Lesson 12-10

Example 1 Biased and Unbiased Samples

State whether each method would produce a random sample. Explain.
a. surveying people coming out of a movie theater to find out people's favorite entertainment

This would probably not result in a random sample because the people surveyed would probably be more likely than normal to select going to the movies as a favorite entertainment. Also, people who do not go to movies would not be represented.
b. placing a survey in the local newspaper to determine how people voted in the last election

This would probably not result in a random sample because only people who buy the local newspaper would be represented. Also, not all people would fill out the survey.

Example 2 Find a Margin of Error

In a survey of 2500 randomly-selected teenagers, 65\% said they had to purchase some of their clothing using their allowance. What is the margin of error?

$$
\begin{aligned}
M E & =2 \sqrt{\frac{p(1-p)}{n}} & & \text { Formula for margin of sampling error } \\
& =2 \sqrt{\frac{0.65(1-0.65)}{2500}} & & p=65 \% \text { or } 0.65, n=2500 \\
& \approx 0.019079 & & \text { Use a calculator. }
\end{aligned}
$$

The margin of error is about 2%. This means that there is a 95% chance that the percent of teenagers in the whole teenage population who would say they have to purchase some of their clothing using their allowance is between $65-2$ or 63% and $65+2$ or 67%.

Example 3 Analyze a Margin of Error
SENIOR CITIZENS In a survey of U.S. citizens aged 65 and over, 52% said that they participated in activities at their local Senior Citizen Center at least twice a year. The margin of error was 5%. How many people were surveyed?

$$
\begin{array}{rlrl}
M E & =2 \sqrt{\frac{p(1-p)}{n}} & \text { Formula for margin of sampling error } \\
0.05 & =2 \sqrt{\frac{0.52(1-0.52)}{n}} & & \text { ME }=0.05, p=0.52 \\
0.025 & =\sqrt{\frac{0.52(0.48)}{n}} & & \text { Divide each side by } 2 . \\
0.000625 & =\frac{0.52(0.48)}{n} & & \text { Square each side. } \\
n & =\frac{0.52(0.48)}{0.000625} & & \text { Multiply by } n \text { and divide by } 0.000625 . \\
n & =399.36 & & \text { Use a calculator. }
\end{array}
$$

About 399 people were surveyed.

