Lesson 14-3

Example 1 Find a Value of a Trigonometric Function

a. Find $\tan \theta$ if $\cos \theta=\frac{\sqrt{2}}{3}$ and $0^{\circ}<\theta<90^{\circ}$.

First, you must find $\sin \theta$.

$$
\begin{aligned}
\cos ^{2} \theta+\sin ^{2} \theta & =1 & & \text { Trigonometric identity } \\
\sin ^{2} \theta & =1-\cos ^{2} \theta & & \text { Subtract } \cos ^{2} \theta \text { from each side. } \\
\sin ^{2} \theta & =1-\left(\frac{\sqrt{2}}{3}\right)^{2} & & \text { Substitute } \frac{\sqrt{2}}{3} \text { for } \cos \theta . \\
\sin ^{2} \theta & =1-\frac{2}{9} & & \text { Square } \frac{\sqrt{2}}{3} . \\
\sin ^{2} \theta & =\frac{7}{9} & & \text { Subtract. } \\
\sin \theta & = \pm \frac{\sqrt{7}}{3} & & \text { Take the square root of each side. }
\end{aligned}
$$

Since θ is in the first quadrant, $\sin \theta$ is positive. Now, find $\tan \theta$.
$\tan \theta=\frac{\sin \theta}{\cos \theta} \quad$ Trigonometric identity
$\tan \theta=\frac{\frac{\sqrt{7}}{3}}{\frac{\sqrt{2}}{3}} \quad$ Substitute $\frac{\sqrt{7}}{3}$ for $\sin \theta$ and $\frac{\sqrt{2}}{3}$ for $\cos \theta$.
$\tan \theta=\frac{\sqrt{7}}{\sqrt{2}}$ or $\frac{\sqrt{14}}{2} \quad$ Simplify.
Therefore, $\tan \theta=\frac{\sqrt{14}}{2}$.
b. Find $\sec \theta$ if $\cot \theta=\frac{\sqrt{6}}{2}$ and $180^{\circ}<\theta<270^{\circ}$.

If $\cot \theta=\frac{\sqrt{6}}{2}$, then $\tan \theta=\frac{2}{\sqrt{6}}$ or $\frac{\sqrt{6}}{3}$.
$\tan ^{2} \theta+1=\sec ^{2} \theta \quad$ Trigonometric identity
$\left(\frac{\sqrt{6}}{3}\right)^{2}+1=\sec ^{2} \theta \quad$ Substitute $\frac{\sqrt{6}}{3}$ for $\tan \theta$.

$$
\frac{2}{3}+1=\sec ^{2} \theta \quad \text { Square } \frac{\sqrt{6}}{3}
$$

$$
\begin{aligned}
\frac{5}{3} & =\sec ^{2} \theta & & \text { Add. } \\
\pm \sqrt{\frac{5}{3}} & =\sec \theta & & \text { Take the square root of each side. } \\
\pm \frac{\sqrt{15}}{3} & =\sec \theta & & \text { Simplify. }
\end{aligned}
$$

Since θ is in the third quadrant, $\sec \theta$ is negative. Thus, $\sec \theta=-\frac{\sqrt{15}}{3}$.

Example 2 Simplify an Expression

Simplify each expression.
a. $\sin \theta\left(1+\cot ^{2} \theta\right)$

$$
\begin{aligned}
\sin \theta\left(1+\cot ^{2} \theta\right) & =\sin \theta\left(\csc ^{2} \theta\right) & & \cot ^{2} \theta+1=\csc ^{2} \theta \\
& =\sin \theta\left(\frac{1}{\sin ^{2} \theta}\right) & & \csc ^{2} \theta=\frac{1}{\sin ^{2} \theta} \\
& =\frac{1}{\sin \theta} & & \text { Multiply. } \\
& =\csc \theta & &
\end{aligned}
$$

b. $\csc ^{2} \theta-\frac{\cos ^{2} \theta}{\sin ^{2} \theta}$

$$
\begin{aligned}
\csc ^{2} \theta-\frac{\cos ^{2} \theta}{\sin ^{2} \theta} & =\frac{1}{\sin ^{2} \theta}-\frac{\cos ^{2} \theta}{\sin ^{2} \theta} & & \csc ^{2} \theta=\frac{1}{\sin ^{2} \theta} \\
& =\frac{1-\cos ^{2} \theta}{\sin ^{2} \theta} & & \text { Subtract. } \\
& =\frac{\sin ^{2} \theta}{\sin ^{2} \theta} & & \cos ^{2} \theta+\sin ^{2} \theta=1 \text { or } 1-\cos ^{2} \theta=\sin ^{2} \theta \\
& =1 & & \text { Simplify. }
\end{aligned}
$$

Example 3 Simplify and Use an Expression

The amount of light that a source provides to a surface is called illuminance. The illuminance E in foot candles on a surface is related to the distance R in feet from the light source. The formula $\sec \theta=\frac{I}{E R^{2}}$, where I is the intensity of the light source measured in candles and θ is the angle between the light beam and a line perpendicular to the surface, can be used in situations in which lighting is important.
a. Solve the formula in terms of \boldsymbol{R}.

$$
\begin{aligned}
\sec \theta & =\frac{I}{E R^{2}} & & \text { Original equation } \\
E R^{2}(\sec \theta) & =I & & \text { Multiply each side by } E R^{2} .
\end{aligned}
$$

$$
\begin{array}{ll}
R^{2}=\frac{I}{E \sec \theta} & \text { Divide each side by } E \sec \theta . \\
R^{2}=\frac{I \cos \theta}{E} & \cos \theta=\frac{1}{\sec \theta} \\
R=\sqrt{\frac{I \cos \theta}{E}} & \begin{array}{l}
\text { Take the square root of each side. Solve for the positive root } \\
\end{array} \\
\text { since distance must be positive. }
\end{array}
$$

b. As $\boldsymbol{\theta}$ increases from $\boldsymbol{0}^{\circ}$ to 90°, how does the value of \boldsymbol{R} change?

If $I>E$, the value will decrease as θ increases from 0° to 90° since $\frac{I}{E}>1$ and $\cos \theta$ decreases from 1 to 0 .
If $I<E$, the value will also decrease as θ increases from 0° to 90° since $\frac{I}{E}<1$ and $\cos \theta$ decreases from 1 to 0 .

Therefore, the value of R will decrease since the square root of decreasing numbers will decrease.

