Lesson 13-7

Example 1 Solve an Equation

Solve Cos
$$x = -\frac{\sqrt{2}}{2}$$
.

If
$$\cos x = -\frac{\sqrt{2}}{2}$$
, then x is the least value whose cosine is $-\frac{\sqrt{2}}{2}$. So, $x = \operatorname{Arccos} -\frac{\sqrt{2}}{2}$.

Use a calculator to find *x*.

KEYSTROKES: 2nd
$$[COS^{-1}]$$
 (-) 2nd $[\sqrt{\ }]$ 2) \div 2) ENTER 135

Therefore,
$$x = 135^{\circ}$$
 or $\frac{3\pi}{4}$.

Example 2 Apply an Inverse to Solve a Problem

TECHNOLOGY The monitor of a computer has a screen that measures 13.25 inches across by 10 inches down. What are the measures of the acute angles of one of the triangles formed by drawing a diagonal across the screen?

Draw a diagram for the situation. You can see that a right triangle is formed with legs of length 13.25 and 10 and that the hypotenuse is the diagonal. You need to find the measure of angles α and θ .

To find the measure of angle θ , use the tangent ratio for right triangles.

$$\tan \theta = \frac{\text{opp}}{\text{adj}}$$
 Tangent ratio

 $\tan \theta = \frac{13.25}{10}$ Replace opp with 13.25 and adj with 10.

 $\theta = \tan^{-1} \left(\frac{13.25}{10} \right)$ Inverse tangent function.

 $\theta \approx 53^{\circ}$ Use a calculator.

If $\theta \approx 53^{\circ}$, then α is approximately $90^{\circ} - 53^{\circ}$ or 37° .

Therefore, the measures of the acute angles of the triangle are about 37° and 53°.

Example 3 Find a Trigonometric Value

Find the value of $\cos\left(\operatorname{Tan}^{-1}\frac{3}{4}\right)$ to the nearest hundredth radian.

KEYSTROKES: COS 2nd $[TAN^{-1}]$ 3 \div 4) DENTER .8

Therefore, $\cos\left(\tan^{-1}\frac{3}{4}\right) = 0.8$.