questions 1-3, a bag contains 4 green, 6 orange, and
10 purple blocks. Find each probability if you draw one block at random from the bag. Write as a fraction in simplest form.

1. P (green)

2. P (orange)

3. P (purple)

9-2

Sample Spaces

4. PHONES A phone company offers three different calling features (caller ID, call waiting, and call forward) and two different calling plans (Plan A or Plan B). Find the sample space for all possibilities of a calling feature and a calling plan.
\square

9-3

The Fundamental Counting Principle

5. Underline the correct term to complete the sentence: The operation used in the Fundamental Counting Principle is (addition, multiplication).

Use the Fundamental Counting Principle to find the total number of outcomes in each situation.

6. Tossing a coin and rolling a 6 -sided number cube.
\square
7. Making a sandwich using whole wheat or sourdough bread, ham or turkey, and either cheddar, swiss, or provolone cheese.
\square
8. Choosing a marble from a bag containing 10 differently-colored marbles and spinning the spinner at the right.
\square

9-4

Permutations

9. LETTERS How many permutations are there of the letters in the word pizza?
\square
10. BASEBALL In how many ways can the six infielders of a baseball team stand in a row for autograph signing?
\square
11. NUMBERS How many 4-digit passwords can be formed using the digits $1,3,4,5,7$, and 9 ? Assume no number can be used more than once.
\qquad
 \square

9-5

Combinations
Complete each sentence.
12. You can find the number or combinations of objects in a set by \square the number of \square of the entire set by the number of ways each smaller set can be arranged.
13. A \square is an arrangement or listing in which order is not \square
14. The burger shop offers 3 choices of condiments from the following: lettuce, onions, pickles, ketchup, and mustard. How many different combinations of condiments can you have on your burger?

9-6

Problem-Solving Investigation: Act it Out

15. TRAVEL Four friends are driving to the beach. In how many different ways can two friends sit in the front and two friends sit in the back if Raul must be the driver?

9-7

Theoretical and Experimental Probability

Underline the correct term(s) to complete each sentence.

16. The word experimental means based on (experience, theory).
17. Theoretical probability is based on what (you actually try, is expected).
18. (Experimental, theoretical) probability can be based on past performance and can be used to make predictions about future events.

Sue has 5 different kinds of shoes: sneakers, sandals, boots, moccasins, and heels.

19. If she chooses a pair each day for two weeks, and chooses moccasins 8 times, what is the experimental probability that moccasins are chosen?
\square
20. Find the theoretical probability of choosing the moccasins.
\square

9-8

Compound Events
State whether each sentence is true or false. If false, replace the underlined word to make the sentence true.
21. A compound event consists of more than one single event.

22. When the outcome of the first event does not have any effect on the second event it is called a simple event.

23. A yellow and a green cube are rolled. What is the probability that an even number is rolled on the yellow cube and a number less than 3 is rolled on the green cube?

ARE YOU READY FOR THE CHAPTER TEST?

Checklist

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 9.

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 9 Practice Test on page 503 of your textbook as a final check.

I used my Foldable or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 9 Study Guide and Review on pages 498-502 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may want to take the Chapter 9 Practice Test on page 503 of your textbook.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 9 Foldable.
- Then complete the Chapter 9 Study Guide and Review on pages 498-502 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 9 Practice Test on page 503 of your textbook.

Student Signature

Teacher Signature

Geometry: Polygons

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.

Begin a piece of 11 " by 17 "paper.
STEP 1
Fold a 2 " tab along the
long side of the paper.
STEP 2 Unfold the paper and
fold in thirds widthwise.
Open and draw lines along the folds. Label the head of each column as shown. Label the front of the folded table with the chapter title.

NOTE-TAKING TIP: As you study a chapter, take notes, record concepts, and write examples about important definitions and concepts.

BUILD YOUR VOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 10. As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

Vocabulary Term	Found on Page	Definition	Description or Example
acute triangle			
adjacent angles			
complementary angles			
congruent angles			
congruent segments			
equilateral [EH-kwuh-			
LA-tuh-rull] triangle			
indirect measurement			
isosceles [y-SAHS-			
LEEZ] triangle			
line symmetry			
obtuse triangle			

Vocabulary Term	Found on Page	Definition	Description or Example
quadrilateral [KWAH- druh-LA-tuh-ruhl]			
reflection			
rhombus [RAHM-buhs]			
scalene [SKAY-LEEN]			
triangle			
similar figures			
straight angle			
supplementary angles			
tessellation			
translation			
vertex			
zertical angles			

10-1 Angle Relationships

Standard 6MG2.1 Identify angles as vertical, adjacent, complementary, or supplementary and provide descriptions of these terms.

Main Idea

- Classify angles and identify vertical and adjacent angles.

Key Concepts

Types of Angles

Acute Angle

less than 90°

Obtuse Angle

between 90° and 180°

Right Angle

exactly 90°

Straight Angle

exactly 180°

FOLDABLES Include these types of angles in your Foldable.

is called the vertex.

EXAMPL: Naming Angles

(1) Name the angle below.

- Use the vertex as the middle letter and a point from each side.

- Use the vertex only.

- Use a number.
\square
The angle can be named in four ways:

Check Your Progress Name the angle below.

\square

Remember It

A ray starts at a point and goes without end in one direction.

EXAMPLES Classify Angles

Classify each angle as acute, obtuse, right, or straight.

The angle is exactly \square , so it is a \square angle.

The angle is \square than 90°, so it is an \square angle.

Check Your Progress Classify each angle as acute, obtuse, right, or straight.
a.

b.

BUILD YOUR YOGABULARY (pages 225-226)
Two angles are \square if they are opposite angles formed by the intersection of two lines. Two angles are if they share a common vertex, a common side, and do not overlap.
(4) Determine if each pair of angles in the figure at the right are vertical angles, adjacent angles, or neither.
a. $\angle 3$ and $\angle 5$

Since $\angle 3$ and $\angle 5$ are opposite angles formed by the intersection of two lines, they are \square angles.
b. $\angle 3$ and $\angle 4$
$\angle 3$ and $\angle 4$ share a common vertex and side, and do not overlap. So, they are \square angles.
c. $\angle 4$ and $\angle 5$
$\angle 4$ and $\angle 5$ share a common vertex and side, and do not overlap. So, they are \square angles.

Check Your Progress Determine if each pair of angles in the figure at the right are vertical angles, adjacent angles, or neither.
a. $\angle 1$ and $\angle 2$

\square
c. $\angle 1$ and $\angle 4$ \square

10-2 Complementary and Supplementary Angles

Main Idea

- Identify complementary and supplementary angles and find missing angle measurements.

Standard
6MG2.1 Identify angles as vertical, adjacent, complementary, or supplementary and provide descriptions of these terms.

- Standard 6MG2.2 Use the properties of complementary and supplementary angles and the sum of the angles of a triangle to solve problems involving an unknown angle.

EXAMPLES Classify Angles

Classify each pair of angles as complementary, supplementary, or neither.

So, the angles are

$\angle x$ and $\angle y$ form a \square angle.

So, the angles are \square

Check Your Progress
Classify each pair of angles as complementary, supplementary, or neither.
a.

Remember It

When two angles are congruent, the measure of the angles are equal.
b.

EXAMPLE Find a Missing Angle Measure

(3) Angles PQS and $R Q S$ are supplementary. If $\boldsymbol{m} \angle P Q S=56^{\circ}$, find $\boldsymbol{m} \angle R Q S$.

Since $\angle P Q S$ and $\angle R Q S$ are supplementary, $m \angle P Q S+m \angle R Q S=180^{\circ}$.
$m \angle P Q S+m \angle R Q S=180 \quad$ Write the equation.

$$
m \angle R Q S=\square
$$

The measure of \square is 124°.

Check Your Progress Angles MNP and $K N P$ are complementary. If $m \angle M N P=23^{\circ}$, find $m \angle K N P$.

Homework Assignment

Page(s):
Exercises:

10-3 Statistics: Display Data in a Circle Graph

Reinforcement of 5SDP1.2 Organize and display single-variable data in appropriate graphs and representations (e.g., histogram, circle graphs) and explain which types of graphs are appropriate for various data sets.

EXAMPLE Display Data in a Circle Graph

Main IDEA

- Construct and interpret circle graphs.

WRITE IT

Write a proportion to convert 65\% to the number of degrees in a part of a circle graph.
\qquad
\qquad
\qquad
\qquad
\qquad
(1) SPORTS In a survey, a group of middle school students were asked to name their favorite sport. The results are shown in the table. Make a circle graph of the data.

Sport	Percent
football	30%
basketball	25%
baseball	22%
tennis	8%
other	15%

- Find the degrees for each part. Round to the nearest whole degree.
football: \square of $360^{\circ}=0.30 \cdot 360^{\circ}$ or \square basketball: 25% of $360^{\circ}=$ \square - 360° or \square baseball: \square of $360^{\circ}=0.22 \cdot 360^{\circ}$ or about \square tennis: \square - 360° or about \square other: \square of $360^{\circ}=0.15 \cdot 360^{\circ}$ or about \square
- Draw a circle with a radius marked as shown. Then use a
\square to draw the first angle, in this case
 Repeat this step for each section.

- Label each section of the graph with the category and

Give the graph
a

Favorite Sport

EXAMPLE Construct a Circle Graph

2 MOVIES Gina has the following types of movies in her DVD collection. Make a circle graph of the data.

Type of Movie	Numbers
action	24
comedy	15
science fiction	7

- Find the total number of DVDs: $24+15+7$ or \square
- Find the \square that compares each number with the \square. Write the ratio as a \square number rounded to the nearest hundredth.
action:

comedy:

science fiction:

$$
\square \approx 0.15
$$

- Find the number of degrees for each section of the graph.

Gina's DVD Collection

- Draw the circle graph.

Check Your Progress

a. ICE CREAM In a survey, a group of students were asked to name their favorite flavor of ice cream. The results are shown in the table. Make a circle graph of the data.

Flavor	Percent
chocolate	30%
cookie dough	25%
peanut butter	15%
strawberry	10%
other	20%

b. MARBLES Michael has the following colors of marbles in his marble collection. Make a circle graph of the data.

Color	Number
black	12
green	9
red	5
gold	3

EXAMPLES Analyze a Circle Graph

VOTING The circle graph below shows the percent of voters in a town who are registered with a political party.

(3) Which party has the most registered voters?

The largest section of the circle is the one representing \square. So, the Democratic party has the most registered voters.
4) If the town has 3,400 registered Republicans, about how many voters are registered in all?
Republicans: 42% of registered voters $=$ \square

$$
\begin{aligned}
0.42 \times n & =3,400 \\
0.42 n & =3,400 \\
n & \approx 8,095
\end{aligned}
$$

So, there are about \square registered voters in all.

Choose Your Method
SPORTS The circle graph below shows the responses of middle school students to the question "Should teens be allowed to play professional sports?"

> Should Teens be Allowed to Play Professional Sports?

10-4 Triangles

EXAMPLE Find a Missing Measure

Main IDEA

Identify and classify triangles.

Key Concept

Angles of a Triangle The sum of the measures of the angles of a triangle is 180°.

FOLDABLES Record this relationship in your Foldable. Be sure to include an example.

Standard

6MG2.2 Use
the properties of complementary and supplementary angles and the sum of the angles of a triangle to solve problems involving an unknown angle. Standard 6MG2.3 Draw quadrilaterals and triangles from given information about them (e.g., a quadrilateral having equal sides but no right angles, a right isosceles triangle.)
(1) ALGEBRA Find $m \angle A$ in $\triangle A B C$ if $m \angle A=m \angle B$, and $m \angle C=80^{\circ}$.

Since the sum of the angle measures in a triangle is 180°,
$m \angle A+m \angle B+m \angle C=\square$.
Let x represent $m \angle A$. Since $m \angle A=m \angle B, x$ also represents

$$
x+x+80=180 \quad \text { Write the equation. }
$$

$$
x=
$$

\square

So, $m \angle A=$ \square

Check Your Progress ALGEBRA Find $m \angle \mathrm{M}$ in $\triangle M N O$ if $m \angle N=75^{\circ}$ and $m \angle O=67^{\circ}$.

KEy CONCEPTS

Classify Triangles Using Angles and Sides

Acute Triangle all acute angles

Right Triangle one right angle

Obtuse Triangle one obtuse angle

Scalene Triangle no congruent sides

Isosceles Triangle at least 2 congruent sides
Equilateral Triangle three congruent sides

Homework Assignment

Page(s):
Exercises:
\qquad

EXAMPLE

2 STANDARDS EXAMPLE An airplane has wings that are shaped like triangles. What is the missing measure of the angle?

A 41°
B 31°
C 26°
D 21°

Read the Test Item

To find the missing measure, write and solve an equation.

Solve the Test Item

x

$$
=\square
$$

is \square

Simplify.

\square The answer is \square

Check Your Progress

STANDARDS EXAMPLE A piece of fabric is shaped like a triangle. Find the missing angle measure.

A 73°
B 49°

C 58°
D 53°

10-5 Problem-Solving Investigation: Use Logical Reasoning

EXAMPLE Solve Using Logical Reasoning

MAIN IDEA

- Solve problems by using logical reasoning.

Standard 6MR1.2 Formulate and justify mathematical conjectures based on a general description of the mathematical question or problem posed.
Standard 6MG2.3 Draw quadrilaterals and triangles from given information about them (e.g., a quadrilateral having equal sides but no right angles, a right isosceles triangle).

GEOMETRY Draw an isosceles triangle. How can you confirm that it is isosceles?

EXPLORE You know that isosceles triangles have at least \square congruent sides. You need to confirm whether or not a drawn triangle is isosceles.

PLAN Draw an isosceles triangle. Measure the sides to confirm that at least two of the sides are

SOLVE Draw the triangle.

Measure the sides using a ruler or centimeter ruler. The side lengths are 2.6 centimeters, 2.6 centimeters, and 1.7 centimeters. Since at least two of the sides are congruent, the triangle is isosceles.

CHECK Since at least 2 of the sides are congruent, the triangle is isosceles. You can have someone else also measure the sides to check that the triangle

Check Your Progress
GEOMETRY Do the angles in an isosceles triangle have a special relationship?

10-6 Quadrilaterals

Standard 6MG2.3 Draw quadrilaterals and triangles from given information about them (e.g., a quadrilateral having equal sides but no right angles, a right isosceles triangle.)

Main Idea

- Identify and classify quadrilaterals.

FOLDABLES

Organize It

Record what you learn about quadrilaterals. Illustrate and describe the five types of quadrilaterals discussed in this chapter.

A parallelogram is a quadrilateral with opposite sides

A trapezoid is a \square with one pair of
\square sides.

A rhombus is a parallelogram with four congruent sides.

EXAMPLES Classify Quadrilaterals

Classify the quadrilateral using the name that best describes it.

The quadrilateral has 4 \square angles and opposite sides are \square It is a \qquad
2

The quadrilateral has \square pair of \square sides.

It is a \square

Key Concept

Angles of a Quadrilateral The sum of the measures of the angles of a quadrilateral is 360°.

Homework Assignment

Check Your Progress
Classify the quadrilateral using the name that best describes it.
a.

b.

EXAMPLE Find a Missing Measure

3 ALGEBRA Find the value of x in the quadrilateral shown.

Write and solve an equation. Let x represent the missing measure.

The sum of the measures is 360°.

Simplify.
 both sides.

So, the missing angle measure is \square

Check Your Progress
Find the missing angle measure in the quadrilateral.

10-7 Similar Figures

Main Idea

- Determine whether figures are similar and find a missing length in a pair of similar figures.

Key Concept

Similar Figures If two figures are similar, then

- the corresponding sides are proportional, and
- the corresponding angles are congruent. proportions to solve problems (e.g. determine the value of n if $\frac{4}{7}=\frac{\mathrm{N}}{21}$, find the length of a side of a polygon similar to a known polygon). Use cross-multiplication as a method for solving such problems, understanding it as the multiplication of both sides of an equation by a multiplicative inverse.

EXAMPLE Identify Similar Figures

BUILD YOUR VOCABULARY (pages 225-226)

Figures that have the same \square but not necessarily the same \square are similar figures.

(1) Which rectangle below is

 similar to rectangle $\boldsymbol{F G H I}$?

Compare the ratios of the corresponding sides.
Rectangle LMNO Rectangle $A B C D \quad$ Rectangle $Q R S T$

So, rectangle $F G H I$ is similar to rectangle \square

FOLDABLES

Organize IT

Use your Foldable to record what you learn about similar figures and indirect measurement.

Homework

 Assignment

EXAMPLE Find Side Measures of Similar Triangles

Check Your Progress rectangle from Example 1 is similar to rectangle $W X Y Z$ shown?

2. If $\triangle A B C \sim \triangle D E F$, find the length of $\overline{\boldsymbol{D F}}$.
Since the two triangles are
\square the ratios of their corresponding sides are

\square So, you can write and solve a proportion to find $\overline{D F}$.

$$
\frac{A B}{D E}=\frac{A C}{D F} \quad \text { Write a proportion. }
$$

$$
\square=\frac{11}{n}
$$

Let n represent the length of \square
$3 n=\square$ Then substitute.
$3 n=\square$ Simplify.

Divide each side by \square
The length of $\overline{D F}$ is \square centimeters.

Check Your Progress
If $\triangle J K L \sim \triangle M N O$, find the length of $\overline{J L}$.
\square

10-8 Polygons and Tessellations

Standard 6MR2.2 Apply strategies and results from simpler problems to more complex problems. Standard 6AF3.2 Express in symbolic form simple relationships arising from geometry.

EXAMPLES Classify Polygons

Main Idea

- Classify polygons and determine which polygons can form a tessellation.

FOLDABLES

ORGANIZE IT

Use your Foldable to record what you learn about polygons and tessellations. Explain how a tessellation can be made with several kinds of polygons.

Determine whether each figure is a polygon. If it is, classify the polygon and state whether it is regular. If it is not a polygon, explain why.

The figure is \square a polygon since it has a \square side.

This figure has \square sides that are not all of \square.
length. It is a \square that is not \square

Check Your Progress
Determine whether each figure is a polygon. If it is, classify the polygon and state whether it is regular. If it is not a polygon, explain why.
a.

b.

\square

BUILD YOUR YOGABULARY (pages 225-226)

A repetitive pattern of polygons that fit together with no \square or \square is called a tessellation.

10-9 Translations

Preparation for 7MG3.2 Understand and use coordinate graphs to plot simple figures, determine lengths and areas related to them, and determine their image under translations and reflections.

Main Idea

- Graph translations of polygons on a coordinate plane.

Remember It

The order of a translation of a figure does not matter. Moving a figure to the side x units and then up y units is the same as moving it up y units and then to the side x units.

BUILD YoUR Vocalsulary (pages 225-226)

A translation is a transformation where every point of the \square figure is moved the same \square and in the same \square

EXAMPLE Graph a Translation

(1) Translate $\triangle A B C 5$ units left and 1 unit up.

- Move each vertex of the figure 5 units left and 1 unit up. Label the new vertices A^{\prime}, B^{\prime}, and C^{\prime}.
- Connect the vertices to draw the triangle. The coordinates of the vertices of the new figure are

and

Check Your Progress

Translate $\triangle D E F 3$ units left and 2 units down.

EXAMPLE Find Coordinates of a Translation

2 Trapezoid $G H I J$ has vertices $G(-4,1), H(-4,3),, I(-2,3)$, and $J(-1,1)$. Find the vertices of trapezoid $G^{\prime} H^{\prime} I^{\prime} J^{\prime}$ after a translation of 5 units right and 3 units down. Then graph the figure and its translated image.

10-10 Reflections

Preparation for 7MG3.2 Understand and use coordinate graphs to plot simple figures, determine lengths and areas related to them, and determine their image under translations and reflections.

MAIN IDEA

- Identify figures with line symmetry and graph reflections on a coordinate plane.

BUILD YOUR VOGABULARY (pages 225-226)

Figures that \square exactly when they are folded in
\square have line symmetry.

A type of transformation where a figure is flipped over a line of symmetry is a reflection.

EXAMPLES Identify Lines of Symmetry

LETTERS Determine whether each letter has a line of symmetry. If so, copy the figure and draw all lines of symmetry.

This figure has line

There are \square lines of symmetry.

This figure has line symmetry.

3

This figure \square have
line symmetry.

Check Your Progress
Determine whether each figure has line symmetry. If so, copy the figure and draw all lines of symmetry.
a.

b.

EXAMPLE Reflect a Figure Over the x-axis

Remember It

Vertices of a figure receive double prime symbols (") after they have been transformed twice.
(4) Quadrilateral $Q R S T$ has vertices $Q(-1,1), R(0,3), S(3,2)$, and $T(4,0)$. Graph the figure and its reflected image over the x-axis. Then find the coordinates of the reflected image.
The x-axis is the line of reflection. So, plot each vertex of $Q^{\prime} R^{\prime} S^{\prime} T^{\prime}$ the same distance from the x-axis as its corresponding vertex on $Q R S T$.

Q^{\prime} \square
\square
\square
\square

Check Your Progress
Quadrilateral $A B C D$ has vertices $A(-3,2) B(-1,5), C(3,3)$, and $D(2,1)$. Graph the figure and its reflection over the x-axis. Then find the coordinates of the reflected image.

EXAMPLE Reflect a Figure over the y-axis

5 Triangle $X Y Z$ has vertices $X(1,2), Y(2,1)$, and $Z(1,-2)$. Graph the figure and its reflected image over the y-axis. Then find the coordinates of the reflected image.
The y-axis is the line of reflection. So, plot each vertex of $X^{\prime} Y^{\prime} Z^{\prime}$ the same distance from the y-axis and its corresponding vertex on $X Y Z$.

Check Your Progress

Triangle $Q R S$ has vertices $Q(3,4)$, $R(1,0)$, and $S(6,2)$. Graph the figure and its reflection over the y-axis. Then find the coordinates of the reflected image.

BRINGING IT ALL TOGETHER

STUDY GUIDE

Foldables

Use your Chapter 10 Foldable to help you study for your chapter test.

VOCABULARY
 PUZZLEMAKER

To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 10, go to:
glencoe.com

BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (pages 225-226) to help you solve the puzzle.

10-1

Angle Relationships
Classify each angle as acute, obtuse, or right.
1.

2.

3.

10-2

Complementary and Supplementary Angles

Complete each sentence.
4. The sum of the measures of \square angles is 180°.
5. The sum of the measures of \square angles is 90°.
6. If $\angle A$ and $\angle B$ are supplementary angles and $m \angle B=43^{\circ}$, find $m \angle A$.
\square

10-3

Statistics: Display Data in a Circle Graph
Find the number of degrees for each part of the graph at the right.
7. A \square
8. B
\square
9. C \square

10-4

Triangles

Complete the table to help you remember the ways to classify triangles.
10.

Type of Triangle	Classified by Angles or Sides	Description
acute	angles	\square
obtuse	\square	\square
\square	sides	no congruent sides
\square	\square	1 right angle equilateral

10-5

Problem-Solving Investigation: Logical Reasoning
15. RACES Marcus, Elena, Pedro, Keith, and Darcy ran a 2 mile race. Darcy finished directly after Pedro, Elena finished before Marcus, and Keith finished first. If Pedro finished third, order the runners from first to last.

10-6
Quadrilaterals
Find the value of x in the quadrilateral.

17.

\square

10-7

Similar Figures

18. Find the value of x if $\triangle A B C \sim \triangle D E F$.

10-8

Polygons and Tessellations

Underline the correct term to complete each sentence.

19. A polygon can have (two, three) or more straight lines.
20. To find the sum of the angle measures in a regular polygon, draw all the diagonals from one vertex, count the number of (angles, triangles) formed, and multiply by 180°.

10-9

Translations
21. Triangle $A B C$ with vertices $A(2,4), B(-4,6)$, and $C(1,-5)$ is translated 2 units right and 3 units down. What are the coordinates of B^{\prime} ?

10-10

Reflections
Underline the correct word(s) to complete the sentence.
22. The image of a reflection is (larger than, the same size as) the original figure.
23. Triangle $D E F$ has vertices $D(-5,2), E(-4,-2)$, and $F(-3,0)$. It is reflected over the y-axis. What are the coordinates of D^{\prime} ?

10

ARE YOU READY FOR THE CHAPTER TEST?

Checklist

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 10.

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 10 Practice Test on page 567 of your textbook as a final check.

I used my Foldable or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 10 Study Guide and Review on pages 563-566 of your textbook.
- If you are unsure of any concepts or skills, refer to the specific lesson(s).
- You may want to take the Chapter 10 Practice Test on page 567 of your textbook.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 10 Foldable.
- Then complete the Chapter 10 Study Guide and Review on pages 563-566 of your textbook.
- If you are unsure of any concepts or skills, refer to the specific lesson(s).
- You may also want to take the Chapter 10 Practice Test on page 567 of your textbook.

Student Signature

Teacher Signature

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.

NOTE-TAKING TIP: When you take notes, it is helpful to write key vocabulary words, definitions, concepts, or procedures as clearly and concisely as possible.

BUILD YOUR VOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 11. As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

Vocabulary Term	Found on Page	Definition	Description or Example
base			
circle			
circumference			
complex figure			
cone			
cylinder			
diameter			
edge			
face			

Vocabulary Term	Found on Page	Definition	Description or Example
height			
lateral face			
prism			
pyramid			
radius			
rectangular prism			
solid			
sphere			
vertex			
three-dimensional			
figure			

Main Idea

Find the areas of parallelograms.

Key Concept

Area of a Parallelogram The area A of a parallelogram equals the product of its base b and height h.

Standard 6AF3.1

 Use variables in expressions describing geometric quantities (e.g., $P=2 w+$ $2 /, A=\frac{1}{2} b h, C=\pi d$-the formulas for the perimeter of a rectangle, the area of a triangle, and the circumference of a circle, respectively).Standard 6AF3.2
Express in symbolic form simple relationships arising from geometry.

EXAMPLE Find the Area of a Parallelogram

(1) Find the area of the parallelogram.

Estimate $A=\square \cdot \square$ or $\square \mathrm{cm}^{2}$
$A=b h$
 $A=$ \square Area of a parallelogram Replace \square with 7.5 and \square with 6.4. Multiply.

The area of the parallelogram is \square square centimeters.

This is the same as the estimate.

Check Your Progress
Find the area of the parallelogram.

Homework Assignment

Page(s): Exercises:

11-2 Areas of Triangles and Trapezoids

EXAMPLE Find the Area of a Triangle

Main Idea

- Find the areas of triangles and trapezoids.

Key Concept

Area of a Triangle The area A of a triangle equals half the product of its base b and height h.

Standard 6AF3.1 Use variables in expressions describing geometric quantities (e.g., $P=2 w+$ 2l, $A=\frac{1}{2} b h, C=\pi d$-the formulas for the perimeter of a rectangle, the area of a triangle, and the circumference of a circle, respectively).
Standard 6AF3.2
Express in symbolic form simple relationships arising from geometry.

(1) Find the area of the triangle below.

Estimate $\frac{1}{2}(9)(3)=\square$
$A=\frac{1}{2} b h$
 Replace b with \square and h with \square Multiply.

The area of the triangle is 14.4 \square
This is close to the estimate.

Check Your Progress
Find the area of the triangle below.

EXAMPL Find the Area of a Trapezoid

2 Find the area of the trapezoid below.

The height is \square meters.

Key Concept

Area of a Trapezoid The area A of a trapezoid equals half the product of the height h and the sum of the bases b_{1} and b_{2}.

FOLDABLES

ORGANIZE IT

Under the tab for Lesson 11-2 of your Foldable, record in words and symbols how to find the area of triangles and trapezoids.

Homework

 AssignmentPage(s): Exercises:
$A=\frac{1}{2} h\left(b_{1}+b_{2}\right) \quad$ Area of a trapezoid
$A=\frac{1}{2}(3) \square$

$A=\frac{1}{2} \square$

Multiply.
The area of the trapezoid is \square square meters.

Check Your Progress
Find the area of the trapezoid below.

11-3 Circles and Circumference

Main Idea

- Find the circumference of circles.

6MG1.1
 Understand the concept of a

 constant such as π; know the formulas for the circumference and area of a circle. Standard 6MG1.2 Know common estimates of $\pi\left(3.14, \frac{22}{7}\right)$ and usethese values to estimate and calculate the circumference and area of circles; compare with actual measurements.

Key Concept

Circumference of a Circle The circumference C of a circle is equal to its diameter d times π, or 2 times its radius r times π.

BUILD YOUR VOCABULARY (pages 255-256)

A circle is a set of all points in a plane that are the
\square

The diameter (d) is the distance \square
\square through its center.
The circumference (C) is the distance \square a circle.

The radius (r) is the distance from the \square to any point on a \square

Find Circumference

(1) PETS Find the circumference around the hamster's running wheel shown. Round to the nearest tenth.
$C=2 \pi r$
$C \approx 2$

(3)
$C \approx$ \square Multiply.
The circumference is about \square inches.

Check Your Progress

SWIMMING POOL
A new children's swimming pool is being built at the local recreation center. The pool is circular in shape with a diameter of 18 feet. Find the circumference of the pool. Round to the nearest tenth.

11-4 Area of Circles

Find the Areas of Circles

MAIN IDEA

Find the areas of circles.

Key Concept

Area of a Circle The area A of a circle equals the product of pi (π) and the square of its radius r.

- 6MG1.1 Understand the concept of a constant such as π; know the formulas for the circumference and area of a circle.
Standard 6MG1.2 Know common estimates of
$\pi\left(3.14, \frac{22}{7}\right)$ and use
these values to estimate and calculate the circumference and area of circles; compare with actual measurements.

Homework Assignment

1 Find the area of the circle.

Area of a circle

Replace π with 3.14 and r with \square
The area of the circle is approximately \square square centimeters.

2 KOI Find the area of the koi pond shown.

The diameter of the pond is 3.6 meters, so the radius is $\frac{1}{2}(3.6)$ or 1.8 meters.
$A=\pi r^{2}$
$A=\pi(\square)^{2}$
Area of a circle

The area is approximately \square square meters.

Check Your Progress
a. COINS Find the area of a nickel whose diameter is 2.1 centimeters. Use 3.14 for π.

b. Find the area of the circle below. Use a calculator.

11-5 Problem-Solving Investigation: Solve a Simpler Problem

EXAMPLE Use the Solve a Simpler Problem Strategy

Main Idea

Solve problems by solving a simpler problem.

Standard 6MR1.3 Determine when and how to break a problem into simpler parts.
Standard 6MR2.2 Apply strategies and results from simpler problems to more complex problems. Standard 6NS2.1 Solve problems involving addition, subtraction, multiplication, and division of positive fractions and explain why a particular operation was used for a given situation.

PAINT Ben and Shelia are going to paint the wall of a room as shown in the diagram. What is the area that will be painted?

EXPLORE You know the dimensions of the wall including the door and window. You also know the dimensions of the door and window. You need to find the area of the wall not including the door and window.

PLAN Find the area of the wall including the door and window. Then subtract the area of the door and the window.

SOLVE area of wall including door and window:
$A=l w$
$A=12 \cdot 9$ or \square square feet
area of door:
$A=l w$
$A=3 \cdot 7$ or
 square feet
area of window:
$A=l w$
$A=5 \cdot 4$ or \quad square feet
The total area to be painted is $108-21-20$ or
\square square feet.

CHECK The area to be painted is 67 square feet. Add the area of the door and the window. $67+21+20$ is 108 square feet. So, the answer is correct.

Check Your Progress

INTEREST Mario invested $\$ 350$

 into a savings account earning 2.5% annual interest and $\$ 500$ into a savings account earning 2.75% annual interest. Altogether, how much money will he have in his accounts after 3 years if he makes no additional deposits or withdrawals?
11-6 Area of Complex Figures

MAIN IDEA

- Find the areas of complex figures.

Standard 6AF3.1 Use variables in expressions describing geometric quantities (e.g., $P=2 w+$ 2 l, $A=\frac{1}{2} b h, C=\pi d-$ the formulas for the perimeter of a rectangle, the area of a triangle, and the circumference of a circle, respectively). Standard 6AF3.2 Express in symbolic form simple relationships arising from geometry.

FOLDABLES

ORGANIZE IT

In the tab for Lesson 11-6 of your Foldable, record in words and symbols how you find the area of composite figures. Make up an example of your own and explain how you would find the area.

BUILD YOUR VOCABULARY (pages 255-256)

Find the Area of a Complex Figure

1 Find the area of the figure in square centimeters.

The figure can be separated into a \square and a
 Find the area of each.

Area of Rectangle

Area of Triangle
$A=\ell w$
$A=\frac{1}{2} b h$
$A=15 \cdot 10$ or \square

$$
A=\frac{1}{2}(5)(4) \text { or } \square
$$

The area is $150+10$ or \square square centimeters.

Check Your Progress

Find the area of the figure shown.

Write It

Explain in general terms how to subdivide a composite figure so you can find its area.
\qquad
\qquad
\qquad

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Homework

 Assignment
Page(s):

Exercises:

Find the Area of a Complex Figure

(2) WINDOWS The diagram at the right shows the dimensions of a window. Find the area of the window. Round to the nearest tenth.

The figure can be separated into a semicircle and a rectangle.

Area of Semicircle

$A=\square \pi r^{2}$
$A=\frac{1}{2} \pi \square$
Area of a semicircle

$A \approx$
 Simplify.

Area of Rectangle
$A=\ell w$
Area of a rectangle
 and w with

\square
$A=$

The area of the window is approximately
 square feet.

Check Your Progress

The diagram below shows the dimensions of a new driveway. Find the area of the driveway. Round to the nearest tenth.

MAIN IDEA

- Classify threedimensional figures.
- Preparation for 7MG3.6 Identify elements of threedimensional geometric objects (e.g., diagonals of rectangular solids) and describe how two or more objects are related in space (e.g., skew lines, the possible ways three planes might intersect).

FOLDABLES

Organize IT

Record notes about classifying threedimensional figures under the tab for Lesson 11-7 of your Foldable.

BUILD YOUR VOCABULARY (pages 255-256)

A three-dimensional figure has length, \square and depth.

A \square is a flat surface. The \square are the segments formed by intersecting faces. The edges intersect at the \square

EXAMPLES Classify Three-Dimensional Figures

For each figure, identify the shape of the base(s). Then classify the figure.

The figure has two circular bases, no vertices, and no edges. The figure is a

The figure has
 triangular faces and one triangular base. The figure is a

Check Your Progress
For each figure, identify the shape of the base(s). Then classify the figure.
a.

b.

BUILD YOUR VOCABULARY (pages 255-256)

The top and bottom faces of a three-dimensional figure are called the \square
\square has at least three lateral faces that are rectangles.

A pyramid has at least three lateral faces that are
\square
All of the points on a \square are the same distance from the \square

EXAMPLE

Remember It

The base tells the name of the threedimensional figure.

Homework

 Assignment
3 HOUSES Classify the shape of the house's roof as a three-

 dimensional figure.

The shape of the house's roof is a \square

Check Your Progress
Classify the shape of the house
above, not including the roof.

11-8 Drawing Three-Dimensional Figures

EXAMPLE Draw a Three-Dimensional Figure

MAIN IDEA

Draw a three-
dimensional figure given the top, side, and front views.

FOLDABLES

ORGANIZE IT

Record notes about drawing threedimensional figures under the tab for Lesson 11-8 in your Foldable. Sketch examples of rectangular prisms and cylinders.

Reinforcement of 5MG2.3 Visualize and draw twodimensional views of three-dimensional objects made from rectangular solids. Standard 6MR2.4 Use a variety of methods, such as words, numbers, symbols, charts, graphs, tables, diagrams, and models, to explain mathematical reasoning.

Draw a top, a side, and a front view of the figure below.
The top and front views are \square The side view is a \square

Check Your Progress
Draw a top, a side, and a front view of the figure below.

EXAMPLE Draw a Three-Dimensional Figure

Remember It

There is more than one way to draw the different views of a three-dimensional figure.

2 Draw the three-dimensional figure whose top, side, and front views are shown below. Use isometric dot paper.

Step 1 Use the top view to draw the base of the figure.
Step 2 Add edges to make the base a solid figure.
Step 3 Use the side and front views to complete the figure.

Check Your Progress
Draw a solid using the top, side, and front views shown below. Use isometric dot paper.

Homework

 Assignment
Page(s):

Exercises:

11-9 Volume of Prisms

Standard 6MG1.3 Know and use the formulas for the volume of triangular prisms and cylinders (area of base \times height); compare these formulas and explain the similarity between them and the formulas for the volume of a rectangular solid.

MAIN IDEA

- Find the volumes of rectangular and triangular prisms.

Key Concept

Volume of a Rectangular Prism The volume V of a rectangular prism is the area of the base B times the height h. It is also the product of the length ℓ, the width w, and the height h.

BUILD YOUR VocABULARY (pages 255-256)

A volume of a three-dimensional figure is the measure of
\square
A rectangular prism is a prism that has \square bases.

EXAMPL: Volume of a Rectangular Prism

(1) Find the volume of the rectangular prism.

$V=\ell w h$

Volume of a
 w with
 and h with
 $V=\square$ Multiply.

The volume is 24 \square centimeters.

Check Your Progress

Find the volume of the rectangular prism.

10 in.

11-10 Volume of Cylinders

Standard 6MG1.3 Know and use the formulas for the volume of triangular prisms and cylinders (area of base \times height); compare these formulas and explain the similarity between them and the formulas for the volume of a rectangular solid.

Find the Volume of a Cylinder

MAIN IDEA

Find the volumes of cylinders.

Key Concept

Volume of a Cylinder The volume V of a cylinder with radius r is the area of the base B times the height h.
[FOLDABLES Take notes on how to find the volume of cylinders under the tab for Lesson 11-10 of your Foldable.

1 Find the volume of the cylinder. Round to the nearest tenth.

$V=\pi \square \quad$ Replace the variables. Use a calculator.

\square

The volume is about \square cubic centimeters.

Check Your Progress Find the volume of the cylinder. Use a calculator. Round to the nearest tenth.

2 COFFEE How much coffee can the can hold?

Write IT

Explain how you would use a calculator to evaluate a power.
\qquad
\qquad
\square

Homework

 AsSIGNMENT
STUDY GUIDE

FOLDABlES

Use your Chapter 11 Foldable to help you study for your chapter test.

Vocabulary
 PUZZLEMAKER

To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 11, go to:
glencoe.com

BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (pages 255-256) to help you solve the puzzle.

11-1

Area of Parallelograms

State whether each sentence is true or false. If false, replace the underlined word to make a true sentence.

1. To find the base of a parallelogram, draw a segment perpendicular to the base with endpoints on opposite
sides of the parallelogram. \square
2. The area of a parallelogram is found by multiplying its base
times the height. \square
3. What is the area of a parallelogram with a base of 15 feet and a height of 3.5 feet? \square
11-2
Area of Triangles and Trapezoids

Complete the sentence.

4. To find the \square of a triangle, find the distance from the \square to the \square vertex.

Find the area.

11-3

Circles and Circumference

Find the circumference of each circle. Use 3.14 or $\frac{22}{7}$ for π. Round to the nearest tenth if necessary.
7. radius $=7.4 \mathrm{~cm}$

9. diameter $=6 \frac{1}{8} \mathrm{ft}$

8. radius $=3 \frac{1}{2} \mathrm{in}$.

10. diameter $=1.7 \mathrm{mi}$

11-4
Area of Circles
Complete each sentence.
11. To find the \square of a circle when you are given the
 square that, and \square the result by pi.
12. The units for the \square of a circle will always be measured
\square
in
13. Find the area of a circle with a diameter of 13.6 inches. Use a calculator. Round to the nearest tenth. \square

11-5

Problem-Solving Investigation: Solve a Simpler Problem
14. MOVIES Five friends, Marcy, Luke, Shawnda, Jorge, and Lily sat in a row at the movie theater. Marcy and Luke sat next to each other, Jorge did not sit next to Luke, and Shawnda sat at the right end. If Lily sat next to Shawnda and Jorge, find the order of the friends' seating from left to right.

11-6

Area of Complex Figures

Name the two dimensions of the following figures.
15. rectangle \square
16. triangle \square
Find the area of each figure. Round to the nearest tenth if necessary.
17.

18. 3 cm

\square
\square

11-7

Three-Dimensional Figures
For each figure, identify the shape of the base(s). Then classify the figure.
19.

\square
20.

21. MONUMENTS Ginger made a scale model of the Washington Monument as shown. What geometric figure is represented by the top figure of the monument?

11-8
Drawing Three-Dimensional Figures
Complete each sentence.
22. A two-dimensional figure has two dimensions; \square and \square
23. A three-dimensional figure has three dimensions; \square
\square and \square 11-9 Volume of Prisms

Find the volume of rectangular prisms with these dimensions. Round to the nearest tenth if necessary.
24. 4 ft by 12 ft by 7 ft

25. 9 in. by 8 in . by 5.5 in .

26. 2.5 in. by 6 in. by 5 in.
27. 3.8 cm by 2.4 cm by 2 cm

11-10

Volume of Cylinders
Write C if the phrase is true of a cylinder, P if it is true of a prism, and CP if the phrase is true of both.
28. \square has bases that are parallel and congruent.
29. \square has sides and bases that are polygons.
30. \square has bases that are circular.
31. \square is a solid.
32. \square has volume.
33. \square is three-dimensional.

ARE YOU READY FOR THE CHAPTER TEST?

Checklist

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 11.

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 11 Practice Test on page 631 of your textbook as a final check.

I used my Foldable or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 11 Study Guide and Review on pages 626-630 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may want to take the Chapter 11 Practice Test on page 631 of your textbook.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 11 Foldable.
- Then complete the Chapter 11 Study Guide and Review on pages 626-630 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 11 Practice Test on page 631 of your textbook.

Student Signature

Teacher Signature

12

Looking Ahead to Grade 7: Geometry and Measurement

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.

Begin with a piece of 11 ' by 17 " paper.

STEP 1 Fold the paper
in fourths
 lengthwise.

STEP 2 Fold a 2" tab along the short side. Then fold the rest in half.

STEP 3 Draw lines along folds and label as shown.

$\begin{aligned} & \hline c h . \\ & 12 \end{aligned}$	Rectangular Prisms	chlinders
\%om		
find		

NOTE-TAKING TIP: When taking notes about 3-dimensional figures, it is important to draw examples. It also helps to record any measurement formulas.

BUILD YOUR VOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 12. As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

Vocabulary Term	Found on Page	Definition	Description or Example
hypotenuse			
irrational number			
leg			
Pythagorean Theorem			
surface area			

12-1 Estimating Square Roots

EXAMPLE Estimate the Square Root

Main IDEA

- Estimate square roots.

Preparation for
7NS2.4 Use the inverse relationship between raising to a power and extracting the root of a perfect square; for an integer that is not square, determine without a calculator the two integers between which its square root lies and explain why.
(1) Estimate $\sqrt{96}$ to the nearest whole number.

List some perfect squares.
$1,4,9,16,25,36,49,64,81,100 \ldots$

$81<96<100 \quad 96$ is between the \square squares and \square
\square

$$
<\sqrt{96}<\square
$$ Find the $\sqrt{ }$ of each number.

So, $\sqrt{96}$ is between \square and \square. Since 96 is closer
to \square than 81 , the best whole number estimate is
\square Verify with a calculator.

Check Your Progress

Estimate each square root to the nearest whole number.
a. $\sqrt{41}$

b. $\sqrt{86}$

c. $\sqrt{138}$

BUILD YOUR VOGABULARY (page 279)

A number that cannot be written as a \square is is an irrational number.

EXAMPL $=$ Use a Calculator to Estimate

Remember It

Decimals used to represent irrational numbers are estimates, not exact values.

Homework AssignMent

Page(s):
Exercises:
2. Use a calculator to find the value of $\sqrt{37}$ to the nearest tenth.

Check $\square=36$ and \square $=49$. Since \square is between

36 and 49, the answer, \square is reasonable.

Check Your Progress
Use a calculator to find the value of each square root to the nearest tenth.
a. $\sqrt{78}$

b. $\sqrt{96}$

c. $\sqrt{188}$

12-2 The Pythagorean Theorem

MAIN IDEA

- Find length using the Pythagorean Theorem.

Key Concept

Pythagorean Theorem In a right triangle, the square of the length of the hypotenuse equals the sum of the squares of the lengths of the legs.

- Preparation for 7MG3.3 Know and understand the Pythagorean theorem and its converse and use it to find the length of the missing side of a right triangle and the lengths of other line segments and, in some situations, empirically verify the Pythagorean theorem by direct measurement.

BUILD YOUR VOGABULARY (page 279)

The two sides \square to the right \square of a right triangle are the legs.
 triangle is the hypotenuse.

Find the Length of the Hypotenuse

1) Find the length of the hypotenuse of the triangle.

$c^{2}=a^{2}+b^{2} \quad$ Pythagorean Theorem
\square Replace a with 2 and b with 6.
$c^{2}=4+36$
Evaluate 2^{2} and 6^{2}.
$c^{2}=40 \quad$ Add.
$c= \pm \sqrt{40} \quad$ Definition of square root
$c \approx \pm 6.3 \quad$ Simplify.
The length of the hypotenuse is about \square millimeters.

Check Your Progress
Find the length of the hypotenuse of a right triangle if the legs are 5 centimeters and 7 centimeters.

EXAMPLE

2) SPORTS A gymnastics tumbling floor is in the shape of a square. If a gymnast flips from one corner to the opposite corner, about how far has he flipped?

To solve, find the length of the hypotenuse c.

The gymnast will have flipped about \square

Check Your Progress
SEWING Rose has a rectangular piece of fabric 28 inches long and 16 wide. She wants to decorate the fabric with lace sewn across both diagonals. How much lace will Rose need?

EXAMPLE Find the Length of a Leg

3 Find the missing measure of the triangle at the right.

$$
\begin{gathered}
c^{2}=a^{2}+b^{2} \\
\square^{2}=a^{2}+\square^{2}
\end{gathered}
$$

Pythagorean Theorem
Replace b with \square and c with \square. (continued on the next page)

Check Your Progress Find the missing measure of the triangle. Round to the nearest tenth if necessary.

Homework Assignment

Page(s):
Exercises:

12-3 Problem-Solving Investigation: Make a Model

EXAMPLE Make a Model to Solve the Problem

MAIN IDEA

- Solve problems by making a model.

Standard 6MR2.4 Use a variety of methods, such as words, numbers, symbols, charts, graphs, tables, diagrams, and models, to explain mathematical reasoning.
Standard 6NS2.1 Solve problems involving addition, subtraction, multiplication, and division of positive fractions and explain why a particular operation was used for a given situation.

Homework ASSIGNMENT

12-4 Surface Area of Rectangular Prisms

MAIN IDEA

- Find the surface areas of rectangular prisms.

BUILD YOUR VOCABULARY (page 279)

The \square of the areas of all of the \square,
or faces, of a \square figure is the
surface area.

EXAMPLE Use a Net to Find Surface Area

Key Concept

Surface Area of Rectangular Prisms

 The surface area S of a rectangular prism with length ℓ, width w, and height h is the sum of the areas of the faces.
Preparation for

 7MG2.1 Use formulas routinely for finding the perimeter and area of basic twodimensional figures and the surface area and volume of basic threedimensional figures, including rectangles, parallelograms, trapezoids, squares, triangles, circles, prisms, and cylinders.Find the surface area of the rectangular prism.
You can use a net of the rectangular prism to find its surface area. There are three pairs of congruent faces.

- top and bottom

- front and back
- two sides

Faces top and bottom

Area
front and back

The surface area is \square $+$

\square or \square square centimeters.

Check Your Progress
Find the surface area of the
rectangular prism.

FOLDABLES

ORGANIZE IT

Include information in words and symbols on how to find the surface area of rectangular prisms in the appropriate section of your Foldable table.

EXAMPLE Use a Formula to Find Surface Area

2 Find the surface area of the rectangular prism.

Replace ℓ with
 , and h with \square surface area $=2 \ell w+2 \ell h+2 w h$

The surface area of the prism is \square

Check Your Progress
Find the surface area of the rectangular prism.

EXAMPLE

3 BOXES Drew is putting together a cardboard box that is 9 inches long, 6 inches wide, and 8 inches high. He bought a roll of wrapping paper that is 1 foot wide and 3 feet long. Did he buy enough to wrap the box? Explain.

Step 1 Find the surface area of the box.

$$
\begin{aligned}
\text { surface area } & =\square+\square+\square \\
& =\square
\end{aligned}
$$

Step 2 Find the area of the wrapping paper.

Since 432
348, Drew bought enough wrapping paper.

Check Your Progress

FABRIC Angela needs to cover a cardboard box that is 15 inches long, 5 inches wide, and 4 inches high with felt. She bought a piece of felt that is 1 foot wide and $2 \frac{1}{2}$ feet long. Did she buy enough felt to cover the box? Explain.

Homework Assignment

\square

12-5 Surface Area of Cylinders

Find Surface Area of a Cylinder

Main Idea

Find the surface areas of cylinders.

Key Concept

Surface Area of a Cylinder The surface area S of a cylinder with height h and radius r is the sum of the areas of circular bases and the area of the curved surface.

1) Find the surface area of the cylinder. Round to the nearest tenth.

2. GIFT WRAP A poster is contained in a cardboard cylinder that is 10 inches high. The cylinder's base has a diameter of 8 inches. How much paper is needed to wrap the cardboard cylinder if the ends are to be left uncovered?

Since only the curved side of the cylinder is to be covered, you do not need to include the areas of the top and bottom of the cylinder.
About 251.2 \square of paper is needed.

FOLDABLES
Organize IT
Include information in words and symbols about how to find the surface area of a cylinder in the appropriate section of your Foldable table.

Homework Assignment

Page(s):
Exercises:
b. LABELS A can of fruit juice is in the shape of a cylinder with a diameter of 6 inches and a height of 12 inches. How much paper is needed to create the label if the ends are to be left uncovered? Use 3.14 for π.

BRINGING IT ALL TOGETHER

STUDY GUIDE

FOLDABlES

Use your Chapter 12 Foldable to help you study for your chapter test.

VOCABULARY
 PUZZLEMAKER

To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 12, go to:
glencoe.com

BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (page 279) to help you solve the puzzle.

12-1

Estimating Square Roots

Estimate each square root to the nearest whole number.

2. $\sqrt{51}$

3. $\sqrt{150}$

4. $\sqrt{230}$

12-2

The Pythagorean Theorem
State whether each sentence is true or false. If false, replace the underlined word to make a true sentence.
5. The Pythagorean Theorem states that $c^{2}=a^{2}+b^{2}$, where \underline{a} represents the length of the hypotenuse. \square
6. The hypotenuse is always the longest of the three sides of a right triangle. \square
Find the missing measure of each right triangle. Round to the nearest tenth if necessary.
7.

8.

\square
\square

12-3
Problem-Solving Investigation: Make a Model
9. BOOKS A bookstore will arrange 4 books in a row in the store window. In how many different ways can the store arrange these 4 books?
\square

12-4

Surface Area of Rectangular Prisms

Find the surface area of each rectangular prism. Round to the nearest tenth if necessary.
10.

11.

12.

12-5

Surface Area of Cylinders

Write the formula to find each of the following.
13. the area of a circle \square
14. the circumference of a circle \square
15. the area of a rectangle \square
Find the surface area of the cylinder. Round to the nearest tenth if necessary.
16.

ARE YOU READY FOR THE CHAPTER TEST?

Checklist

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 12.

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 12 Practice Test on page 663 of your textbook as a final check.

I used my Foldable or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 12 Study Guide and Review on pages 660-662 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may want to take the Chapter 12 Practice Test on page 663 of your textbook.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 12 Foldable.
- Then complete the Chapter 12 Study Guide and Review on pages 660-662 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 12 Practice Test on page 663 of your textbook.

[^0]: Page(s):
 Exercises:

