Lesson 13-6

Example 1 Find Sine and Cosine Given Point on the Unit Circle $P\left(-\frac{5 \sqrt{41}}{41},-\frac{4 \sqrt{41}}{41}\right)$ is located on the unit circle. Find $\sin \theta$ and $\cos \theta$.
$P\left(-\frac{5 \sqrt{41}}{41},-\frac{4 \sqrt{41}}{41}\right)=P(\cos \theta, \sin \theta)$,

so $\sin \theta=-\frac{4 \sqrt{41}}{41}$ and $\cos \theta=-\frac{5 \sqrt{41}}{41}$.

Example 2 Find the Value of a Trigonometric Function

Find the exact value of each function.
a. $\sin \left(-390^{\circ}\right)$
$\sin \left(-390^{\circ}\right)=\sin \left[360^{\circ}+\left(-390^{\circ}\right)\right]$
$=\sin \left(-30^{\circ}\right)$
$=\sin \left(-30^{\circ}+360^{\circ}\right)$
$=\sin 330^{\circ}$
$=-\frac{1}{2}$
b. $\cos \left(\frac{15 \pi}{4}\right)$

$$
\begin{aligned}
\cos \left(\frac{15 \pi}{4}\right) & =\cos \left(\frac{15 \pi}{4}-2 \pi\right) \\
& =\cos \frac{7 \pi}{4} \\
& =\frac{\sqrt{2}}{2}
\end{aligned}
$$

Example 3 Find the Value of a Trigonometric Function

MANUFACTURING A particular gear used on an assembly line is perpendicular to a horizontal surface and rotates counterclockwise. A knob is positioned on the gear such that its height varies periodically as a function of time. Consider the height of the center of the gear to be the starting point for the knob. This gear has a diameter of $\mathbf{1 8}$ inches and rotates at a rate of $\mathbf{6}$ revolutions per minute.
a. Identify the period of this function.

Since the gear makes 6 complete counterclockwise rotations every minute, the period is the time it takes to complete one rotation, which is $\frac{1}{6}$ of a minute or 10 seconds.
b. Make a graph in which the horizontal axis represents the time t in seconds and the vertical axis represents the height \boldsymbol{h} in inches in relation to the starting point.

Since the diameter of the gear is 18 inches, the gear reaches a maximum of $\frac{18}{2}$ of 9 inches above the starting point and a minimum of 9 inches below the starting point.

