Lesson 13-7

Example 1 Solve an Equation

Solve $\operatorname{Cos} x=-\frac{\sqrt{2}}{2}$.
If $\operatorname{Cos} x=-\frac{\sqrt{2}}{2}$, then x is the least value whose cosine is $-\frac{\sqrt{2}}{2}$. So, $x=\operatorname{Arccos}-\frac{\sqrt{2}}{2}$.
Use a calculator to find x.

Therefore, $x=135^{\circ}$ or $\frac{3 \pi}{4}$.

Example 2 Apply an Inverse to Solve a Problem
 TECHNOLOGY The monitor of a computer has a screen that measures $\mathbf{1 3 . 2 5}$ inches across by $\mathbf{1 0}$ inches down. What are the measures of the acute angles of one of the triangles formed by drawing a diagonal across the screen?

Draw a diagram for the situation. You can see that a right triangle is formed with legs of length 13.25 and 10 and that the hypotenuse is the diagonal. You need to find the measure of angles α and θ.

To find the measure of angle θ, use the tangent ratio for right triangles.

$$
\begin{aligned}
\tan \theta & =\frac{\text { opp }}{\mathrm{adj}} & & \text { Tangent ratio } \\
\tan \theta & =\frac{13.25}{10} & & \text { Replace opp with } 13.25 \text { and adj with } 10 . \\
\theta & =\tan ^{-1}\left(\frac{13.25}{10}\right) & & \text { Inverse tangent function. } \\
\theta & \approx 53^{\circ} & & \text { Use a calculator. }
\end{aligned}
$$

If $\theta \approx 53^{\circ}$, then α is approximately $90^{\circ}-53^{\circ}$ or 37°.
Therefore, the measures of the acute angles of the triangle are about 37° and 53°.

Example 3 Find a Trigonometric Value

Find the value of $\cos \left(\operatorname{Tan}^{-1} \frac{3}{4}\right)$ to the nearest hundredth radian.
KEYSTROKES: COS 2nd [TAN ${ }^{-1}$] $34 \square \square$ ENTER 8
Therefore, $\cos \left(\tan ^{-1} \frac{3}{4}\right)=0.8$.

