Lesson 3-7

Example 1 Graph Real-World Data

TRAVEL The table shows the time spent driving in hours and the corresponding distances traveled in miles. Make a graph of the data to show the relationship between the time and the distance.

Time	Distance
1	60
2	120
3	180
4	240
5	300
6	360

The ordered pairs $(1,60),(2,120),(3,180),(4,240),(5,300),(6,360)$ represent this function. Graph the ordered pairs.

****(INSERT A COMPUTER GENERATED GRAPH OF THIS DATA)****

Example 2 Graph Solutions of Linear Equations
 Graph $y=2 x-3$.

Select any four values for the input x. We chose 3, 2, 1, and -1 . Substitute these values for x to find the output y.

\boldsymbol{x}	$\mathbf{2 x}-\mathbf{3}$	\boldsymbol{y}	$(\boldsymbol{x}, \boldsymbol{y})$
3	$2(3)-3$	3	$(3,3)$
2	$2(2)-3$	1	$(2,1)$
1	$2(1)-3$	-1	$(1,-1)$
-1	$2(-1)-3$	-5	$(-1,-5)$

Four solutions are $(3,3),(2,1),(1,-1)$, and $(-1,-5)$. The graph is shown above at the right.

Example 3 Represent Real-World Functions

SAILING The top speed reached by a sailboat during a race is $\mathbf{6}$ miles per hour. The equation $d=6 t$ describes the distance d that the sailboat can travel in time t. Represent the function with a graph.

Step 1 Select any four values for t. Select only positive numbers because t represent time. Make a function table.

\boldsymbol{t}	$\mathbf{6 t}$	\boldsymbol{d}	$(\boldsymbol{t}, \boldsymbol{d})$
1	$6(1)$	6	$(1,6)$
2	$6(2)$	12	$(2,12)$
3	$6(3)$	18	$(3,18)$
4	$6(4)$	24	$(4,24)$

Step 2 Graph the ordered pairs and draw a line through the points.

