Contributing Author

Dinah Zike

FOLDABLES

Consultant

Douglas Fisher, Ph.D.
Director of Professional Development
San Diego, CA

Copyright © by The McGraw-Hill Companies, Inc. All rights reserved. Printed in the United States of America. Except as permitted under the United States Copyright Act, no part of this book may be reproduced in any form, electronic or mechanical, including photocopy, recording, or any information storage or retrieval system, without prior written permission of the publisher.

Send all inquiries to:
The McGraw-Hill Companies
8787 Orion Place
Columbus, OH 43240-4027

Contents

CHAPTER 1
Foldables 1
Vocabulary Builder 2
1-1 Points, Lines, and Planes 4
1-2 Linear Measure and Precision 8
1-3 Distance and Midpoints11
1-4 Angle Measure 13
1-5 Angle Relationships 16
1-6 Two-Dimensional Figures. 19
1-7 Three-Dimensional Figures 23
Study Guide 26
CHAPTER 2
Foldables 31
Vocabulary Builder 32
2-1 Inductive Reasoning and Conjecture. 34
2-2 Logic 36
2-3 Conditional Statements 39
2-4 Deductive Reasoning 42
2-5 Postulates and Paragraph Proofs 45
2-6 Algebraic Proof 48
2-7 Proving Segment Relationships. 51
2-8 Proving Angle Relationships 53
Study Guide 57
CHAPTER 3
Foldables 61
Vocabulary Builder 62
3-1 Parallel Lines and Transversals 64
3-2 Angles and Parallel Lines 67
3-3 Slopes of Lines 69
3-4 Equations of Lines 72
3-5 Proving Lines Parallel 75
3-6 Perpendiculars and Distance 79
Study Guide 82
CHAPTER 4
Foldables 85
Vocabulary Builder 86
4-1 Classifying Triangles 88
4-2 Angles of Triangles 91
4-3 Congruent Triangles 95
4-4 Proving Congruence-SSS, SAS 98
4-5 Proving Congruence-ASA, AAS 102
4-6 Isosceles Triangles 105
4-7 Triangles and Coordinate Proof 108
Study Guide 111
CHAPTER 5
Foldables. 115
Vocabulary Builder 116
5-1 Bisectors, Medians, and Altitudes 118
5-2 Inequalities and Triangles 122
5-3 Indirect Proof 125
5-4 The Triangle Inequality 128
5-5 Inequalities Involving Two Triangles 130
Study Guide 133
CHAPTER 6
Foldables. 137
Vocabulary Builder 138
6-1 Angles of Polygons 139
6-2 Parallelograms 142
6-3 Tests for Parallelograms 144
6-4 Rectangles 147
6-5 Rhombi and Squares 152
6-6 Trapezoids 155
6-7 Coordinate Proof with Quadrilaterals 159
Study Guide 162
CHAPTER 7
Foldables. 167
Vocabulary Builder 168
7-1 Proportions 170
7-2 Similar Polygons 172
7-3 Similar Triangles 175
7-4 Parallel Lines and Proportional Parts 178
7-5 Parts of Similar Triangles 181
Study Guide 184

Contents

CHAPTER 8
Foldables 187
Vocabulary Builder 188
8-1 Geometric Mean 190
8-2 The Pythagorean Theorem and Its Converse 194
8-3 Special Right Triangles 198
8-4 Trigonometry 201
8-5 Angles of Elevation and Depression 204
8-6 The Law of Sines 207
8-7 The Law of Cosines 211
Study Guide 214
CHAPTER 9
Foldables 219
Vocabulary Builder 220
9-1 Reflections 222
9-2 Translations 226
9-3 Rotations 229
9-4 Tessellations 231
9-5 Dilations 233
9-6 Vectors 236
Study Guide 239
CHAPTER 10
Foldables 243
Vocabulary Builder 244
10-1 Circles and Circumference 246
10-2 Measuring Angles and Arcs 249
10-3 Arcs and Chords 252
10-4 Inscribed Angles 256
10-5 Tangents 260
10-6 Secants, Tangents, and Angle Measures 262
10-7 Special Segments in a Circle 265
10-8 Equations of Circles 267
Study Guide 269
CHAPTER 11
Foldables 273
Vocabulary Builder 274
11-1 Areas of Parallelograms 275
11-2 Areas of Triangles, Trapezoids, and Rhombi 277
11-3 Areas of Regular Polygons and Circles 280
11-4 Areas of Composite Figures 283
11-5 Geometric Probability and Areas of Sectors 285
Study Guide 288
CHAPTER 12
Foldables 291
Vocabulary Builder 292
12-1 Representations of Three-Dimensional Figures 294
12-2 Surface Areas of Prisms 298
12-3 Surface Areas of Cylinders 300
12-4 Surface Areas of Pyramids 302
12-5 Surface Areas of Cones 305
12-6 Surface Areas of Spheres 307
Study Guide 310
CHAPTER 13
Foldables 315
Vocabulary Builder 316
13-1 Volumes of Prisms and Cylinders 317
13-2 Volumes of Pyramids and Cones 320
13-3 Volumes of Spheres 323
13-4 Congruent and Similar Solids 325
13-5 Coordinates in Space 328
Study Guide 330

Organizing Your Foldables

FOLDABLES

Make this Foldable to help you organize and store your chapter Foldables. Begin with one sheet of $11^{\prime \prime} \times 17^{\prime \prime}$ paper.

STEP 1 Fold

Fold the paper in half lengthwise. Then unfold.

STEP 2 Fold and Glue

Fold the paper in half widthwise and glue all of the edges.

STEP 3 Glue and Label

Glue the left, right, and bottom edges of the Foldable to the inside back cover of your Noteables notebook.

Reading and Taking Notes As you read and study each chapter, record notes in your chapter Foldable. Then store your chapter Foldables inside this Foldable organizer.

Using Your Noteables"

Interactive Study Notebook

This note-taking guide is designed to help you succeed in Geometry. Each chapter includes:

NOTE-TAKING TIPS

Your notes are a reminder of what you learned in class. Taking good notes can help you succeed in mathematics. The following tips will help you take better classroom notes.

- Before class, ask what your teacher will be discussing in class. Review mentally what you already know about the concept.
- Be an active listener. Focus on what your teacher is saying. Listen for important concepts. Pay attention to words, examples, and/or diagrams your teacher emphasizes.
- Write your notes as clear and concise as possible. The following symbols and abbreviations may be helpful in your note-taking.

Word or Phrase	Symbol or Abbreviation	Word or Phrase	Symbol or Abbreviation
for example	e.g.	not equal	\neq
such as	i.e.	approximately	\approx
with	w/	therefore	\therefore
without	w/o	versus	vs
and	+	angle	\angle

- Use a symbol such as a star (\star) or an asterisk (*) to emphasize important concepts. Place a question mark (?) next to anything that you do not understand.
- Ask questions and participate in class discussion.
- Draw and label pictures or diagrams to help clarify a concept.
- When working out an example, write what you are doing to solve the problem next to each step. Be sure to use your own words.
- Review your notes as soon as possible after class. During this time, organize and summarize new concepts and clarify misunderstandings.

Note-Taking Don’ts

- Don't write every word. Concentrate on the main ideas and concepts.
- Don't use someone else's notes as they may not make sense.
- Don't doodle. It distracts you from listening actively.
- Don't lose focus or you will become lost in your note-taking.

Tools of Geometry

OLDABLES

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.

Begin with a sheet of $11^{\prime \prime} \times 17^{\prime \prime}$ paper.

STEP 1 Fold the short sides to meet in the middle.

STEP 2 Fold the top to the bottom.

STEP 3 Open. Cut flaps along second fold to make four tabs.

STEP 4 Label the tabs as shown.

NOTE-TAKING TIP: When you take notes, listen or read for main ideas. Then record what you know and apply these concepts by drawing, measuring, and writing about the process.

 1

BUILD YOUR VOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 1. As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

Vocabulary Term	Found on Page	Definition	Description or Example
adjacent angles [uh-JAY-suhnt]			
angle			
angle bisector			
collinear [koh-LIN-ee-uhr]			
complementary angles			
congruent [kuhn-GROO-uhnt]			
coplanar [koh-PLAY-nuhr]			
degree			
line			
line segment			
linear pair			

	Vocabulary Term	Found on Page	Definition
midpoint		Description or Example	
	perpendicular		

1-1 Points, Lines, and Planes

TEKS G. 1 The student understands the structure of, and relationships within, an axiomatic system. (A) Develop an awareness of the structure of a mathematical system, connecting definitions, postulates, logical reasoning, and theorems.

Main Ideas

- Identify and model points, lines, and planes.
- Identify collinear and coplanar points and intersecting lines and planes in space.

KEY CONCEPTS

Point A point has neither shape nor size.
Line There is exactly one line through any two points.

Plane There is exactly one plane through any three noncollinear points.

Use the figure to name each of the following.
a. a line containing point K

The line can be named as line

There are three points on the line. Any two of the points can be used to name the line. The possible names are

b. a plane containing point L

The plane can be named as plane \square
You can also use the letters of any three
 points to name the plane.

Check Your Progress Use the figure to name each of the following.
a. a line containing point X

b. a plane containing point Z

EXAMPIE Model Points, Lines, and Planes

2 Name the geometric term modeled by each object.

a. the long hand on a clock

The long hand on a clock models a \square
b. a $\mathbf{1 0} \times 12$ patio

The patio models a \square
c. a water glass on the table

This models a \square

Check Your Progress

Name the geometric shape modeled by each object.
a. a colored dot on a map used to mark the location of a city

b. the ceiling of your classroom \square

FOLDABLES

Organize It

Draw and label a point P, a line $A B$, and a plane $X Y Z$ under the Points, Lines, and Planes tab.

3 Draw and label a figure for each situation.
a. ALGEBRA Plane \mathcal{R} contains lines $\overleftrightarrow{A B}$ and $\overleftrightarrow{D E}$, which intersect at point P. Add point C on plane R so that it is not collinear with $\overleftrightarrow{A B}$ or $\overleftrightarrow{D E}$.

Draw a surface to represent
\square
Draw a line anywhere on the plane and draw dots on the line for points A and B. Label the points.

Draw a line intersecting
 and draw dots on the line for points D and E. Label the points.

Label the intersection of the two lines as \square

Remember It

The prefix comeans together. So, collinear means lying together on the same line. Coplanar means lying together in the same plane.

Draw a dot for point C in plane \mathcal{R} such that it will not lie on $\overleftrightarrow{A B}$ or $\overleftrightarrow{D E}$. Label the point.

b. $\overleftrightarrow{Q R}$ on a coordinate plane contains $Q(-2,4)$ and $R(4,-4)$. Add point T so that T is collinear with these points.

Graph each point and draw $\overleftrightarrow{Q R}$.
There are an infinite number of points that are collinear with Q and R. In the graph, one such point is \square.

Check Your Progress
 Draw and label a figure for

 each relationship.a. Plane \mathcal{D} contains line a, line m, and line t, with all three lines intersecting at point Z. Add point F on plane \mathcal{D} so that it is not collinear with any of the three given lines.

b. $\overleftrightarrow{B A}$ on a coordinate plane contains $B(-3,-2)$ and $A(3,2)$. Add point M so that M is collinear with these points.

EXAMPLE Interpret Drawings

4 Use the figure for parts a-d.

WRITE IT

Explain the different ways of naming a plane.
\qquad
\qquad
a. How many planes appear in this figure?

b. Name three points that are collinear.

c. Are points A, B, C, and D coplanar? Explain.

Points A, B, C, and D all lie in \square so they are coplanar.

d. At what point do $\overleftrightarrow{D B}$ and $\overleftrightarrow{C A}$ intersect?

The two lines intersect at point \square

Check Your Progress Refer to

 the figure.a. How many planes appear in this figure?

b. Name three points that are collinear.

c. Are points X, O, and R coplanar? Explain.

Homework

Assignment
Page(s):
Exercises:
\square
d. At what point do $\overleftrightarrow{B N}$ and $\overleftrightarrow{X O}$ intersect?
\square

1-2 Linear Measure and Precision

Main Ideas

- Measure segments and determine accuracy of measurement.
- Compute with measures.

TEKS G. 1

The student understands the structure of, and relationships within, an axiomatic system
(B) Recognize the historical development of geometric systems and know mathematics is developed for a variety of purposes. G. 2 The student analyzes geometric relationships in order to make and verify conjectures.
(A) Use constructions to explore attributes of geometric figures and to make conjectures about geometric relationships.

BUILD YOUR VOGABULARY (page 2)

A line segment can be measured because it has
two \square

EXAMPIE Length in Metric Units

(1) Find the length of $\overline{L M}$ using the ruler.

The long marks indicate \square, and the
\square
$\overline{L M}$ is about \square millimeters long.

Check Your Progress
a. Find the length of $\overline{A B}$.

EXAMPLE Length in Customary Units

2 Find the length of each segment using each ruler. a. $\overline{D E}$

Each inch is divided into \square $\overline{D E}$ is about inches long.

Check Your Progress

a. Find the length of $\overline{A Z}$.

b. Find the length of $\overline{I X}$.

FOLDABLES

Organize It

Explain how to find the precision of a measurement. Write this under the Length and Perimeter tab.

EXAMPLE Precision

3 Find the precision for each measurement. Explain its meaning.
a. $32 \frac{3}{4}$ inches

The measuring tool is divided into \square increments. Thus, the measurement is precise to within $\frac{1}{2}\left(\frac{1}{4}\right)$ or $\frac{1}{8}$ inch. The measurement could be \square to \square inches.

b. 15 millimeters

The measuring tool is divided into millimeters. Thus the measurement is precise to within $\frac{1}{2}$ of 1 millimeter. The measurement could be 14.5 to 15.5 millimeters.

Check Your Progress

Find the precision for each measurement.

EXAMPLE Find Measurements

4) Find the measurement of each segment.
a. $\overline{L M}$

$$
L M+M N=L N
$$

$L M+\square=\square=\square \quad$ Substitution
$L M+\square=\square$ Subtract.
$L M=\square$ Simplify.
$\overline{L M}$ is \square centimeters long.
b. x and $S T$ if T is between S and $U, S T=7 x, S U=45$, and $T U=5 x-3$.

Substitute known values.
$7 x+5 x-3+3=45+3 \quad$ Add 3 to each side.
$12 x=48 \quad$ Simplify.
$\frac{12 x}{12}=\frac{48}{12} \quad$ Divide each side by 12.
$\square=\square$ Simplify.

$$
\begin{aligned}
S T & =7 x \\
& =7(4) \\
& =\square
\end{aligned}
$$

Given

$$
x=4
$$

$$
\text { Thus, } x=4, S T=
$$

\square

Homework Assignment

Page(s):
Exercises:

Check Your Progress

a. Find $S E$.

b. Find a and $A B$ if $A B=4 a+10, B C=3 a-5$, and $A C=19$.

1-3 Distance and Midpoints

1 TEKS G. 7 The student understands that coordinate systems provide convenient and efficient ways of representing geometric figures and uses them accordingly. (A) Use one- and two-dimensional coordinate systems to represent points, lines, rays, line segments, and figures. (C) Derive and use formulas involving length, slope, and midpoint. Also addresses TEKS G.2(A) and 8(C).

EXAMPLE Find Distance on a Number Line

Main IdEAS

Find the distance between two points.

- Find the midpoint of a segment.

Key Concept

Distance Formulas

Number Line If P and Q have coordinates a and b, respectively, then the distance between P and Q is given by $P Q=|b-a|$ or $|a-b|$.

Coordinate Plane The distance d between two points with coordinates $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is given by $d=$
$\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$.

(1) Use the number line to find $\boldsymbol{Q R}$.

The coordinates of Q and R
are
 and \qquad

$$
\begin{aligned}
Q R & =|-6-(-3)| \\
& =|-3| \text { or } 3
\end{aligned}
$$

Check Your Progress
\square

Use the number line to find $A X$.

EXAMPIE Find Distance on a Coordinate Plane

2 Find the distance between $E(-4,1)$ and $F(3,-1)$.

Method 1 Pythagorean Theorem

$$
\begin{aligned}
(E F)^{2} & =(E D)^{2}+(D F)^{2} \\
(E F)^{2} & =\square^{2}+\square^{2} \\
(E F)^{2} & =53 \\
E F & =\sqrt{53}
\end{aligned}
$$

Method 2 Distance Formula

$$
\begin{aligned}
d & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
E F & =\sqrt{[3-(-4)]^{2}+(-1-1)^{2}}
\end{aligned}
$$

$$
E F=\sqrt{(\square)^{2}+(\square)^{2}}
$$

$$
E F=\sqrt{53}
$$

$\left(x_{1}, y_{1}\right)=(-4,1)$ and $\left(x_{2}, y_{2}\right)=(3,-1)$

Simplify.

Simplify.

1-3

FOLDABLES

Organize IT

Draw a coordinate system and show how to find the distance between two points under the Length and Perimeter tab.

KEY CONCEPT

Midpoint The midpoint M of $\overline{P Q}$ is the point between P and Q such that $P M=M Q$.

Check Your Progress Find the distance between $A(-3,4)$ and $M(1,2)$.

BUILD YOUR VOcaBULARY (page 3)

The midpoint of a segment is the point halfway
between the \square of the segment.

Any segment, line, or plane that intersects a segment at
its \square is called a segment bisector.

EXAMPL Find Coordinate of Endpoint

3 Find the coordinates of D if $E(-6,4)$ is the midpoint of $\overline{D F}$ and \boldsymbol{F} has coordinates $(-5,-3)$.

Let F be $\left(x_{2}, y_{2}\right)$ in the Midpoint Formula.
$E(-6,4)=E\left(\frac{x_{1}+(-5)}{2}, \frac{y_{1}+(-3)}{2}\right) \quad\left(x_{2}, y_{2}\right)=(-5,-3)$
Write and solve two equations to find the coordinates of D.

The coordinates of D are

Check Your Progress Find the coordinates of R if $N(8,-3)$ is the midpoint of $\overline{R S}$ and S has coordinates $(-1,5)$.
\square

Page(s):
Exercises:

TEKS G. 3 The student applies logical reasoning to justify and prove mathematical statements. (B) Construct and justify statements about geometric figures and their properties. G. 7 The student understands that coordinate systems provide convenient and efficient ways of representing geometric figures and uses them accordingly. (A) Use one- and two-dimensional coordinate systems to represent points, lines, rays, line segments, and figures. Also addresses TEKS G.2(A) and G.2(B).

Main Ideas

- Measure and classify angles.
- Identify and use congruent angles and the bisector of an angle.

KEy Concept

Angle An angle is formed by two noncollinear rays that have a common endpoint.

WRITE IT

When can you use a single letter to name an angle?
\qquad
\qquad
\qquad
\qquad

BUILD YOUR VOGABULARY (pages 2-3)
A ray is a part of a \square A ray starts at a
 on the line and extends endlessly in \square An angle is formed by two \square rays that have a common endpoint.

EXAMPLE Angles and Their Parts

(1) Refer to the figure.
a. Name all angles that have B as a vertex.

b. Name the sides of $\angle 5$.
\square and \square or \square are the sides of $\angle 5$.
c. Write another name for $\angle 6$.

other names for $\angle 6$.

Check Your Progress

a. Name all angles that have X as a vertex.

b. Name the sides of $\angle 3$.

c. Write another name for $\angle 3$.

\square

EXAMPLE Measure and Classify Angles

KEy Concepts

Classify Angles

A right angle has a degree measure of 90 . An acute angle has a degree measure less than 90. An obtuse angle has a degree measure greater than 90 and less than 180.

Congruent Angles

Angles that have the same measure are congruent angles.

FOLDABLES

OrGANIZE IT

Draw and label $\angle R S T$ that measures 70° under the Angle Measure tab. Classify $\angle R S T$ as acute, right, or obtuse.

2 Measure each angle named and classify it as right, acute, or obtuse.
a. $\angle X Y V$
$\angle X Y V$ is marked with a right angle symbol, so measuring is not necessary. $m \angle X Y V=$
 so $\angle X Y V$ is a(n)

b. $\angle W Y T$

Use a protractor to find that $m \angle W Y T=130$.
$180>m \angle W Y T>90$, so $\angle W Y T$ is a(n)

c. $\angle T Y U$

Use a protractor to find that $m \angle T Y U=45$.
$45<90$, so $\angle T Y U$ is
$a(n)$

Check Your Progress

Measure each angle named and classify it as right, acute, or obtuse.
a. $\angle C Z D$

b. $\angle C Z E$

c. $\angle D Z X$

Remember It

If angles are congruent, then their measures are equal.

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Homework

 AssignmentPage(s):
Exercises:

EXAMPLE Use Algebra to Find Angle Measures

3 INTERIOR DESIGN Wall stickers of standard shapes are often used to provide a stimulating environment for a young child's room. A five-pointed star sticker is shown with vertices labeled. Find $m \angle G B H$ and $m \angle H C I$ if $\angle G B H \cong \angle H C I, m \angle G B H=2 x+5$, and $m \angle H C I=3 x-10$.

$$
\angle G B H \cong \angle H C I
$$

$$
m \angle G B H=m \angle H C I
$$

$$
2 x+5=3 x-10
$$

$15=x$

Given

Substitution Add 10 to each side.

Subtract $2 x$ from each side.

Use the value of x to find the measure of one angle.
$m \angle G B H=2 x+5$

$$
=2(15)+5
$$

$$
=\square+\square \text { or } 35
$$

Given
\square
$x=$
Simplify.

Since $m \angle G B H=m \angle H C I, m \angle H C I=$ \square

Check Your Progress

A railroad crossing sign forms congruent angles. In the figure, $m \angle W V X \cong m \angle Z V Y$. If $m \angle W V X=7 a+13$ and $m \angle Z V Y=10 a-20$, find the actual measurements of $m \angle W V X$ and $m \angle Z V Y$.

BUILD YOUR VOCABULARY (page 2)

that divides an angle into \square congruent
\square is called an angle bisector.

1-5
 Angle Relationships

TEKS G. 2 The student analyzes geometric relationships in order to make and verify conjectures. (B) Make conjectures about angles, lines, polygons, circles, and three-dimensional figures and determine the validity of the conjectures, choosing from a variety of approaches such as coordinate, transformational, or axiomatic. G. 3 The student applies logical reasoning to justify and prove mathematical statements. (B) Construct and justify statements about geometric figures and their properties.

EXAMPLE Identify Angle Pairs

Main Ideas

- Identify and use special pairs of angles.
- Identify perpendicular lines.

Key Concepts

Angle Pairs
Adjacent angles are two angles that lie in the same plane, have a common vertex, and a common side, but no common interior points.

Vertical angles are two nonadjacent angles formed by two intersecting lines.

A linear pair is a pair of adjacent angles whose noncommon sides are opposite rays.

FOLDAbles

 Draw and label examples under the Angles tab.
1 Refer to the figure. Name two acute vertical angles.

There are four acute angles shown. There is one pair of vertical angles. The acute vertical angles are

Check Your Progress Name an angle pair that satisfies each condition.
a. two angles that form a linear pair

b. two adjacent angles whose measures have a sum that is less than 90

EXAMPLE Angle Measure

ALGEBRA Find the measures of two supplementary angles if the measure of one angle is 6 less than five times the other angle.

The sum of the measures of supplementary angles is Draw two figures to represent the angles.

If $m \angle A=x$, then $m \angle B=$ \square

KEy CONCEPT

Angle Relationships
Complementary angles are two angles whose measures have a sum of 90°.

Supplementary angles are two angles whose measures have a sum of 180°.

Key Concept

Perpendicular lines

 intersect to form four right angles. Perpendicular lines intersect to form congruent adjacent angles. Segments and rays can be perpendicular to lines or to other line segments and rays. The right angle symbol is used in figures to indicate that lines, rays, or segments are perpendicular.$$
\begin{aligned}
m \angle A+m \angle B & =180 \\
+(\square) & =180
\end{aligned}
$$

Given
$m \angle A=x$ and
$m \angle B=5 x-6$

$$
6 x-6=180
$$

Simplify.

$$
6 x=186
$$

Add \square to each side.

$$
x=31
$$

Divide each side by 6 .
$m \angle A=x$
$m \angle A=31$
$m \angle B=\square$
$m \angle B=5(31)-6$ or 149

Check Your Progress Find the measures of two complementary angles if one angle measures six degrees less than five times the measure of the other.

EXAMPIE Perpendicular Lines

3 ALGEBRA Find \boldsymbol{x} so that $\overleftrightarrow{\mathbf{K O}} \perp \overleftrightarrow{\boldsymbol{H M}}$.
If $\overleftrightarrow{K O} \perp \overleftrightarrow{H M}$, then $m \angle K J H=\square$
$m \angle K J H=m \angle K J I+m \angle I J H$

$$
\begin{aligned}
90 & =(3 x+6)+9 x \\
90 & =\square \\
84 & =12 x \\
\square & =x
\end{aligned}
$$

Substitution

Add.
Subtract 6 from each side.

Divide each side by 12.

Homework Assignment

Page(s):
Exercises:

Check Your Progress
Find x and y so that $\overleftrightarrow{A D}$ and $\overleftrightarrow{C E}$ are perpendicular.

EXAMPLE
 Interpret Figures

4) Determine whether each statement can be assumed from the figure below.
a. $m \angle V Y T=90$

The diagram is marked to show $\overleftrightarrow{V Y} \perp \overleftrightarrow{X T}$. From the definition of perpendicular, perpendicular lines intersect to form congruent adjacent angles.
\square $\overleftrightarrow{V Y}$ and $\overleftrightarrow{T X}$ are perpendicular.

b. $\angle T Y W$ and $\angle T Y U$ are supplementary.

Yes; they form a \square of angles.
c. $\angle V Y W$ and $\angle T Y S$ are adjacent angles.

No; they do not share a \square

Check Your Progress Determine whether each statement can be assumed from the figure below. Explain.
a. $m \angle X A Y=90$

b. $\angle T A U$ and $\angle U A Y$ are complementary.

c. $\angle U A X$ and $\angle U X A$ are adjacent.

1-6 Two-Dimensional Figures

Main Ideas

- Identify and name polygons.
- Find perimeter or circumference and area of two-dimensional figures.

Key Concept

Polygon A polygon is a closed figure formed by a finite number of coplanar segments such that (1) the sides that have a common endpoint are noncollinear, and (2) each side intersects exactly two other sides, but only at their endpoints.

TEKS G. 8
The student uses tools to determine measurements of geometric figures and extends measurement concepts to find perimeter, area, and volume in problem situations. (A) Find areas of regular polygons, circles, and composite figures. G. 11 The student applies the concepts of similarity to justify properties of figures and solve problems. (D) Describe the effect on perimeter, area, and volume when one or more dimensions of a figure are changed and apply this idea in solving problems. Also addresses TEKS G.1(B), G.2(B), and G.7(B).

BUILD YOUR VOCABULARY (page 3)

A polygon is a \square figure whose \square are all segments.

EXAMPLE Identify Polygons

1 Name each polygon by the number of sides. Then classify it as convex or concave, regular or irregular.
a.

There are 4 sides, so this is

No line containing any of the sides will pass through the interior of the quadrilateral, so it is \square The sides are not congruent, so it is \square
b.

There are 9 sides, so this is a

A line containing a side will pass through the interior of the nonagon, so it is \square
The sides are not congruent, so it is \square

Check Your Progress

Name each polygon by the number of sides. Then classify it as convex or concave, regular or irregular.
a.

b.

EXAMPIE Find Perimeter and Area

KEy Concept

2 Find the perimeter or circumference and area of the figure.

$C=2 \pi r$
$C=2 \pi(\square)$
$C=\square$
Circumference of a circle needed to cover a surface.

FOLDABLES

Organize It

Draw a polygon and explain how to find the perimeter. Place this under the Length and Perimeter tab.

$A=\pi r^{2}$

$A=$ \square

Multiply.

Area of a circle
\square

Simplify.

The circumference of the circle is \square inches and the area
is \square square inches.

Check Your Progress
Find the perimeter or circumference and area of the figure.

EXAMPIE Largest Area

3 TEST EXAMPLE Terri has 19 feet of tape to make an area in the classroom where the students can read. Which of these shapes has a perimeter that will work?

A square with side length of 5 feet
B circle with the radius of 3 feet
C right triangle with each leg length of 6 feet
D rectangle with a length of 8 feet and a width of 3 feet

Read the Test Item

You are asked to compare the perimeters of four different shapes.

Solve the Test Item

Find the perimeter of each shape.

Square	Circle	Rectangle
$P=4 s$	$C=2 \pi r$	$P=2 \ell+2 w$
$P=4(5)$	$C=2 \pi(3)$	$P=2(8)+2(3)$
$P=\square \mathrm{ft}$	$C=6 \pi$ or about $\square \mathrm{ft}$	$P=\square \mathrm{ft}$

Right Triangle

Use the Pythagorean Theorem to find the length of the hypotenuse.
$c^{2}=a^{2}+b^{2}$
$c^{2}=6^{2}+6^{2}$
$c^{2}=72$
$c=6 \sqrt{2}$
$P=6+6+6 \sqrt{2}$
$P=\square$ or about $\square \mathrm{ft}$
The shape that uses the most of the tape is the circle. The answer is \square
Check Your Progress Jason has 20 feet of fencing to make a pen for his dog. Which of these shapes encloses the largest area?
A square with a side length of 5 feet
B circle with radius of 3 feet
C right triangle with each leg about 6 feet
D rectangle with length of 4 feet and width of 6 feet

EXAMPLE Perimeter and Area on the Coordinate Plane

4 Find the perimeter of pentagon $A B C D E$ with $A(0,4), B(4,0)$, $C(3,-4), D(-3,-4)$, and $E(-3,1)$.

Since $\overline{D E}$ is a vertical line segment, we can count the squares on the grid. The length of $\overline{D E}$ is
\square units. Likewise, since $\overline{C D}$ is a

horizontal line segment, count the squares to find that the length is \square units.

To find $A E, A B$, and $B C$, use the distance formula.
$A E=\sqrt{(0-(-4))^{2}+(4-1)^{2}} \quad$ Substitution
$A E=\sqrt{\square^{2}+\square^{2}}$ Subtract.
$A E=\square$ or $5 \quad$ Simplify.
$A B=\sqrt{(0-4)^{2}+(4-0)^{2}} \quad$ Substitution

Subtract.
$A B=\sqrt{32}$ or about \square Simplify.
$B C=\sqrt{(4-3)^{2}+(0-(-4))^{2}} \quad$ Substitution
$B C=\sqrt{\square^{2}+\square^{2}}$
Subtract.
$B C=$ \square or about 4.1 Simplify.

Homework

Assignment
Page(s):
Exercises:

1-7 Three-Dimensional Figures

Main Ideas

- Identify threedimensional figures.
- Find surface area and volume.

TEKS G. 8
The student uses tools to determine measurements of geometric figures and extends measurement concepts to find perimeter, area, and volume in problem situations.
(D) Find surface areas and volumes of prisms, pyramids, spheres, cones, cylinders, and composites of these figures in problem situations. G. 9 The student analyzes properties and describes relationships in geometric figures. (D) Analyze the characteristics of polyhedra and other three-dimensional figures and their component parts based on explorations and concrete models.

BUILD YOUR VOCABULARY (page 3)

A solid with all \square that enclose a single region of space is called a polyhedron.

A prism is a polyhedron with
 congruent faces called bases.

A regular prism is a prism with \square that are regular polygons.

A polyhedron with all faces (except for one) intersecting at
\square is a pyramid.

A polyhedron is a regular polyhedron if all of its faces are
\square and all of the
\square are congruent.

A cylinder is a solid with congruent \square
\square in a pair of parallel planes.

A cone has a \square base and a \square A sphere is a set of \square in space that are a given distance from a given point.

EXAMPLE Identify Solids

(1) Identify each solid. Name the bases, faces, edges, and

 vertices.a.

The bases and faces are rectangles. This is a rectangular prism.
Bases: rectangles \square
Faces:

Edges:

Vertices:

b.

This figure has two faces that are hexagons. Therefore, it is a hexagonal prism.

Bases: hexagons \square and

Faces: rectangles $E F L K, F G M L, G H M N, H N O I, I O P J$, and JPKE

Edges: $\overline{F L}, \overline{G M}, \overline{H N}, \overline{I O}, \overline{J P}, \overline{E K}, \overline{E F}, \overline{F G}, \overline{G H}, \overline{H I}, \overline{I J}, \overline{J E}$, $\overline{K L}, \overline{L M}, \overline{M N}, \overline{N O}, \overline{O P}$, and $\overline{P K}$
Vertices: $E, F, G, H, I, J, K, L, M, N, O, P$
c.

The base of the solid is a circle and the figure comes to a point. Therefore it is a cone.

There are \square faces or edges.

Check Your Progress Identify the solid. Name the bases, faces, edges, and vertices.

EXAMPLE Surface Area and Volume

(2) Refer to the cone with $r=3 \mathrm{~cm}, h=4 \mathrm{~cm}$, and $\ell=5 \mathrm{~cm}$.

Homework

 AssignmentPage(s):
Exercises:
a. Find the surface area of the cone.

$T=\pi r \ell+\pi r^{2}$	Surface area of a cone
$T=-\pi(\square)(\square \square)+\pi\left(\square^{2}\right)$	Substitution
$T=15 \pi+9 \pi$	Simplify.
$T \approx \mathrm{~cm}^{2}$	Use a calculator.

b. Find the volume of the cone.
$V=\frac{1}{3} \pi r^{2} h \quad$ Volume of a cone
$V=\frac{1}{3} \pi\left(\square{ }^{2}\right)(\square) \quad$ Substitution
$\begin{array}{ll}V=12 \pi & \text { Simplify. } \\ V \approx \square \mathrm{~cm}^{3} & \text { Use a calculator. }\end{array}$

Check Your Progress Find the surface area and volume of the triangular prism.

BRINGING IT ALL TOGETHER

STUDY GUIDE

FOLDABLES	VOCABULARY PUZZLEMAKER	BUILD YOUR MOCABULARY
Use your Chapter 1 Foldable to help you study for your chapter test.	To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 1, go to: glencoe.com	You can use your completed Vocabulary Builder (pages 2-3) to help you solve the puzzle.

1-1

Points, Lines, and Planes

Refer to the figure.

1. Name a point contained in line n.
\square

2. Name the plane containing lines n and p.
\square
3. Draw a model for the relationship $\overleftrightarrow{A K}$ and $\overleftrightarrow{C G}$ intersect at point M in plane \mathcal{T}. \square

1-2

Linear Measure and Precision
Find the measure of each segment.
4. $\overline{A D}$
5. $\overline{W X}$

6. CARPENTRY Jorge used the figure at the right to make a pattern for a mosaic he plans to inlay on a tabletop. Name all the congruent segments in the figure.

1-3

Distance and Midpoints
Use the number line to find each measure.

8. $J L$ \square
Find the distance between each pair of points.
9. $F(-3,-2), G(1,1)$
10. $Y(-6,0), P(2,6)$

Find the coordinates of the midpoint of a segment having the given endpoints.
11. $A(3,1), B(5,3)$

12. $T(-4,9), U(7,5)$

1-4

Angle Measure

For Exercises 13-16, refer to the figure at the right.
13. Name a right angle.
14. Name an obtuse angle.

15. Name a point in the interior of $\angle E B C$.

16. What is the angle bisector of $\angle E B C$? \square

Chapter 1 BRINGING IT ALL TOGETHER

In the figure, $\overrightarrow{C B}$ and $\overrightarrow{C D}$ are opposite rays, $\overrightarrow{C E}$ bisects $\angle D C F$, and $\overrightarrow{C G}$ bisects $\angle F C B$.
17. If $m \angle D C E=4 x+15$ and $m \angle E C F=6 x-5$, find $m \angle D C E$.

18. If $m \angle F C G=9 x+3$ and $m \angle G C B=13 x-9$, find $m \angle G C B$.

19. TRAFFIC SIGNS The diagram shows a sign used to warn drivers of a school zone or crossing. Measure and classify each numbered angle.

1-5

Angle Relationships

For Exercises 20-23, use the figure at the right.
20. Name two acute vertical angles.

21. Name a linear pair.

22. Name two acute adjacent angles.

23. Name an angle supplementary to $\angle F K G$. \square
24. Find x so that $\overline{T R} \perp \overline{T S}$
if $m \angle R T S=8 x+18$.

25. Find $m \angle P T Q$ if $\overline{T R} \perp \overline{T S}$ and $m \angle P T Q=m \angle R T Q-18$.
\square

Determine whether each statement can be assumed from the figure. Explain.
26. $\angle Y Z U$ and $\angle U Z V$ are supplementary.

27. $\angle V Z U$ is adjacent to $\angle Y Z X$.

1-6

Two-Dimensional Figures

Name each polygon by its number of sides and then classify it as convex or concave and regular or irregular.
28.

29.

30. The length of a rectangle is 8 inches less than six times its width. The perimeter is 26 inches. Find the length of each side.

1-7

Three-Dimensional Figures
Find the surface area and volume of each solid.
31.

32.

33.

1

Checklist

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 1.

ARE YOU READY FOR THE CHAPTER TEST?

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 1 Practice Test on page 73 of your textbook as a final check.

I used my Foldable or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 1 Study Guide and Review on pages 68-72 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 1 Practice Test on page 73 of your textbook.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 1 Foldable.
- Then complete the Chapter 1 Study Guide and Review on pages 68-72 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 1 Practice Test on page 73 of your textbook.

2

Reasoning and Proof

OLDABLES

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.

Begin with five sheets of $8 \frac{1}{2}^{\prime \prime} \times 11^{\prime \prime}$ plain paper.

STEP 1 Stack the sheets of paper with edges
$\frac{3}{4}$-inch apart. Fold the bottom edges up to create equal tabs.

STEP 2 Staple along the fold.
Label the top tab with the chapter title. Label the next 8 tabs with lesson numbers. The last tab is for Key Vocabulary.

NOTE-TAKING TIP: When you take notes, listen or read for main ideas. Then record concepts, define terms, write statement in if-then form, and write paragraph proofs.

curven 2

BUILD YOUR VOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 2. As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

Vocabulary Term	Found on Page	Definition	Description or Example
conclusion			
conditional statement			
conjecture [kuhn-JEK-chur]			
conjunction			
contrapositive			
converse			
counterexample			
deductive argument			
deductive reasoning			
disjunction			
hypothesis			
if-then statement			

Vocabulary Term	Found on Page	Definition	Description or Example
inductive reasoning			
inverse			
negation			
paragraph proof			
postulate			
related proof			
conditionals			
theorem			
truth table			

2-1 Inductive Reasoning and Conjecture

MAIN IDEAS

Make conjectures based on inductive reasoning.

- Find counterexamples.

TEKS G. 3 The student applies logical reasoning to justify and prove mathematical statements. (C) Use logical reasoning to prove statements are true and find counter examples to disprove statements that are false. G. 3 The student applies logical reasoning to justify and prove mathematical statements. (D) Use inductive reasoning to formulate a conjecture. Also addresses TEKS G.1(A), G.1(B), and G.2(B).

Remember It

When looking for patterns in a sequence of numbers, test all fundamental operations. Sometimes two operations can be used.

BUILD YOUR VOGABULARY (pages 32-33)

A conjecture is an educated \square based on known information.

Inductive reasoning is reasoning that uses a number of specific examples to arrive at a plausible generalization
or \square

EXAMPIE Patterns and Conjecture

(1) Make a conjecture about the next number based on the pattern 2, 4, 12, 48, 240.

Conjecture: The next number will be multiplied by 6 .

Check Your Progress Make a conjecture about the next number based on the pattern $1, \frac{1}{4}, \frac{1}{9}, \frac{1}{16}, \frac{1}{25}$.

EXAMPLE Geometric Conjecture

2 For points L, M, and $N, L M=20, M N=6$, and $L N=14$. Make a conjecture and draw a figure to illustrate your conjecture.

Given: Points L, M, and $N ; L M=20, M N=6$, and $L N=14$. Since $L N+M N=L M$, the points can be collinear with point N between points L and M.
Conjecture: L, M and N are \square

FOLDABLES

Organize It

Write definitions for a conjecture and inductive reasoning under the tab for Lesson 2-1. Design a pattern and state a conjecture about the pattern.

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Check Your Progress $A C E$ is a right triangle with $A C=C E$. Make a conjecture and draw a figure to illustrate your conjecture.

BUILD YOUR YOGABULARY (pages 32-33)

A counterexample is one false example showing that a conjecture is not true.

EXAMPIE Find a Counterexample

3 UNEMPLOYMENT Refer to the table. Find a counterexample for the following statement. The unemployment rate is highest in the cities with the most people.

City	Population	Rate
Armstrong	2163	3.7%
Cameron	371,825	7.2%
El Paso	713,126	7.0%
Hopkins	33,201	4.3%
Maverick	50,436	11.3%
Mitchell	9402	6.1%

Maverick has a population of \square people, and it has a higher rate of unemployment than El Paso, which has a population of \square people.

Check Your Progress Refer to the table. Find a counterexample for the following statement.
The unemployment rate is lowest in the cities with the least people.

2-2 Logic

Main Ideas

Determine truth values of conjunctions and disjunctions.

Construct truth tables.

BUILD YOUR VOCABUIARY (pages 32-33)

A statement is any sentence that is either true or false, but not \square The truth or falsity of a statement is called its truth value.

EXAMPIE Truth Values of Conjunctions

Key Concepts

Negation If a statement is represented by p, then not p is the negation of the statement.
Conjunction A conjunction is a compound statement formed by joining two or more statements with the word and.

TEKS G. 1 The student understands the structure of, and relationships within, an axiomatic system. (A) Develop an awareness of the structure of a mathematical system, connecting definitions, postulates, logical reasoning, and theorems G. 3 The student applies logical reasoning to justify and prove mathematical statements. (C) Use logical reasoning to prove statements are true and find counter examples to disprove statements that are false.

Use the following statements to write a compound statement for each conjunction. Then find its truth value.
p: One foot is 14 inches.
q : September has $\mathbf{3 0}$ days.
r : A plane is defined by three noncollinear points.

a. p and q

One foot is 14 inches, and September has 30 days. p and q

b. $\sim \boldsymbol{p} \wedge r$

A foot is not 14 inches, and a plane is defined by three noncollinear points. $\sim p \wedge r$ is \square because $\sim p$ is
\square

Check Your Progress
Use the following statements to write a compound statement for each conjunction. Then find its truth value.
$p:$ June is the sixth month of the year.
\boldsymbol{q} : A square has five sides.
r : A turtle is a bird.
a. p and r

b. $\sim q \wedge \sim r$

EXAMPIE Truth Values of Disjunctions

KEy Concept

Disjunction A disjunction is a compound statement formed by joining two or more statements with the word or.

2 Use the following statements to write a compound statement for each disjunction. Then find its truth value.
$p: \overline{A B}$ is proper notation for "line $A B$."
q : Centimeters are metric units.
$r: 9$ is a prime number.
a. p or q
$\overline{A B}$ is proper notation for "line $A B$," or centimeters are metric units. p or q is \square because q is

It does not matter that \square is false.
b. $q \vee r$

Centimeters are metric units, or 9 is a prime number. $q \vee r$

\square

Check Your Progress

Use the following statements to write a compound statement for each disjunction. Then find its truth value.
$p: 6$ is an even number.
q : A cow has 12 legs.
r : A triangle has three sides.
a. p or r

b. $\sim q \vee \sim r$

BUILD YOUR VOGABULARY (pages 32-33)

A convenient method for organizing the truth values of statements is to use a truth table.

EXAMPLE Use Venn Diagrams

Organize It

Construct a truth table for the compound statement $\sim q \vee p$ and write it under the tab for Lesson 2-2.

Homework

Assignment

Page(s):
Exercises:

3
DANCING The Venn diagram shows the number of students enrolled in Monique's Dance School for tap, jazz, and ballet classes.

a. How many students are enrolled in all three classes?

The number of students that are enrolled in all \square classes is represented by the \square of the three circles. There are \square students enrolled in all three classes.
b. How many students are enrolled in tap or ballet?

The number of students enrolled in tap or ballet is represented by the union of the two sets. There are

enrolled in tap or ballet.
c. How many students are enrolled in jazz and ballet, but not tap?

The number of students enrolled in \square and ballet but not tap is represented by the intersection of the jazz and \square sets. There are \square students enrolled in
\square only.

Check Your Progress

 How many students are enrolled in ballet and tap, but not jazz? \square
2-3 Conditional Statements

5XAMPL \quad Write a Conditional in If-Then Form

Main Ideas

- Analyze statements in if-then form.
- Write the converse inverse, and contrapositive of if-then statements.

Key Concept

If-Then Statement An if-then statement is written in the form if p, then q. The phrase immediately following the word if is called the hypothesis, and the phrase immediately following the word then is called the conclusion.

I TEKS G. 3 The student applies logical reasoning to justify and prove mathematical statements. (A) Determine the validity of a conditional statement, its converse, inverse, and contrapositive. G. 3 The student applies logical reasoning to justify and prove mathematical statements. (C) Use logical reasoning to prove statements are true and find counter examples to disprove statements that are false. Also addresses TEKS G.1(A).

1 Identify the hypothesis and conclusion of each statement. Then write each statement in if-then form.
a. Distance is positive.

If a distance is measured, then it is positive.
b. A five-sided polygon is a pentagon.

If a polygon has \square then it is a \square

Check Your Progress
Identify the hypothesis and conclusion of the statement.

To find the distance between two points, you can use the Distance Formula.

2-3

EXAMPLE Truth Values of Conditionals

FOLDABLES

Organize It

Under the tab for Lesson 2-3, explain how to determine the truth value of a conditional. Be sure to include an example.

2 Determine the truth value of the following statement for each set of conditions. If Yukon rests for 10 days, his ankle will heal.
a. Yukon rests for 10 days, and he still has a hurt ankle. The hypothesis is \square, since he rested for 10 days. The conclusion is \square since his ankle will heal. Thus the conditional statement is \square
b. Yukon rests for 10 days, and he does not have a hurt ankle anymore.
The hypothesis is \square since Yukon rested for 10 days, and the conclusion is \square because he does not have a hurt ankle. Since what was stated is true, the conditional statement is \square
c. Yukon rests for $\mathbf{7}$ days, and he does not have a hurt ankle anymore.

The hypothesis is \square and the conclusion is \square The statement does not say what happens if Yukon only rests for 7 days. In this case, we cannot say that the statement is false. Thus, the statement is \square

Check Your Progress
Determine the truth value of the following statement for each set of conditions. If it rains today, then Michael will not go skiing.
a. It rains today; Michael does not go skiing.

b. It rains today; Michael goes skiing.

EXAMPLE Related Conditionals

Key Concepts

Related Conditionals
Conditional Formed by given hypothesis and conclusion
Converse Formed by exchanging the hypothesis and conclusion of the conditional
Inverse Formed by negating both the hypothesis and conclusion of the conditional

Contrapositive Formed by negating both the hypothesis and conclusion of the converse statement

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.
(3) Write the converse, inverse, and contrapositive of the statement All squares are rectangles. Determine whether each statement is true or false. If a statement is false, give a counterexample.

Conditional: If a shape is a square, then it is a rectangle.
The conditional statement is true.
Write the converse by switching the \square and conclusion of the conditional.

Converse: If a shape is a rectangle, then it is a square.
The converse is \square. A rectangle with $\ell=2$ and $w=4$ is not a square.
Inverse: If a shape is not a square, then it is not a rectangle. The inverse is \square A rectangle with side lengths $2,2,4$, and 4 is not a square. The contrapositive is the \square of the hypothesis and conclusion of the converse.

Contrapositive: If a shape is not a rectangle, then it is not a square. The contrapositive is \square

Check Your Progress Write the converse, inverse, and contrapositive of the statement The sum of the measures of two complementary angles is 90 . Determine whether each statement is true or false. If a statement is false, give a counterexample.

2-4 Deductive Reasoning

```
    MAIN IDEAS
- Use the Law of Detachment.
- Use the Law of Syllogism.
```


KEy Concept

Law of Detachment If $p \rightarrow q$ is true and p is true, then q is also true.

TEKS G. 1 The student understands the structure of, and relationships within, an axiomatic system. (A) Develop an awareness of the structure of a mathematical system, connecting definitions, postulates, logical reasoning, and theorems. G. 3 The student applies logical reasoning to justify and prove mathematical statements. (E) Use deductive reasoning to prove a statement.

BUILD YOUR VOGABULARY (pages 32-33)

Deductive reasoning uses facts, rules, \square to reach logical conclusions.

EXAMPIE Determine Valid Conclusions

The following is a true conditional. Determine

 whether the conclusion is valid based on the given information. Explain your reasoning.If two segments are congruent and the second segment is congruent to a third segment, then the first segment is also congruent to the third segment.
a. Given: $\bar{W} \cong \overline{U V} ; \overline{\boldsymbol{U} V} \cong \overline{\boldsymbol{R T}}$

Conclusion: $\bar{W} \boldsymbol{X} \cong \overline{\boldsymbol{R T}}$
The hypothesis states that \square and

hypothesis is true, the conclusion is

b. Given: $\overline{U V}, \overline{W X} \cong \overline{R T}$

Conclusion: $\overline{W X} \cong \overline{U V}$ and $\overline{U V} \cong \overline{R T}$
The hypothesis states that \square and \square
Not enough information is provided to reach the conclusion.
The conclusion is \square

Check Your Progress The following is a true conditional. information. Explain your reasoning.
If a polygon is a convex quadrilateral, then the sum of the measures of the interior angles is 360°.

Given: $m \angle X+m \angle N+m \angle \mathrm{O}=360^{\circ}$
Conclusion: If you connect X, N, and O with segments, the figure will be a convex quadrilateral.

EXAMPLE Determine Valid Conclusions From Two Conditionals

KEy Concept

Law of Syllogism If
$p \rightarrow q$ and $q \rightarrow r$ are
true, then $p \rightarrow r$ is also true.
’эи ‘sə!uеdmoう І!

FOLDABLES

Organize It

Use symbols and words to write the Law of Detachment and the Law of Syllogism under the tab for Lesson 2-4.

2 PROM Use the Law of Syllogism to determine whether a valid conclusion can be reached from each set of statements.
a. (1) If Salline attends the prom, she will go with Mark.
(2) If Salline goes with Mark, Donna will go with Albert.

The conclusion of the first statement is the \square of the second statement. Thus, if Salline attends the prom, Donna will go with \square
b. (1) If Mel and his date eat at the Peddler Steakhouse before going to the prom, they will miss the senior march.
(2) The Peddler Steakhouse stays open until 10 P.M.

There is \square While both statements may be true, the conclusion of one statement is not used as the \square of the other statement.

Check Your Progress Use the Law of Syllogism to determine whether a valid conclusion can be reached from each set of statements.
a. (1) If you ride a bus, then you attend school.
(2) If you ride a bus, then you go to work.
b. (1) If your alarm clock goes off in the morning, then you will get out of bed.
(2) You will eat breakfast, if you get out of bed.

EXAMPLE Analyze Conclusions

Determine whether statement (3) follows from statements (1) and (2) by the Law of Detachment or the Law of Syllogism. If it does, state which law was used. If it does not, write invalid.
(1) If the sum of the squares of two sides of a triangle is equal to the square of the third side, then the triangle is a right triangle.
(2) For $\triangle X Y Z,(X Y)^{2}+(Y Z)^{2}=(Z X)^{2}$.
(3) $\triangle X Y Z$ is a right triangle.
p : The \square of the squares of the lengths of the two sides

q : the triangle is a \square triangle.
By the Law of \square, if $p \rightarrow q$ is true and
p is true, then q is also true. Statement (3) is a conclusion by the Law of Detachment.

Check Your Progress
Determine whether statement
(3) follows from statements (1) and (2) by the Law of Detachment or the Law of Syllogism. If it does, state which law was used. If it does not, write invalid.
(1) If a children's movie is playing on Saturday, Janine will take her little sister Jill to the movie.
(2) Janine always buys Jill popcorn at the movies.
(3) If a children's movie is playing on Saturday, Jill will get popcorn.

Homework Assignment

2-5 Postulates and Paragraph Proofs

1 TEKS G. 3 The student applies logical reasoning to justify and prove mathematical statements. (B) Construct and justify statements about geometric figures and their properties. G. 3 The student applies logical reasoning to justify and prove mathematical statements. (E) Use deductive reasoning to prove a statement. Also addresses TEKS G.1(A) and 3(C).

Main Ideas

- Identify and use basic postulates about points, lines, and planes.
- Write paragraph proofs.

BUILD YOUR VOGABULARY (pages 32-33)
A postulate is a statement that describes a fundamental relationship between the basic terms of \square Postulates are accepted as \square

Postulate 2.1

Through any two points, there is exactly one line.

Postulate 2.2

Through any three points not on the same line, there is exactly one plane.

EXAMPIE Points and Lines

1 SNOW CRYSTALS Some snow crystals are shaped like regular hexagons. How many lines must be drawn to interconnect all vertices of a hexagonal snow crystal?

Draw a diagram of a hexagon to illustrate the solution. Connect each point with every other point. Then, count the number of segments.

Between every two points there is exactly \square segment.

Be sure to include the sides of the
 hexagon. For the six points,

segments can be drawn.

Check Your Progress Jodi is making a string art design. She has positioned ten nails, similar to the vertices of a decagon, onto a board. How many strings will she need to interconnect all vertices of the design?

Review It

Collinear means lying on the same line, so noncollinear means not lying on the same line. (Lesson 1-1)

Postulate 2.3

A line contains at least two points.

Postulate 2.4

A plane contains at least three points not on the same line.

Postulate 2.5

If two points lie on a plane, then the entire line containing those points lies in that plane.

Postulate 2.6
If two lines intersect, then their intersection is exactly one point.
Postulate 2.7
If two planes intersect, then their intersection is a line.

EXAMPLE Use Postulates

2 Determine whether the statement is always, sometimes, or never true. Explain.
a. If plane \mathcal{T} contains $\overleftrightarrow{E F}$ and $\overleftrightarrow{\boldsymbol{E F}}$ contains point G, then plane \mathcal{T} contains point G.

lie in a plane, then the entire \square containing those points lies in the plane.
b. For $\overleftrightarrow{X Y}$, if X lies in plane Q and Y lies in plane R, then plane Q intersects plane R.

and can intersect both planes.
c. $\overleftrightarrow{\boldsymbol{G H}}$ contains three noncollinear points.
; noncollinear points do not lie on the same

Check Your Progress

Determine whether the statement is always, sometimes, or never true. Explain.

Plane \mathcal{A} and plane \mathcal{B} intersect in one point.

Theorem 2.1 Midpoint Theorem

If M is the midpoint of $\overline{A B}$, then $\overline{A M} \cong \overline{M B}$.

EXAMPLE Write a Paragraph Proof

KEy Concept

Proofs Five essential parts of a good proof:

- State the theorem or conjecture to be proven.
- List the given information.
- If possible, draw a diagram to illustrate the given information.
- State what is to be proved.
- Develop a system of deductive reasoning.

FOLDABLES
Copy
Example 3 under the tab for Lesson 2-5 as an example of a paragraph proof.
(3) Given $\overleftrightarrow{A C}$ intersects $\overleftrightarrow{C D}$, write a paragraph proof to show that A, C, and D determine a plane.
Given: $\overleftrightarrow{A C}$ intersects $\overleftrightarrow{C D}$
Prove: A, C, and D determine a plane.
$\overleftrightarrow{A C}$ and $\overleftrightarrow{C D}$ must intersect at C because if \square lines
intersect, then their intersection is exactly \square point. Point A is on $\overleftrightarrow{A C}$ and point D is on $\overleftrightarrow{C D}$. Therefore, points
A and D are \square. Therefore, A, C, and D determine a plane.

Check Your Progress

Given $\overline{R T} \cong \overline{T Y}, S$ is the midpoint of $\overline{R T}$, and X is the midpoint of $\overline{T Y}$, write a paragraph proof to show that $\overline{S T} \cong \overline{T X}$.

Homework

 Assignment
2-6 Algebraic Proof

TEKS G. 1 The student understands the structure of, and relationships within, an axiomatic system.
(A) Develop an awareness of the structure of a mathematical system, connecting definitions, postulates, logical reasoning, and theorems. G. 3 The student applies logical reasoning to justify and prove mathematical statements. (E) Use deductive reasoning to prove a statement.

EXAMPIE Verify Algebraic Relationships

Main Ideas

- Use algebra to write two-column proofs.
- Use properties of equality in geometry proofs.

1) Solve $2(5-3 a)-4(a+7)=92$.

Algebraic Steps

$2(5-3 a)-4(a+7)=92$
$10-6 a-4 a-28=92$
$-18-10 a=92$

Properties

Original equation

Addition Property

Check Your Progress Solve $-3(a+3)+5(3-a)=-50$.

BUILD YOUR VOCABULARY (pages 32-33)

A two-column proof, or formal proof, contains
\square
\square organized in
two columns.

EXAMPLE Write a Two-Column Proof

Write IT

What are the five essential parts of a good proof? (Lesson 2-5)
\qquad
\qquad
\qquad
\qquad

2 Write a two-column proof to show that if $\frac{7 d+3}{4}=6$, then $d=3$.

Statements	Reasons
1. $\frac{7 d+3}{4}=6$	1. Given
2. $4\left(\frac{7 d+3}{4}\right)=4(6)$	2.

3. $7 d+3=24$
4. $7 d=21$
5.

4.
5. \square

Check Your Progress
Write a two-column proof for the following.

Given: $\frac{10-8 n}{3}=-2$
Proof: $n=2$

EXAMPIE Geometric Proof

3 SEA LIFE A starfish has five arms. If the length of arm 1 is 22 centimeters, and arm 1 is congruent to arm 2, and arm 2 is congruent to arm 3, prove that arm 3 has a length of 22 centimeters.

Given: arm $1 \cong \operatorname{arm} 2$
$\operatorname{arm} 2 \cong \operatorname{arm} 3$
m arm $1=22 \mathrm{~cm}$
Prove: m arm $3=22 \mathrm{~cm}$
Proof:

Statements	Reasons
1. $\operatorname{arm} 1 \cong \operatorname{arm} 2 ;$	1. Given
$\operatorname{arm} 2 \cong \operatorname{arm} 3$	2.
2. $\operatorname{arm} 1 \cong \operatorname{arm} 3$	

3. m arm $1=m$ arm 3
4.

5. m arm $3=22 \mathrm{~cm}$
3. Definition of congruence
4. Given
5. Transitive Property

Check Your Progress
A stop sign as shown at right is a regular octagon. If the measure of angle A is 135 and angle A is congruent to angle G, prove that the measure of angle G is 135 .

2-7 Proving Segment Relationships

I TEKS G. 1 The student understands the structure of, and relationships within, an axiomatic system. (A) Develop an awareness of the structure of a mathematical system, connecting definitions, postulates, logical reasoning, and theorems. G. 3 The student applies logical reasoning to justify and prove mathematical statements. (E) Use deductive reasoning to prove a statement.

Main Ideas

Write proofs involving segment addition.

- Write proofs involving segment congruence.

Postulate 2.8 Ruler Postulate

The points on any line or line segment can be paired with real numbers so that, given any two points A and B on a line, A corresponds to zero, and B corresponds to a positive real number.

Postulate 2.9 Segment Addition Postulate If B is between A and C, then $A B+B C=A C$. If $A B+B C=A C$, then B is between A and C.

EXAMPIE Proof with Segment Addition

(1) Prove the following.

Given: $P R=Q S$
Prove: $P Q=R S$

Statements	Reasons

1. $P R=Q S$
2. $P R-Q R=Q S-Q R$
3. Given
4. $P R-Q R=P Q$;
$Q S-Q R=R S$
5. $P Q=R S$
6. Subtraction Property
7. Segment Addition Postulate
8. Substitution

Check Your Progress
Prove the following.
Given: $A C=A B$
$A B=B X$
$C Y=X D$
Prove: $A Y=B D$

Lesson 2-7, write the Segment Addition Postulate, draw an Postulate, draw an
example, and write an equation for your example.

OLDABLES

Organize It

Under the tab for

Give

$$
\text { Prove: } A Y=B D
$$

> Theorem 2.2
> Congruence of segments is reflexive, symmetric, and transitive.

EXAMPLE Transitive Property of Congruence

2 Prove the following.

Given: $W Y=Y Z, \overline{Y Z} \cong \overline{X Z}$

$$
\overline{X Z} \cong \overline{W Y}
$$

Prove: $\overline{W X} \cong \overline{W Y}$

Check Your Progress
Prove the following.
Given: $\overline{G D} \cong \overline{B C}, \overline{B C} \cong \overline{F H}$, $\overline{F H} \cong \overline{A E}$
Prove: $\overline{A E} \cong \overline{G D}$

Homework

Assignment

Page(s):
Exercises:

2-8 Proving Angle Relationships

TEKS G. 2 The student analyzes geometric relationships in order to make and verify conjectures. (B) Make conjectures about angles, lines, polygons, circles, and threedimensional figures and determine the validity of the conjectures, choosing from a variety of approaches such as coordinate, transformational, or axiomatic. G. 3 The student applies logical reasoning to justify and prove mathematical statements. (E) Use deductive reasoning to prove a statement. Also addresses TEKS G.1(A).

Postulate 2.10 Protractor Postulate

Given $\overrightarrow{A B}$ and a number r between 0 and 180, there is exactly one ray with endpoint A, extending on either side of $\overrightarrow{A B}$, such that the measure of the angle formed is r.

Postulate 2.11 Angle Addition Postulate

If R is in the interior of $\angle P Q S$, then $m \angle P Q R+m \angle R Q S=$ $m \angle P Q S$. If $m \angle P Q R+m \angle R Q S=m \angle P Q S$, then R is in the interior of $\angle P Q S$.

EXAMPIE Angle Addition

(1) TIME At 4 o'clock, the angle between the hour and minute hands of a clock is 120°. If the second hand stops where it bisects the angle between the hour and minute hands, what are the measures of the angles between the minute and second hands and
 between the second and hour hands?

If the second hand stops where the angle is bisected, then the angle between the minute and second hands is \square the measure of the angle formed by the hour and minute hands,
or
$(120)=$ \square

By the Angle Addition Postulate, the sum of the two angles is \square, so the angle between the second and hour hands is also \square

Check Your Progress
The diagram shows one square for a particular quilt pattern. If $m \angle B A C=m \angle D A E=20^{\circ}$, and $\angle B A E$ is a right angle, find $m \angle C A D$.

Theorem 2.3 Supplement Theorem

If two angles form a linear pair, then they are supplementary angles.
Theorem 2.4 Complement Theorem If the noncommon sides of two adjacent angles form a right angle, then the angles are complementary angles.

EXAMPLE Supplementary Angles

Review It

The angles of a linear pair are always supplementary, but supplementary angles need not form a linear pair. (Lesson 1-5)
2. If $\angle 1$ and $\angle 2$ form a linear pair and $m \angle 2=166$, find $m \angle 1$.

$$
m \angle 1+m \angle 2=180
$$

\square

$$
m \angle 1=14
$$

Check Your Progress If $\angle 1$ and $\angle 2$ are complementary angles and $m \angle 1=62$, find $m \angle 2$.

Theorem 2.5

Congruence of angles is reflexive, symmetric, and transitive.
Theorem 2.6
Angles supplementary to the same angle or to congruent angles are congruent.
Theorem 2.7
Angles complementary to the same angle or to congruent angles are congruent.

EXAMPIE Use Supplementary Angles

FOLDABLES

Organize It

Under the tab for
Lesson 2-8, copy
Theorem 2.12: If two angles are congruent and supplementary, then each angle is a right angle. Illustrate this theorem with a diagram.

3 In the figure, $\angle 1$ and $\angle 4$ form a linear pair, and $m \angle 3+m \angle 1=180$. Prove that $\angle 3$ and $\angle 4$ are congruent.

Given: $\angle 1$ and $\angle 4$ form a linear pair.

$$
m \angle 3+m \angle 1=180
$$

Prove: $\angle 3 \cong \angle 4$
Proof:

Statements	Reasons

1. $m \angle 3+m \angle 1=180 ; \angle 1$ and $\angle 4$ form a linear pair.
2. $\angle 1$ and $\angle 4$ are supplementary.
3. $\angle 3$ and $\angle 1$ are supplementary.
4. $\angle 3 \cong \angle 4$
5.

Definition of supplementary angles.

Check Your Progress

In the figure, $\angle N Y R$ and $\angle R Y A$ form a linear pair, $\angle A X Y$ and $\angle A X Z$ form a linear pair, and $\angle R Y A$ and $\angle A X Z$ are congruent. Prove that $\angle R Y N$ and $\angle A X Y$ are congruent.

Theorem 2.8 Vertical Angle Theorem
If two angles are vertical angles, then they are congruent.

EXAMPIE Vertical Angles

Remember It

Be sure to read problems carefully in order to provide the information requested. Often the value of the variable is used to find the answer.

Homework
 Assignment

Page(s):
Exercises: BRINGING IT ALL TOGETHER

STUDY CUIDE

| GOLDABLES |
| :--- | :--- | :--- |\quad| VOCABULARY |
| :--- |
| PUZZLEMAKER |\quad BUILD YOUR

2-1

Inductive Reasoning and Conjecture

Make a conjecture about the next number in the pattern.

1. $-6,-3,0,3,6$ \square 2. $4,-2,1,-\frac{1}{2}, \frac{1}{4}$ \square
2. Make a conjecture based on the given information.

Points A, B, and C are collinear. D is between A and B.
\square

2-2

Logic

Use the statements $p:-1+4=3, q$: A pentagon has 5 sides, and $r: 5+3>8$ to find the truth value of each statement.
4. $p \vee r$

5. $q \wedge r$

6. $(p \vee q) \wedge r$

7. Construct a truth table for the compound statement $p \vee(\sim p \wedge q)$.

2-3

Conditional Statements

8. Identify the hypothesis and conclusion of the statement. If $x-7=4$, then $x=11$.
\square
9. Write the statement in if-then form.

Supplementary angles have measures with a sum of 180°.

2-4

Deductive Reasoning

10. Use the Law of Detachment to tell whether the following reasoning is valid. Write valid or not valid.

If a car has air bags it is safe. Maria's car has air bags. Therefore, Maria's car is safe.

11. Use the Law of Syllogism to write a valid conclusion from this set of statements.
(1) All squares are rectangles.
(2) All rectangles are parallelograms.

2-5

Postulates and Paragraph Proofs
12. Determine the number of line segments that can be drawn connecting each pair of points.

14. If A is the midpoint of $\overline{C D}$, then $\overline{C A} \cong \overline{A D}$.
\square

2-6

Algebraic Proof
Name the definition, property, postulate, or theorem that justifies each statement.
15. If $x-7=9$, then $x=16$

16. $5(x+8)=5 x+40$

17. If $\overline{C D} \cong \overline{E F}$ and $\overline{E F} \cong \overline{G H}$, then $\overline{C D} \cong \overline{G H}$.

2-7

Proving Segment Relationships
Name the definition, property, postulate, or theorem that justifies each statement.
18. If $\overline{A B} \cong \overline{C D}$, then $\overline{C D} \cong \overline{A B}$.
\square
19. If $A B+B D=A D$, then B is between A and D.

2-8

Proving Angle Relationships

Name the definition, property, postulate, or theorem that justifies each statement.
20. If $m \angle 1+m \angle 2=90$, and $m \angle 2+m \angle 3=90$, then $m \angle 1=m \angle 3$.
\square
21. If $\angle A$ and $\angle B$ are vertical angles, then $\angle A \cong \angle B$.
\square

Checklist

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 2.

ARE YOU READY FOR THE CHAPTER TEST?

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 2 Practice Test on page 137 of your textbook as a final check.

I used my Foldable or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 2 Study Guide and Review on pages 132-136 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 2 Practice Test on page 137 of your textbook.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 2 Foldable.
- Then complete the Chapter 2 Study Guide and Review on pages 132-136 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 2 Practice Test on page 137.

Parallel and Perpendicular Lines

OLDABLES

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.

Begin with one sheet of $8 \frac{1}{2}^{\prime \prime} \times 11^{\prime \prime}$ paper.

STEP 1 Fold in half matching the short sides.

STEP 2 Unfold and fold the long side up 2 inches to form a pocket.

STEP 3 Staple or glue the outer edges to complete the pocket.

STEP 4 Label each side as shown. Use index cards to record examples.

NOTE-TAKING TIP: When taking notes, writing a paragraph that describes the concepts, the computational skills, and the graphics will help you to understand the math in the lesson.

∞ 3

BUILD YOUR VOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 3. As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

Vocabulary Term	Found on Page	Definition	Description or Example
alternate exterior angles			
alternate interior angles			
consecutive interior angles			
corresponding angles			
equidistant [ee-kwuh-DIS-tuhnt]			
non-Euclidean geometry [yoo-KLID-ee-yuhn]			
parallel lines			

3-1 Parallel Lines and Transversals

TEKS G. 9 The student analyzes properties and describes relationships in geometric figures. (A) Formulate and test conjectures about the properties of parallel and perpendicular lines based on explorations and concrete models.

Main Ideas

- Identify the
relationships between two lines or two planes.
- Name angles formed by a pair of lines and a transversal.

BUILD YOUR VOGABULARY (pages 62-63)

 parallel lines.
 parallel planes.

Lines that do not intersect and are not \square are called skew lines.

A line that intersects \square or more lines in a plane at different points is called a transversal.

EXAMPIE Identify Relationships

1 Use the figure shown at the right.
a. Name all planes that are parallel to plane $\boldsymbol{A E F}$.
\square
b. Name all segments that intersect $\overline{A F}$.

\square
c. Name all segments that are skew to $\overline{A D}$.
\square

Check Your Progress

Use the figure shown.
a. Name all planes that are parallel to plane RST.

b. Name all segments that intersect $\overline{Y Z}$.

c. Name all segments that are skew to $\overline{T Z}$.

EXAMPLE Identify Transversals

2 BUS STATION Some of a bus station's driveways are shown. Identify the sets of lines to which each given line is a transversal.

a. line \boldsymbol{v} If the lines are extended, line v intersects lines

b. line y \square
c. line u \square

Check Your Progress
 A group

 of nature trails is shown. Identify the set of lines to which each given line is a transversal.a. line a

b. line 6 \square
c. line c
 f
d. line d \square

FOLDABLES

Organize It

Using a separate card for each type of angle pair, draw two parallel lines cut by a transversal and identify consecutive interior angles, alternate exterior angles, alternate interior angles, and corresponding angles. Place your cards in the Parallel Lines pocket.

Homework

Assignment

Page(s):

Exercises:

BUILD YOUR VOGABULARY (page 62)

consecutive interior angles:
$\angle 4$ and $\angle 5, \angle 3$ and $\angle 6$
alternate interior angles: $\angle 4$ and $\angle 6, \angle 3$ and $\angle 5$
alternate exterior angles:
$\angle 1$ and $\angle 7, \angle 2$ and $\angle 8$

corresponding angles: $\angle 1$ and $\angle 5, \angle 2$ and $\angle 6, \angle 3$ and $\angle 7$, $\angle 4$ and $\angle 8$

EXAMPLE Identify Angle Relationships

3 Identify each pair of angles as alternate interior, alternate exterior, corresponding, or consecutive interior angles.
a. $\angle 7$ and $\angle 3$

b. $\angle 8$ and $\angle 2$

c. $\angle 4$ and $\angle 11$
d. $\angle 7$ and $\angle 1$

e. $\angle 3$ and $\angle 9$
f. $\angle 7$ and $\angle 10$

Check Your Progress
Identify each pair of angles as alternate interior, alternate exterior, corresponding, or consecutive interior angles.
a. $\angle 4$ and $\angle 5$

b. $\angle 7$ and $\angle 9$

c. $\angle 4$ and $\angle 7$

d. $\angle 2$ and $\angle 11$

3-2 Angles and Parallel Lines

1 TEKS G. 9 The student analyzes properties and describes relationships in geometric figures. (A) Formulate and test conjectures about the properties of parallel and perpendicular lines based on explorations and concrete models.

Main Ideas

- Use the properties of parallel lines to determine congruent angles.
- Use algebra to find angle measures.

FOLDABLES

Organize IT

Sketch two parallel lines and a transversal on a card. Below the sketch, write a brief note to explain how knowing one of the angle measures allows you to find the measures of all the other angles. Place the card in the Parallel Lines pocket.

Postulate 3-1 Corresponding Angles Postulate If two parallel lines are cut by a transversal, then each pair of corresponding angles is congruent.

EXAMPLE Determine Angle Measures

(1) In the figure $\chi \| y$ and $m \angle 11=51$. Find $m \angle 16$.

Corresponding Angles Postulate
Vertical Angles Theorem
Transitive Property Definition of congruent angles

Substitution

Check Your Progress

In the figure, $m \angle 18=42$. Find $m \angle 25$.

Theorem 3.1 Alternate Interior Angles Theorem
If two parallel lines are cut by a transversal, then each pair of alternate interior angles is congruent.

Theorem 3.2 Consecutive Interior Angles Theorem If two parallel lines are cut by a transversal, then each pair of consecutive interior angles is supplementary.

\section*{| REVIEW IT |
| :--- |
| $\begin{array}{l}\text { When two lines intersect, } \\ \text { what types of angle } \\ \text { pairs are congruent? } \\ \text { (Lesson 2-8) }\end{array}$ |}

2

ALGEBRA If $m \angle 5=2 x-10$, $m \angle 6=4(y-25)$, and $m \angle 7=x+15$, find x and y.

Find x. Since $p \| q, m \angle 5 \cong m \angle 7$ by the Corresponding Angles Postulate.

Definition of congruent angles
Substitution

Subtract x from each side and add 10 to each side.

Find y. Since $m \| n, m \angle 5 \cong m \angle 6$ by the Alternate Exterior Angles Theorem.

Check Your Progress

If $m \angle 1=9 x+6$, $m \angle 2=2(5 x-3)$, and $m \angle 3=5 y+14$, find x and y.

3-3 Slope of Lines

BUILD YoUR VocABULARY (page 63)

MAIN IDEAS

- Find slopes of lines.
- Use slope to identify parallel and perpendicular lines.

Key Concept

Slope The slope m of a line containing two points with coordinates $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is given by the formula $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$, where $x_{1} \neq x_{2}$.

TEKS G. 7 The student understands that coordinate systems provide convenient and efficient ways of representing geometric figures and uses them accordingly. (A) Use oneand two-dimensional coordinate systems to represent points, lines, rays, line segments, and figures. (B) Use slopes and equations of lines to investigate geometric relationships, including parallel lines, perpendicular lines, and special segments of triangles and other polygons. (C) Derive and use formulas involving length, slope, and midpoint. Also addresses TEKS G.9(A).

The slope of a line is the ratio of the vertical rise to its horizontal run.

EXAMPLE Find the Slope of a Line

1) a. Find the slope of the line.

Use the $\frac{\text { rise }}{\text { run }}$ method. From
$(-3,7)$ to $(-1,-1)$, go down

b. Find the slope of the line.

Use the slope formula.
Let $(0,4)$ be $\left(x_{1}, y_{1}\right)$ and $(0,-3)$ be $\left(x_{2}, y_{2}\right)$.
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

$=\frac{\square-\square}{0-0}$ or $\frac{-7}{0}$, which is

c. Find the slope of the line.
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

Remember It

Lines with positive slope rise as you move from left to right, while lines with negative slopes fall as you move from left to right.

d. Find the slope of the line.

$$
\begin{aligned}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\square \\
& =\square \text { or } \square
\end{aligned}
$$

Check Your Progress

a.

c.

Find the slope of each line.
b.

d.

BUILD YOUR VOCABULARY (page 63)

The rate of change describes how a quantity is

Postulate 3.2

Two nonvertical lines have the same slope if and only if they are parallel.

Postulate 3.3

Two nonvertical lines are perpendicular if and only if the product of their slopes is -1 .

EXAMPLE Determine Line Relationships

FOLDABLES

Organize It

On a study card, write the equation of two lines that are parallel and explain what is true about their slopes. Place this card in the Parallel Lines pocket.

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

2 Determine whether $\overleftrightarrow{F G}$ and $\overleftrightarrow{H J}$ are parallel, perpendicular, or neither.
a. $F(1,-3), G(-2,-1), H(5,0), J(6,3)$

Find the slopes of $\overleftrightarrow{F G}$ and $\overleftrightarrow{H J}$.

The slopes are not the same, so $\overleftrightarrow{F G}$ and $\overleftrightarrow{H J}$ are

b. $F(4,2), G(6,-3), H(-1,5), J(-3,10)$

The slopes are the same, so $\overleftrightarrow{F G}$ and $\overleftrightarrow{H J}$ are \square

Check Your Progress Determine whether $\overleftrightarrow{A B}$ and $\overleftrightarrow{C D}$ are parallel, perpendicular, or neither.
a. $A(-2,-1), B(4,5), C(6,1), D(9,-2)$

b. $A(7,-3), B(1,-2), C(4,0), D(-3,1)$

3-4 Equations of Lines

Main Ideas

- Write an equation of a line given information about its graph.
- Solve problems by writing equations.

TEKS G. 7
The student understands that coordinate systems provide convenient and efficient ways of representing geometric figures and uses them accordingly. (A) Use oneand two-dimensional coordinate systems to represent points, lines, rays, line segments, and figures. (B) Use slopes and equations of lines to investigate geometric relationships, including parallel lines, perpendicular lines, and special segments of triangles and other polygons.

Remember It

Note that the pointslope form of an equation is different for each point used. However, the slopeintercept form of an equation is unique.

BUILD YOUR VOGABULARY (page 63)

The slope-intercept form of a linear equation is
\square line and b is the y-intercept.

The point-slope form is

\square where (x_{1}, y_{1}) are the coordinates of any point on the line and m is the slope of the line.

EXAMPIE Slope and y-intercept

(1) Write an equation in slope-intercept form of the line with slope of 6 and y-intercept of -3 .
$y=m x+b$
Slope-intercept form
$y=\square x+\square$

$$
m=6, b=-3
$$

The slope-intercept form of the equation is \square

Check Your Progress
Write an equation in slope-intercept form of the line with slope of -1 and y-intercept of 4 .

EXAMPLE Slope and a Point

2 Write an equation in point-slope form of the line whose slope is $-\frac{3}{5}$ and contains $(-10,8)$.

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) & & \text { Point-slope form } \\
-\square & =-\frac{3}{5}[x-\square & & m=-\frac{3}{5},\left(x_{1}, y_{1}\right)=(-10,8) \\
y-8 & =-\frac{3}{5}(x+10) & & \text { Simplify. }
\end{aligned}
$$

Check Your Progress Write an equation in point-slope form of the line whose slope is $\frac{1}{3}$ and contains ($6,-3$).

EXAMPLE Two Points

3 Write an equation in slope-intercept form for a line containing $(4,9)$ and ($-2,0$).

Find the slope of the line.
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
Slope formula
$=\frac{0-9}{-2-4}$

$$
x_{1}=4, x_{2}=-2
$$

$$
y_{1}=9, y_{2}=0
$$

Simplify.

Use the point-slope form to write an equation.
Using (4, 9):

$$
\begin{array}{rlrl}
y-y_{1} & =m\left(x-x_{1}\right) & & \text { Point-slope form } \\
y-\square & =\square(x-4) & & m=\square,\left(x_{1}, y_{1}\right)=(4,9) \\
y & =\frac{3}{2} x+3 & \begin{array}{l}
\text { Distributive Property and } \\
\text { add } 9 \text { to both sides. }
\end{array}
\end{array}
$$

Using ($-2,0$):
$y-y_{1}=m\left(x-x_{1}\right)$
Point-slope form
$y-\square=\square[x-(-2)]$
$m=\square,\left(x_{1}, y_{1}\right)=(-2,0)$
$y=\square$
Distributive Property

Check Your Progress Write an equation in slope-intercept form for a line containing $(3,2)$ and $(6,8)$.

EXAMPLE One Point and an Equation

4) Write an equation in slope-intercept form for a line containing $(1,7)$ that is perpendicular to the line

FOLDABLES
Organize It
On a study card, write the slope-intercept equations of two lines that are perpendicular, and explain what is true about their slopes. Place this card in the Perpendicular Lines pocket.

Homework

Assignment
$y=-\frac{1}{2} x+1$.

Since the slope of the line is \square the slope of a line perpendicular to it is \square

$$
y-y_{1}=m\left(x-x_{1}\right) \quad \text { Point-slope form }
$$

$$
y-\square=\square(x-\square)
$$

$$
m=2,\left(x_{1}, y_{1}\right)=(1,7)
$$

$$
y=\square
$$

Distributive Property and add 7 to each side.

Check Your Progress Write an equation in slope-intercept form for a line containing $(-3,4)$ that is perpendicular to the line $y=\frac{3}{5} x-4$.

3-5 Proving Lines Parallel

Main Ideas

- Recognize angle conditions that occur with parallel lines.
- Prove that two lines are parallel based on given angle relationships.

TEKS G. 2
The student analyzes geometric relationships in order to make and verify conjectures. (A) Use constructions to explore attributes of geometric figures and to make conjectures about geometric relationships. G. 7 The student understands that coordinate systems provide convenient and efficient ways of representing geometric figures and uses them accordingly. (A) Use one- and two-dimensional coordinate systems to represent points, lines, rays, line segments, and figures. (B) Use slopes and equations of lines to investigate geometric relationships, including parallel lines, perpendicular lines, and special segments of triangles and other polygons.

Postulate 3.4

If two lines in a plane are cut by a transversal so that corresponding angles are congruent, then the lines are parallel.

Postulate 3.5 Parallel Postulate

If there is a line and a point not on the line, then there exists exactly one line through the point that is parallel to the given line.

Theorem 3.5

If two lines in a plane are cut by a transversal so that a pair of alternate exterior angles is congruent, then the two lines are parallel.

Theorem 3.6

If two lines in a plane are cut by a transversal so that a pair of consecutive interior angles is supplementary, then the lines are parallel.

Theorem 3.7

If two lines in a plane are cut by a transversal so that a pair of alternate interior angles is congruent, then the lines are parallel.

Theorem 3.8
In a plane, if two lines are perpendicular to the same line, then they are parallel.

5XAMPLE Identify Parallel Lines

(1) Determine which lines, if any, are parallel.

Since $\angle R Q T$ and $\angle S Q P$ are

angles,

$m \angle S Q P=$ \square
\square
Since $m \angle U P Q+m \angle S Q P=$ $+$ or consecutive interior angles are supplementary. So, $a \| b$.

Since $m \angle T Q R+m \angle V R Q=77+100$ or 177 , consecutive interior angles are \square So, c is not parallel to a or σ.

3-5

FOLDABLES

Organize It

On a card, write the biconditional statement that you obtain by combining Postulates 3.1 and 3.4. Place the card in the Parallel Lines pocket.

Check Your Progress are parallel.

EXAMPIE Solve Problems with Parallel Lines

2) ALGEBRA Find x and $m \angle Z Y N$ so that $\overleftrightarrow{P Q} \| \overleftrightarrow{M N}$.

$m \angle W X P$	$=m \angle Z Y N$		Alternate exterior angles
\square	$=\square$		Substitution
$4 x-25$	$=35$		Subract $7 x$ from each side.
$4 x$	$=60$		Add 25 to each side.
x	$=15$		Divide each side by 4.

Now use the value of x to find $m \angle Z Y N$.
$m \angle Z Y N=7 x+35$
Original equation

$$
=7(\square)+35
$$

$x=15$

$$
=140
$$

Simplify.

So, $x=15$ and $m \angle Z Y N=140$.

Check Your Progress

Find x and $m \angle G B A$ so that $\overleftrightarrow{G H} \| \overleftrightarrow{R S}$.

5XAMPLE Prove Lines Parallel

Write IT

Write how you can use angles formed by two lines and a transversal to decide whether the two lines are parallel or not parallel.
\qquad
\qquad
\qquad
\qquad
3 Given: $\ell \| m$

$$
\angle 4 \cong \angle 7
$$

Prove: $r \| s$

Statements

1. $\ell \| m, \angle 4 \cong \angle 7$
2. $\angle 4$ and $\angle 6$ are suppl.
3. $\angle 4+\angle 6=180$
4.

5. $m \angle 7+$ \square $=180$
6. $\angle 7$ and $\angle 6$ are suppl.
7. $r \| \mathcal{S}$

Reasons

1. Given
2. Consecutive Interior \angle Thm.
3.

4. Def. of congruent $\angle \mathrm{s}$
5.

6. Def. of suppl. $\angle \mathrm{s}$
7. If cons. int. $\angle \mathrm{s}$ are suppl., then lines are parallel.

EXAMPIE Slope and Parallel Lines

(4) Determine whether $p \| q$.

slope of q : $m=$

Since the slopes are \square , $p \| q$.

Check Your Progress

a. Prove the following lines parallel.

Given: $x \| y$
$\angle 1 \cong \angle 4$
Prove: $a \| b$

b. Determine whether $r \| s$.

Homework Assignment

Page(s): Exercises:

3-6 Perpendiculars and Distance

5XAMPLE Distance from a Point to a Line

MAIN IDEAS

- Find the distance between a point and a line.
- Find the distance between parallel lines.

Key Concept

Distance Between a
Point and a Line The distance from a line to a point not on the line is the length of the segment perpendicular to the line from the point.

FFOLDABLES

On a card describe how to find the distance from a point in the coordinate plane to a line that does not pass through the point. Place the card in the Perpendicular Lines pocket.

TEKS G. 7
The student understands that coordinate systems provide convenient and efficient ways of representing geometric figures and uses them accordingly. (A) Use one- and two-dimensional coordinate systems to represent points, lines, rays, line segments, and figures. (B) Use slopes and equations of lines to investigate geometric relationships, including parallel lines, perpendicular lines, and special segments of triangles and other polygons. (C) Derive and use formulas involving length, slope, and midpoint.

(1) Draw the segment that represents the distance from

 \boldsymbol{A} to $\overleftrightarrow{B P}$.

Since the distance from a line to a point not on the line is the
 from the point, extend \square and draw \square so that

Check Your Progress

Draw the segment that represents the distance from R to $\overline{X Y}$.

BUILD YOUR YOCABULARY (page 62)

lines is always the same.

Theorem 3.9

In a plane, if two lines are each equidistant from a third line, then the two lines are parallel to each other.

EXAMPIE Distance Between Lines

Key Concept

Distance Between

Parallel Lines The distance between two parallel lines is the distance between one of the lines and any point on the other line.

2 Find the distance between parallel lines a and σ whose equations are $y=2 x+3$ and $y=2 x-3$, respectively.

- First, write an equation of a line p perpendicular to
a and b. The slope of p is the opposite \square of 2 , or \square. Use the y-intercept of line $a,(0,3)$, as one of the endpoints of the perpendicular segment.

$$
\begin{array}{rll}
y-y_{1} & =m\left(x-x_{1}\right) & \text { Point-slope form } \\
y-\square(x-\square) & x_{1}=\square, y_{1}=\square, \\
& m=\square \\
y & =-\frac{1}{2} x+3 & \begin{array}{l}
\text { Simplify and add } 3 \text { to } \\
\text { each side. }
\end{array}
\end{array}
$$

- Next, use a system of equations to determine the point of intersection of line \bar{b} and p.

Substitute
for y in the second equation.

Group like terms on each side.

Divide each side $\frac{5}{2}$.
Substitute 2.4 for x in the equation for p.

The point of intersection is \square

Then, use the Distance Formula to determine the distance between $(0,3)$ and (2.4, 1.8).

The distance between the lines is \square or about \square units.

Write It

What is the point-slope form of a linear equation?
\qquad
Check Your Progress Find the distance between the parallel lines a and 6 whose equations are $y=\frac{1}{3} x+1$ and $y=\frac{1}{3} x-2$, respectively.

B 3

 bringing it all together
STUDY GUIDE

| FOLDABLES |
| :--- | :--- | :--- |\quad| VOCABULARY |
| :--- |
| PUZZLEMAKER |\quad BUILDYOUR

3-1

Parallel Lines and Transversals

Refer to the figure at the right.

1. Name all planes that are parallel to plane $A B C$.

2. Name all segments that are parallel to $\overline{F G}$.

3-2

Angles and Parallel Lines

In the figure, $m \angle 5=100$. Find the measure of each angle.
3. $\angle 1$ \square
4. $\angle 3$

5. $\angle 4$ \square
6. $\angle 7$ \square
7. $\angle 6$ \square 8. $\angle 2$ \square

3-3

Slope of Lines

Determine the slope of the line that contains the given points.
9. $F(-6,2), M(7,9)$

10. $Z(1,10), L(5,-3)$

11. Determine whether $\overline{E F}$ and $\overline{P Q}$ are parallel, perpendicular, or neither. $E(0,4), F(2,3), P(-3,5), Q(1,3)$

3-4

Equations of lines
12. Write an equation in slope-intercept form of the line with slope -2 that contains $(2,5)$.

13. Write an equation in slope-intercept form of the line that contains ($-4,-2$) and ($-1,7$).

3-5

Proving Lines Parallel

Given the following information, determine which lines,
if any, are parallel. State the postulate or theorem that justifies your answer.
14. $\angle 1 \cong \angle 15$

15. $\angle 9 \cong \angle 11$

16. $\angle 2 \cong \angle 6$

3-6

Perpendiculars and Distance
17. Draw the segment that represents the distance from m to $\overleftrightarrow{N P}$.

Find the distance between each pair of parallel lines.
18. $\begin{aligned} x & =3 \\ x & =-5\end{aligned}$ \square
19. $y=x+5$
$y=x-5$
\square

Checklist

Math rline

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 3.

ARE YOU READY FOR THE CHAPTER TEST?

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 3 Practice Test on page 195 of your textbook as a final check.

I used my Foldable or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 3 Study Guide and Review on pages 191-194 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 3 Practice Test on page 195.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 3 Foldable.
- Then complete the Chapter 3 Study Guide and Review on pages 191-194 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 3 Practice Test on page 195.

Congruent Triangles

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.

Begin with two sheets of grid paper and one sheet of construction paper.

STEP 1 Stack the grid paper on the construction paper. Fold diagonally to form a triangle and cut off the excess.

STEP 2 Staple the edge to form a booklet. Write the chapter title on the front and label each page with a

NOTE-TAKING TIP: Before each lesson, skim through the lesson and write any questions that come to mind in your notes. As you work through the lesson, record the answer to your question.

curven 4

BUILD YOUR VOCABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 4. As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

Vocabulary Term	Found on Page	Definition	Description or Example
acute triangle			
base angles			
congruence transformation [kuhn-GROO-uhns]			
congruent triangles			
coordinate proof			
corollary			
equiangular triangle			
equilateral triangle			
exterior angle			

Vocabulary Term	Found on Page	Definition	Description or Example
flow proof			
included angle			
included side			
isosceles triangle			
obtuse triangle			
remote interior angles			
scalene triangle			
rSKAY-leen]			

4-1 Classifying Triangles

EXAMPLE Classify Triangles by Angles

Main Ideas

- Identify and classify triangles by angles.
- Identify and classify triangles by sides.

Key Concepts

Classifying Triangles by Angles In an acute triangle, all of the angles are acute. In an obtuse triangle, one angle is obtuse. In a right triangle, one angle is right.

Classifying Triangles by Sides No two sides of a scalene triangle are congruent. At least two sides of an isosceles triangle are congruent. All of the sides of an equilateral triangle are congruent.

TEKS G. 7
The student understands that coordinate systems provide convenient and efficient ways of representing geometric figures and uses them accordingly. (A) Use oneand two-dimensional coordinate systems to represent points, lines, rays, line segments, and figures. (C) Derive and use formulas involving length, slope, and midpoint.

1 ARCHITECTURE The triangular truss below is modeled for steel construction. Classify $\triangle J M N, \triangle J K O$, and $\triangle O L N$ as acute, equiangular, obtuse, or right.
$\triangle J M N$ has one angle with measure greater than
 so it is an triangle.
$\triangle J K O$ has one angle with measure

$\triangle O L N$ is an \square triangle with all angles congruent, so it is an \square triangle.

Check Your Progress The frame of this window design is made up of many triangles. Classify $\triangle A B C, \triangle A C D$, and $\triangle A D E$ as acute, equiangular, obtuse, or right.

EXAMPLE Classify Triangles by Sides

2 Identify the indicated triangles in the figure if $\overline{U V} \cong \overline{V X} \cong \overline{U X}$.

a. isosceles triangles

Isosceles triangles have at least
are \square

FOLDABLES

Organize It

On the page for Lesson 4-1, draw the 6 different types of triangles and describe each one.

Explain why an equilateral triangle is a equilateral triangle is a
special kind of isosceles triangle.
\qquad

\qquad

Write IT

b. scalene triangles

Scalene triangles have no \square sides.
The scalene triangles are

Check Your Progress

Identify

the indicated triangles in the figure.
a. isosceles triangles

b. scalene triangles

\square

EXAMPIE Find Missing Values

3 ALGEBRA Find d and the measure of each side of equilateral triangle $K L M$ if $K L=d+2, L M=12-d$, and $K M=4 d-13$.

Since $\triangle K L M$ is equilateral, each side has the same length.

Substitution
Subtract d from each side.

Divide each side by 3.

Next, substitute to find the length of each side.
$K L=d+2$
$=\square+2$
$=\square$
$L M=12-d$
$=2-$

$K M=4 d-13$
$=4(\square)-13$
$=\square$
$=\square$

For $\triangle K L M, d=\square$ and the measure of each side is \square

4-1

Check Your Progress Find x and the measure of each side of equilateral triangle $A B C$ if $A B=6 x-8, B C=7+x$, and $A C=13-x$.

EXAMPLE Use the Distance Formula

4 COORDINATE GEOMETRY Find the measures of the sides of $\triangle R S T$. Classify the triangle by sides.

Use the Distance Formula to find the length of each side.

Review IT
 Write the Distance

 Formula. (Lesson 1-3)\qquad
\qquad
\qquad

Homework Assignment

Page(s):

Exercises:

Check Your Progress
Find the measures of the sides of $\triangle A B C$. Classify the triangle by its sides.

4-2 Angles of Triangles

1
 TEKS G. 3 The student applies logical reasoning to justify and prove mathematical statements. (B) Construct and justify statements about geometric figures and their properties.

Theorem 4.1 Angle Sum Theorem

Main Ideas

Apply the Angle Sum Theorem.

Apply the Exterior Angle Theorem.

EXAMPLE Interior Angles

(1) Find the missing angle measures.

Find $m \angle 1$ first because the measure of two angles of the triangle are known.

$\angle 1$ and $\angle 2$ are congruent \square angles.

Angle Sum Theorem
$m \angle 3+142=180 \quad$ Simplify. $m \angle 3=\square$ Subtract 142 from each side.

So, $m \angle 1=\square, m \angle 2=\square$, and $m \angle 3=\square$.

Check Your Progress Find the missing angle measures.

4-2

FOLDABLES

OrGanize It

On the page for Lesson 4-2, draw an acute triangle and identify an exterior angle and its two remote interior angles.

EXAMPLE Exterior Angles

Remember It

Two angles are supplementary if the sum of the angles is 180 .

2 Find the measure of each numbered angle in the figure.

Exterior Angle Theorem
Simplify.

Linear pairs are supplementary.

Substitution

Subtract 70 from each side.

Exterior Angle Theorem

Substitution

Subtract 64 from each side.

So, $m \angle 1=\square, m \angle 2=\square$, $m \angle 4=\square$, and $m \angle 5=\square$

Check Your Progress Find the measure of each numbered

 angle in the figure.

BUILD YoUR Vocabulary (page 86)

A \square that can be easily proved using a \square is often called a corollary.

Corollary 4.1

The acute angles of a right triangle are complementary.

Corollary 4.1

There can be at most one right or obtuse angle in a triangle.

EXAMPLE
 Right Angles

3 GARDENING The flower bed shown is in the shape of a right triangle. Find $m \angle A$ if $m \angle C$ is 20 .

each side.

Check Your Progress The piece of quilt fabric is in the shape of a right triangle. Find $m \angle A$ if $m \angle C$ is 62 .

Homework
 ASSIGNMENT

4-3 Congruent Triangles

BUILD YOUR VOCABULARY (page 86)

Main Ideas

Name and label corresponding parts of congruent triangles.

- Identify congruence transformations.

KEy Concept

Definition of Congruent Triangles (CPCTC) Two triangles are congruent if and only if their corresponding parts are congruent.

definition in your notes Be sure to include a diagram.

TEKS G. 10 The student applies the concept of congruence to justify properties of figures and solve problems. (A) Use congruence transformations to make conjectures and justify properties of geometric figures including figures represented on a coordinate plane. (B) Justify and apply triangle congruence relationships. Also addresses TEKS G.2(B), G.7(A) and G.7(C).

EXAMPIE Corresponding Congruent Parts

(1) ARCHITECTURE A drawing of a tower's roof is composed of congruent triangles all converging at a point at the top.

a. Name the corresponding congruent angles and sides of $\triangle H I J$ and $\triangle L I K$.

Since corresponding parts of congruent triangles are congruent, $\angle H J I \cong \angle L K I, \angle I L K \cong \angle I H J$,

and $\overline{J I} \cong \overline{K I}$.
b. Name the congruent triangles.

Name the triangles in the order of their corresponding congruent parts. So, $\triangle H I J \cong$ \square

4-3

Remember It

When naming congruent triangles, always list the name in the order of congruent parts.

Check Your Progress

The support beams on the fence form congruent triangles.

a. Name the corresponding congruent angles and sides of $\triangle A B C$ and $\triangle D E F$.
b. Name the congruent triangles.
\square

Theorem 4.4

Congruence of triangles is reflexive, symmetric, and transitive.

EXAMPLE Transformations in the Coordinate Plan

a. Verify that $\triangle R S T \cong \triangle R^{\prime} S^{\prime} T^{\prime}$.

Use the Distance Formula to find the length of each side of the triangles.

$$
=\sqrt{9+25} \text { or }
$$

$$
\begin{aligned}
S T & =\sqrt{(0-1)^{2}+(5-1)^{2}} \\
& =\sqrt{1+16} \text { or }
\end{aligned}
$$

$$
\begin{aligned}
S^{\prime} T^{\prime} & =\sqrt{(0-(-1))^{2}+(5-(-1))^{2}} \\
& =\sqrt{1+16} \text { or } \square
\end{aligned}
$$

Homework Assignment

Page(s):
Exercises:

$$
\begin{aligned}
T R & =\sqrt{(1-(-3))^{2}+(1-0)^{2}} \\
& =\sqrt{16+1} \text { or } \sqrt{17} \\
T^{\prime} R^{\prime} & =\sqrt{(-1-3)^{2}+(-1-0)^{2}} \\
& =\sqrt{16+1} \text { or } \sqrt{17}
\end{aligned}
$$

The lengths of the corresponding sides of two triangles are equal. Therefore, by the definition of congruence,

In conclusion, because $\overline{R S} \cong \overline{R^{\prime} S^{\prime}}, \overline{S T} \cong \overline{S^{\prime} T^{\prime}}, \overline{T R} \cong \overline{T^{\prime} R^{\prime}}$,

$\triangle R S T \cong$ \square
b. Name the congruence transformation for $\triangle R S T$ and $\Delta \boldsymbol{R}^{\prime} \mathbf{S}^{\prime} \boldsymbol{T}^{\prime}$.

Check Your Progress
The vertices of $\triangle A B C$ are $A(-5,5), B(0,3)$, and $C(-4,1)$. The vertices of $\triangle A^{\prime} B^{\prime} C^{\prime}$ are $A^{\prime}(5,-5), B^{\prime}(0,-3)$, and $C^{\prime}(4,-1)$.
a. Verify that $\triangle A B C \cong \triangle A^{\prime} B^{\prime} C^{\prime}$.

b. Name the congruence transformation for $\triangle A B C$ and $\triangle A^{\prime} B^{\prime} C^{\prime}$.

4-4 Proving Congruence - SSS, SAS

MAIN IDEAS

- Use the SSS Postulate to test for triangle congruence.
- Use the SAS Postulate to test for triangle congruence.

TEKS G. 10 The student applies the concept of congruence to justify properties of figures and solve problems. (A) Use congruence transformations to make conjectures and justify properties of geometric figures including figures represented on a coordinate plane. (B) Justify and apply triangle congruence relationships. Also addresses TEKS G.2(A), G.7(A), and G.7(C).

Postulate 4.1 Side-Side-Side Congruence (SSS)
If the sides of one triangle are congruent to the sides of a second triangle, then the triangles are congruent.

EXAMPLE Use SSS in Proofs

(1) ENTOMOLOGY The wings of one type of moth form two triangles. Write a two-column proof to prove that $\triangle F E G \cong \triangle H I G$ if $\overline{E I} \cong \overline{F H}, \overline{F E} \cong \overline{H I}$, and G is the midpoint of both $\overline{\boldsymbol{E I}}$ and $\overline{\boldsymbol{F H}}$.

Given: $\overline{E I} \cong \overline{F H} ; \overline{F E} \cong \overline{H I} ;$ G is the midpoint of both $\overline{E I}$ and $\overline{F H}$.

Prove: $\triangle F E G \cong \triangle H I G$
Proof:

Check Your Progress Write a two-column proof to prove that $\triangle A B C \cong \triangle G B C$ if $\overline{G B} \cong \overline{A B}$ and $\overline{A C} \cong \overline{G C}$.

Proof:

Statements	Reasons
1. \square	1. \square
2. \square	2. \square
3. \square	3. \square

EXAMPIE SSS on the Coordinate Plane

2 COORDINATE GEOMETRY Determine whether

 $\triangle W D V \cong \triangle M L P$ for $D(-5,-1), V(-1,-2), W(-7,-4)$, $L(1,-5), P(2,-1)$, and $M(4,-7)$. Explain.Use the Distance Formula to show that the corresponding sides are congruent.

$$
\begin{aligned}
W D & =\sqrt{(-7-(-5))^{2}+(-4-(-1))^{2}} \\
& =\square \text { or } \sqrt{13} \\
M L & =\sqrt{(4-1)^{2}+(-7-(-5))^{2}} \\
& =\square \text { or } \sqrt{13}
\end{aligned}
$$

$D V=$
$=\sqrt{16+1}$ or $\sqrt{17}$
$L P=\sqrt{(1-2)^{2}+(-5-(-1))^{2}}$
$=\square$ or $\sqrt{17}$

$$
\begin{aligned}
V W & =\sqrt{(-1-(-7))^{2}+(-2-(-4))^{2}} \\
& =\sqrt{36+4} \text { or } \square
\end{aligned}
$$

$P M=\sqrt{(2-4)^{2}+(-1-(-7))^{2}}$
 or

\square
By definition of congruent segments, all corresponding segments are congruent. Therefore, $\triangle W D V \cong$ \square
by \square

4-4

Check Your Progress

Determine whether $\triangle A B C \cong \triangle D E F$ for $A(-5,5)$, $B(0,3), C(-4,1), D(6,-3)$, $E(1,-1)$, and $F(5,1)$. Explain.

BUILD YoUR Vocabulary (page 87)

In a triangle, the \square formed by \square the included angle for those two sides.

Postulate 4.2 Side-Angle-Side Congruence (SAS)

 If two sides and the included angle of one triangle are congruent to two sides and the included angle of another triangle, then the triangles are congruent.
EXAMPLE Use SAS in Proofs

(3) Write a flow proof.

Given: $\overline{R Q} \| \overline{T S}$

$$
\overline{R Q} \cong \overline{T S}
$$

Prove: $\quad \triangle Q R T \cong \triangle S T R$
Proof:

Check Your Progress
Write a
flow proof.
Given: C is the midpoint of $\overline{D B}$; $\angle A C B \cong \angle A C D$.

Prove: $\triangle A B C \cong \triangle A D C$

Proof:

EXAMPIE Identify Congruent Triangles

FOLDABLES

OrGANIZE IT

On the page for Lesson 4-4, copy two sample flow proofs to show how to use SSS and SAS to prove triangles congruent.

Homework
Assignment
Page(s):
Exercises:

4 Determine which postulate can be used to prove that the triangles are congruent. If it is not possible to prove that they are congruent, write not possible.
a.

Two sides of each triangle are

are congruent. Therefore, the triangles are congruent by

b.

Check Your Progress Determine which postulate can

 be used to prove that the triangles are congruent. If it is not possible to prove that they are congruent, write not possible.a.

\square
b.

\square

4-5 Proving Congruence - ASA, AAS

TEKS G. 10 The student applies the concept of congruence to justify properties of figures and solve problems. (B) Justify and apply triangle congruence relationships.

Postulate 4.3 Angle-Side-Angle Congruence (ASA)

Main Ideas

- Use the ASA Postulate to test for triangle congruence.
- Use the AAS Theorem to test for triangle congruence.

If two angles and the included side of one triangle are congruent to two angles and the included side of another triangle, the triangles are congruent.

BUILD YOUR VOCABULARY (page 87)

The side of a triangle that is contained in each of two angles is called the included side for the two angles.

EXAMPIE Use ASA in Proofs

(1) Write a paragraph proof.

Given: L is the midppoint of
$\overline{W E} ; \overline{W R} \| \overline{E D}$.

Prove: $\triangle W R L \cong \triangle E D L$
Proof:

Check Your Progress

Write
a paragraph proof.
Given: $\overline{D E} \| \overline{C B} ; A$ is the midpoint of $\overline{E C}$.
Prove: $\triangle D E A \cong \triangle C B A$

Proof:

Theorem 4.5 Angle-Angle-Side Congruence (AAS) If two angles and a nonincluded side of one triangle are congruent to the corresponding two angles and side of a second triangle, then the two triangles are congruent.

Remember It

When triangles overlap, it may be helpful to draw each triangle separately.

EXAMPIE Use AAS in Proofs

2 Write a flow proof.

Given: $\frac{\angle N K L}{\overline{K L} \cong \angle N J M}$
Prove: $\overline{L N} \cong \overline{M N}$

Proof:

Check Your Progress

Write a flow proof.
Given: $\angle A D B \cong \angle A C E$ $\overline{E C} \cong \overline{B D}$

Prove: $\angle A E C \cong \angle A B D$
Proof:

EXAMPIE Determine if Triangles are Congruent

FOLDABLES

Organize It

On the page for Lesson 4-5, draw a picture to show how ASA is different from AAS.

Homework Assignment

Page(s):

Exercises:

STANCES When Ms. Gomez puts her hands on her hips, she forms two triangles with her upper body and arms. Suppose her arm lengths $A B$ and $D E$ measure 9 inches, and $A C$ and $E F$ measure 11 inches. Also suppose that you are given that $\overline{\boldsymbol{B C}} \cong \overline{\mathbf{D F}}$. Determine whether $\triangle A B C \cong \triangle E D F$.
 Justify your answer.

Since

$=D E=$ \square $\overline{A B} \cong$ \square Likewise, $A C=E F=\square, \overline{A C} \cong \square$. We are given $\overline{B C} \cong \overline{D F}$.
Check each possibility using the five methods you know.
We are given information about \square. Since all three pairs of corresponding sides of the triangles are
congruent, $\triangle A B C \cong \triangle E D F$ by \square

Check Your Progress
 The

 curtain decorating the window forms 2 triangles at the top. B is the midpoint of $\overline{A C} . A E=13$ inches and $C D=13$ inches. $B E$ and $B D$ each use the same amount of material, 17 inches. Determine whether $\triangle A B E \cong \triangle C B D$. Justify your answer.

4-6 Isosceles Triangles

TEKS G. 9 The student analyzes properties and describes relationships in geometric polygons and their component parts based on explorations and concrete models.

BUILD YOUR VOGABULARY (pages 86-87)

BUILD YOUR YOGABULARY (pages 86-87)
In an \square triangle, the angle formed by the
congruent sides is called the vertex angle.
The two angles formed by the base and one of the
\square sides are called base angles.

Theorem 4.9 Isosceles Triangle Theorem

If two sides of a triangle are congruent, then the angles opposite those sides are congruent.

EXAMPLE Find the Measure of a Missing Angle

WRITE IT

State the four ways to prove triangles are congruent.
\qquad
\qquad
(1) TEST EXAMPLE If $\overline{\boldsymbol{D E}} \cong \overline{C D}, \overline{\boldsymbol{B C}} \cong \overline{\boldsymbol{A C}}$, and $m \angle C D E=120$, what is the measure of $\angle B A C$?
A 45.5
C 68.5
B 57.5
D 75

Read the Test Item

$\triangle C D E$ is isosceles with base $\overline{C E}$. Likewise, $\triangle C B A$ is isosceles with base $\overline{B A}$. The base angles of $\triangle C D E$ are congruent.

Solve the Test Item

Let $x=m \angle D E C=m \angle D C E$.
$m \angle D E C+m \angle D C E+m \angle C D E=180$

$+\square$ \square $=180$
\square

Angle Sum
Theorem
Substitution
Add.

So, $m \angle D E C=m \angle D C E=\square$.
$\angle D C E$ and $\angle B C A$ are vertical angles, so they have equal measures.
$m \angle D C E=m \angle B C A$ $=m \angle B C A$
Definition of vertical angles Substitution

The base angles of $\triangle C B A$ are congruent.
Let $y=m \angle C B A=m \angle B A C$.

$$
\left.\begin{array}{rlrl}
m \angle C B A+m \angle B A C+m \angle B C A & =180 & \begin{array}{l}
\text { Angle Sum } \\
\text { Theorem }
\end{array} \\
y+y+30 & =180 & \text { Substitution }
\end{array}\right\} \begin{aligned}
& \text { Add. } \\
& 2 y=\square \\
& y=\square \\
& \begin{array}{l}
\text { Subtract } 30 \text { from } \\
\text { each side. }
\end{array} \\
& \begin{array}{l}
\text { Divide each side } \\
\text { by } 2 .
\end{array}
\end{aligned}
$$

The measure of $\angle B A C$ is \square The answer is D.

Check Your Progress

If $\overline{A B} \cong \overline{B C}, \overline{A C} \cong \overline{C D}$, and $m \angle A B C=80$, what is the measure of $\angle A D C$?

Theorem 4.10

If two angles of a triangle are congruent, then the sides opposite those angles are congruent.
Corollary 4.3
A triangle is equilateral if and only if it is equiangular.
Corollary 4.4
Each angle of an equilateral triangle measures 60°.

EXAMPIE Use Properties of Equilateral Triangles

FOLDABLES

Organize It

On the page for
Lesson 4-6, list the properties and theorems you learned about each type of triangle.

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.
2. $\triangle E F G$ is equilateral, and $\overline{E H}$ bisects $\angle E . \overline{E J}$ bisects $\angle H E G$.
a. Find $m \angle H E J$ and $m \angle E J H$.

Each angle of an equilateral triangle
 was \square , $m \angle F E H=m \angle H E G=$ \square $E J$ bisects \square, so $m \angle H E J=m \angle J E G=\square$.

$$
\begin{aligned}
m \angle E J H & =m \angle G E J+m \angle E G J & & \text { Exterior Angle Theorem } \\
& =\square+\square & & \text { Substitution } \\
& =\square & & \text { Add. }
\end{aligned}
$$

So, $m \angle H E J=\square, m \angle E J H=\square$.
b. Find $m \angle E J G$.
$\angle E J H$ and $\angle E J G$ form a \square

Def. of linear pairs

Check Your Progress
$\triangle A B C$ is an equilateral triangle. $\overline{A D}$ bisects $\angle B A C$.
a. Find x.

b. Find $m \angle A D B$.

4-7 Triangles and Coordinate Proof

Main Ideas

Position and label triangles for use in coordinate proofs.

- Write coordinate proofs.

Key Concept

Placing Figures on the Coordinate Plane

1. Use the origin as a vertex or center of the figure.
2. Place at least one side of a polygon on an axis.
3. Keep the figure within the first quadrant if possible.
4. Use coordinates that make computations as simple as possible.

TEKS G. 1

The student understands the structure of, and relationships within, an axiomatic system. (A) Develop an awareness of the structure of a mathematical system, connecting definitions, postulates, logical reasoning, and theorems. G. 3 The student applies logical reasoning to justify and prove mathematical statements. (B) Construct and justify statements about geometric figures and their properties. Also addresses TEKS G.7(A) and G.7(C).

BUILD YOUR VOGABULARY (page 86)

Coordinate proof uses figures in the

geometric concepts.

EXAMPLE Position and Label a Triangle

1) Position and label right triangle $X Y Z$ with leg $\overline{X Z}$ d units long on the coordinate plane.

Use the \square as vertex X of the triangle. Place the base of the triangle along the positive

\square
Position the triangle in the \square quadrant.

Since Z is on the x-axis, its y-coordinate is \square Its x-coordinate is \square because the base is d units long.
Since triangle $X Y Z$ is a right triangle the x-coordinate of Y is \square. We cannot determine the y-coordinate so call it \square.

Check Your Progress

Position and label equilateral triangle $A B C$ with side $\overline{B C} w$ units long on the coordinate plane.

EXAMPLE Find the Missing Coordinates

(2) Name the missing coordinates of isosceles right triangle $Q R S$.
Q is on the origin, so its coordinates are \square. The x-coordinate of

S is \square
The y-coordinate for S is the distance from R to S. Since $\triangle Q R S$ is an isosceles right triangle, \square

The distance from Q to R is \square units. The distance from R to S must be the same. So, the coordinates of S are \square

Check Your Progress Name the missing coordinates of isosceles right $\triangle A B C$.

EXAMPLE Coordinate Proof

3 Write a coordinate proof to prove that the segment that joins the vertex angle of an isosceles triangle to the midpoint of its base is perpendicular to the base.

Given: $\triangle X Y Z$ is isosceles.

$$
\overline{X W} \cong \overline{W Z}
$$

Prove: $\overline{Y W} \perp \overline{X Z}$
Proof:

By the \square Formula, the coordinates of W, the
midpoint of $\overline{X Z}$, are $\left(\frac{0+2 a}{2}, \frac{0+0}{2}\right)$ or \square
The slope of $\overline{Y W}$ is $\left(\frac{0-b}{a-a}\right)$ or \square
The slope of $\overline{X Z}$ is $\left(\frac{0-0}{0-2 a}\right)$ or \square, therefore, \square

Check Your Progress Write a coordinate proof to prove that the segment drawn from the right angle to the midpoint of the hypotenuse of an isosceles right triangle is perpendicular to the hypotenuse.

Proof:

EXAMPLE Classify Triangles

FOLDABLES

Organize It

Suppose a triangle is in the coordinate plane. Explain how you can classify the triangle by its sides if you know the coordinates of all three vertices. Include the explanation on the page for Lesson 4-7.

Homework
 Assignment

Page(s):

Exercises:
DRAFTING Write a coordinate proof to prove that the outside of this drafter's tool is shaped like a right triangle. The length of one side is 10 inches and the length of another side is 5.75 inches.

Proof:

The slope of $\overline{E D}$ is $\left(\frac{10-0}{0-0}\right)$ or \square The slope of $\overline{D F}$ is $\left(\frac{0-0}{0-5.75}\right)$ or \square therefore \square $\triangle D E F$ is a
\square triangle. The drafter's tool is shaped like a right triangle.

Check Your Progress
Write
a coordinate proof to prove this flag is shaped like an isosceles triangle. The length is 16 inches and the height is 10 inches.

Proof:

 BRINGING IT ALL TOGETHER

STUDY GUIDE

| FOLDABLES |
| :--- | :--- | :--- |\quad| VOCABULARY |
| :--- |
| PUZZLEMAKER |\quad BUILD YOUR

4-1
 Classifying Triangles

Find x and the measure of each side of the triangle.

1. $\triangle A B C$ is equilateral with $A B=3 x-15, B C=2 x-4$, and $C A=x+7$.
\square
2. $\triangle D E F$ is isosceles, $\angle D$ is the vertex angle, $D E=x+5$, $D F=5 x-7$ and $E F=2 x-1$.
\square
3. Find the measures of the sides of $\triangle R S T$ and classify the triangle by its sides. Triangle $R S T$ has vertices $R(2,-2), S(0,1)$, and $T(2,4)$.
\square
4-2
Angles of Triangles
Find the measure of each angle.
4. $m \angle 1$ \square
5. $m \angle 3$ \square

Chapter 4 BRINGING IT ALL TOGETHER

Find the measure of each angle without using a protractor.
6. $\angle D B C$ \square
8. $\angle A C F$ \square
7. $\angle A B C$ \square
9.

4-3
Congruent Triangles
Complete each congruence statement if $\triangle T S R \cong \triangle W V U$.
10. $\angle R \cong$ \square
11. \square $\cong W$
12. $\angle S \cong$
\square
13. $\overline{R T} \cong$ \square
14.
\square $\cong \overline{V U} 15$. \square $\cong \overline{W V}$

4-4

Proving Congruence - SSS, SAS
16. In quadrilateral $R S T U, \overline{R S} \cong \overline{T S}$ and $\overline{S U}$ bisects $\angle R S T$. Name the postulate that could be used to prove $\triangle R S U \cong \triangle T S U$.

17. In quadrilateral $P Q R S, \overline{Q R} \| \overline{S P}$ and $\overline{P Q} \| \overline{R S}$.

Name the postulate that could be used to prove $\triangle P Q R \cong \triangle R S P$.

\square

4-5

Proving Congruence - ASA, AAS
Determine whether you have enough information to prove that the two triangles in each figure are congruent. If so, write a congruence statement and name the congruence postulate or theorem that you would use. If not, write not possible.
18.

19. T is the midpoint of $\overline{R U}$.

4-6
Isosceles Triangle

Refer to the figure.

20. What kind of triangle is $\triangle Q R S$?

21. Name the legs of $\triangle Q R S$.

\square
22. Name the base of $\triangle Q R S$.

23. Name the vertex angle of $\triangle Q R S$.

24. Name the base angles of $\triangle Q R S$.

$\triangle A B F$ is equilateral, and $\overline{A E} \perp \overline{C F}$.
Find each measure.
25. $m \angle C F D$

26. $m \angle A B F$ \square
27. $m \angle B F C$
28. $m \angle A$

4-7
Triangles and Coordinate Proof
Find the missing coordinates of each triangle.
29.

30.

Checklist

Math nline

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 4.

ARE YOU READY FOR THE CHAPTER TEST?

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 4 Practice Test on page 261 of your textbook as a final check.

I used my Foldable or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 4 Study Guide and Review on pages 256-260 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 4 Practice Test on page 261 of your textbook.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 4 Foldable.
- Then complete the Chapter 4 Study Guide and Review on pages 256-260 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 4 Practice Test on page 261 of your textbook.

5

Relationships in Triangles

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.

Begin with one sheet of notebook paper.

STEP 1 Fold lengthwise to the holes.

STEP 2 Cut five tabs.

STEP 3 Label the edge.
Then label the tabs using lesson numbers.

NOTE-TAKING TIP: When you take notes, write concise definitions in your own words. Add examples that illustrate the concepts.

ave 5

BUILD YOUR VOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 5.
As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

Vocabulary Term	Found on Page	Definition	Description or Example
altitude			
centroid			
circumcenter [SUHR-kuhm-SEN-tuhr]			
concurrent lines			
incenter			
indirect proof			

Vocabulary Term	Found on Page	Definition	Description or Example
indirect reasoning			
median			
orthocenter			
[OHR-thoh-CEN-tuhr]			
perpendicular bisector			

5-1 Bisectors, Medians, and Altitudes

Main Ideas

- Identify and use perpendicular bisectors and angle bisectors in triangles.
- Identify and use medians and altitudes in triangles.

TEKS G. 7

The student understands that coordinate systems provide convenient and efficient ways of representing geometric figures and uses them accordingly. (B) Use slopes and equations of lines to investigate geometric relationships, including parallel lines, perpendicular lines, and special segments of triangles and other polygons. TEKS G. 9 The student analyzes properties and describes relationships in geometric figures.
(B) Formulate and test conjectures about the properties and attributes of polygons and their component parts based on explorations and concrete models.

WRITE IT

State the Angle Sum
Theorem. (Lesson 4-2)
\qquad
\qquad
\qquad
\square
3.

4. $m \angle E D F=180-110=70$
5. $m \angle G D E=35$
6. $m \angle G D E+m \angle E+$ $m \angle D G E=180$
7. $35+30+m \angle D G E=180$
8.

3. Substitution
4. Subtraction Property
5. Definition of angle bisector
6. Angle Sum Theorem
7. Substitution
8. Subtraction Property
8. Subtraction Property

Check Your Progress

Given: $m \angle B=66$ and $m \angle C=50$ $\overline{A D}$ bisects $\angle B A C$.
Prove: $m \angle A D C=98$

Proof:

Statements

1. $m \angle B=66, m \angle C=50$,
$m \angle B=66, m \angle C=50$
and $\overline{A D}$ bisects $\angle B A C$.
2.

3.

4.

5.

6.

7.

8.

5.

3.

4.

Reasons

1. Given
2.

.

6.

7.

8.
. \square

BUILD YOUR VOGABULARY (pages 116-117)

The angle bisectors of a triangle are concurrent, and their point of concurrency is called the incenter of a triangle.

A median is a segment whose endpoints are a vertex of a triangle and the \square of the side opposite the
\square The point of concurrency for the medians
of a triangle is called a centroid.

Theorem 5.4

Any point on the angle bisector is equidistant from the sides of the angle.
Theorem 5.5
Any point equidistant from the sides of an angle lies on the angle bisector.

Theorem 5.6 Incenter Theorem
The incenter of a triangle is equidistant from each side of the triangle.
Theorem 5.7 Centroid Theorem
The centroid of a triangle is located two-thirds of the distance from a vertex to the midpoint of the side opposite the vertex on a median.

EXAMPIE Segment Measures

FOLDABLES

Organize It

Under the tab for Lesson 5-1, draw separate pictures that show the centroid, circumcenter, incenter, and orthocenter. Write a description for each.

2
algebra Points U, V, and W are midpoints of $\overline{Y Z}, \overline{Z X}$, and $\overline{X Y}$, respectively. Find a, b, and c.

Find a.

Find b.

Find c.

$W Z$	$=\square+\square$		Segment Addition Postulate
15.2	$=\frac{2}{3} W Z$		Centroid Theorem
15.2	$=\frac{2}{3}(5 c+15.2)$		Substitution
\square	c		Simplify and solve for c.

Check Your Progress
Points T, H, and G are the midpoints of $\overline{N M}, \overline{M K}$, and $\overline{N K}$, respectively. Find w, x, and y.

Homework Assignment

Page(s):
Exercises:

BUILD YOUR YOGABULARY (pages 116-117)

An altitude of a triangle is a segment from a

to the line containing the opposite side
and \square to the line containing that side.

The intersection point of the \square of a triangle is called the orthocenter.

5-2 Inequalities and Triangles

TEKS G. 9 The student analyzes properties and describes relationships in geometric figures. (B) Formulate and test conjectures about the properties and attributes of polygons and their component parts based on explorations and concrete models.

EXAMPIE Compare Angle Measures

Main Ideas

Recognize and apply properties of inequalities to the measures of angles of a triangle.

- Recognize and apply properties of inequalities to the relationships between angles and sides of a triangle.
(1) Determine which angle has the greatest measure.

Compare $m \angle 3$ to $m \angle 1$.

Exterior Angle Theorem

 Definition of InequalityCompare $m \angle 4$ to $m \angle 1$.

$$
m \angle 4=m \angle 5
$$

Definition of $\cong \angle s$

$$
m \angle 1>m \angle 5
$$

Theorem 5.8 Exterior Angle Inequality Theorem If an angle is an exterior angle of a triangle, then its measure is greater than the measure of either of its corresponding remote interior angles.

EXAMPIE Exterior Angles

2 Use the Exterior Angle Inequality Theorem to list all of the angles that satisfy the stated condition.

a. measures less than $m \angle 14$

By the Exterior Angle Inequality Theorem, $m \angle 14>m \angle 4$, $m \angle 14>m \angle 11, m \angle 14>m \angle 2$, and $m \angle 14>$

Since $\angle 11$ and $\angle 9$ are \square angles, they have equal measures, so $m \angle 14>m \angle 9 .>m \angle 9>m \angle 6$ and $m \angle 9>m \angle 7$, so $m \angle 14>m \angle 6$ and $m \angle 14>m \angle 7$.
Thus, the measures of
are all less than $m \angle 14$.
b. measures greater than $m \angle 5$

By the Exterior Angle Inequality Theorem, $m \angle 5<m \angle 10$, $m \angle 5<m \angle 16, m \angle 5<m \angle 12, m \angle 5<m \angle 15$, and $m \angle 5<m \angle 17$.

Thus, the measures of
are each greater than $m \angle 5$.

Check Your Progress Use the Exterior Angle Inequality Theorem to list all angles whose measures are greater than $m \angle 8$.

Theorem 5.9

If one side of a triangle is longer than another side, then the angle opposite the longer side has a greater measure than the angle opposite the shorter side.

EXAMPLE Side-Angle Relationships

3 Determine the relationship between the measures of the given angles.

Remember It

The longer and shorter sides must be opposite the larger and smaller angles respectively, not adjacent to them.

Homework
 Assignment

Page(s):
Exercises:

5-3 Indirect Proof

TEKS G. 1 The student understands the structure of, and relationships within, an axiomatic system. (A) Develop an awareness of the structure of a mathematical system, connecting definitions, postulates, logical reasoning, and theorems.

Main Ideas

- Use indirect proof with algebra.
- Use indirect proof with geometry.

BUILD YoUR VocabUlary (pages 116-117)

When using indirect reasoning, you assume that the
 is false and then show that this assumption leads to a contradiction of the \square, or some other accepted fact, such as a definition, postulate, theorem, or corollary. A proof of this type is called an indirect proof or proof by contradiction.

EXAMPLE Stating Conclusions

KEy Concept

Steps for Indirect Proof:
(1) Assume that the conclusion is false.
(2) Show that this assumption leads to a contradiction of the hypothesis or of some other fact.
(3) Point out that the original conclusion must be true, since this is the only way to avoid the contradiction.

State the assumption you would make to start an indirect proof of each statement.
a. $\overline{\boldsymbol{E F}}$ is not a perpendicular bisector.

b. $3 x=4 y+1$
\square
c. If B is the midpoint of $\overline{L H}$ and $\overline{L H}=26$, then $\overline{B H}$ is congruent to $\overline{L B}$.

Check Your Progress
State the assumption you would make to start an indirect proof of each statement.
a. $\overline{A B}$ is not an altitude.
b. $a=\frac{1}{2} b-4$
\square
\square

EXAMPIE Algebraic Proof

(2) Write an indirect proof.

Given: $\frac{1}{2 y+4}=20$
Prove: $y \neq-2$

5-3

FOLDABLES

OrGanize It

Under the tab for Lesson 5-3, list the steps for writing an indirect proof. Then, give an example of an indirect proof.

$\stackrel{O}{¢}$	
$\stackrel{\text { ¢ }}{5}$	5-2
\bigcirc	5-3
-	5-4
\bigcirc	5-5

Indirect Proof:

STEP 1 Assume that \square
STEP 2 Substitute -2 for y in the equation $\frac{1}{2 y+4}=20$.

$\frac{1}{2 y+4}$	$=20$		
\square	$=20$		Substitution
$\frac{1}{-4+4}$	$=20$		Multiply.
$\frac{1}{0}$	$=20$		Add.

This is a contradiction because the

STEP 3 The assumption leads to a contradiction. Therefore, the assumption that $y=-2$ must be \square
which means that $y \neq-2$ must be \square

Check Your Progress
Write an indirect proof.
Given: $\frac{1}{2 a+6} \leq 12$
Prove: $a \neq-3$
Indirect Proof:

STEP 2

STEP 3

EXAMPLE Geometry Proof

(3) Write an indirect proof.

Given: $\triangle J K L$ with side lengths 5,7 , and 8 as shown.
Prove: $m \angle K<m \angle L$

Indirect Proof:
STEP 1 Assume that \square
STEP 2 By angle-side relationships, $J L \geq J K$.
By substitution, \square
This inequality is a false statement.
STEP 3 This contradicts the given side lengths, so the assumption must be false. Therefore,

Check Your Progress Write an indirect proof.
Given: $\triangle A B C$ with side lengths 8 , 10 , and 12 as shown.
Prove: $m \angle C>m \angle A$
Indirect Proof:

STEP 1

STEP 2

STEP 3

5-4 The Triangle Inequality

Main Ideas

Apply the Triangle Inequality Theorem.

- Determine the shortest distance between a point and a line.

TEKS G. 7

The student understands that coordinate systems provide convenient and efficient ways of representing geometric figures and uses them accordingly. (A) Use oneand two-dimensional coordinate systems to represent points, lines, rays, line segments, and figures. G. 9 The student analyzes properties and describes relationships in geometric figures.
(B) Formulate and test conjectures about the properties and attributes of polygons and their component parts based on explorations and concrete models. Also addresses TEKS G.1(B).

Theorem 5.11 Triangle Inequality Theorem

The sum of the lengths of any two sides of a triangle is greater than the length of the third side.

EXAMPIE Identify Sides of a Triangle

(1) Determine whether the given measures can be lengths of the sides of a triangle.
a. $6 \frac{1}{2}, 6 \frac{1}{2}$, and $14 \frac{1}{2}$

Because the \square of two measures is not greater
than the length of the \square side, the sides cannot form a triangle.
$6 \frac{1}{2}+6 \frac{1}{2}>14 \frac{1}{2}$

b. 6.8, 7.2, and 5.1

Check each inequality.

All of the inequalities are \square, so $6.8,7.2$, and 5.1 can be the lengths of the sides of a triangle.

Check Your Progress Determine whether the given measures can be lengths of the sides of a triangle.
a. $6,9,16$

b. $14,16,27$
\square

EXAMPIE Determine Possible Side Length

2 TEST EXAMPLE In $\triangle P Q R, P Q=7.2$ and $Q R=5.2$. Which measure cannot be $P R$?
A 7
B 9
C 11
D 13

Read the Test Item

Let $P R=n$. Solve each inequality to determine the range of values for $P R$.

Solve the Test Item

$$
P Q+Q R>P R
$$

Homework
 Assignment

Page(s):
Exercises:

OrGANIZE IT

Under the tab for Lesson 5-4, write the Triangle Inequality Theorem in your own words. Draw and label a triangle to show why the theorem makes sense.

\bigcirc	5-1
$\stackrel{\square}{\circ}$	5-2
0	5-3
-	5-4
0	5-5

FOLDABLES

Tr

The range of values that fits all three inequalities is
\square

Check Your Progress In $\triangle X Y Z, X Y=6$ and $Y Z=9$. Find the range of possible values for $X Z$.

Theorem 5.12

The perpendicular segment from a point to a line is the shortest segment from the point to the line.

Corollary 5.1

The perpendicular segment from a point to a plane is the shortest segment from the point to the plane.

5-5 Inequalities Involving Two Triangles

TEKS G. 9 The student analyzes properties and describes relationships in geometric figures. (B) Formulate and test conjectures about the properties and attributes of polygons and their component parts based on explorations and concrete models.

Main Ideas

- Apply the SAS Inequality.
- Apply the SSS Inequality.

Theorem 5.13 SAS Inequality/Hinge Theorem

 If two sides of a triangle are congruent to two sides of another triangle and the included angle in one triangle has a greater measure than the included angle in the other, then the third side of the first triangle is longer than the third side of the second triangle.EXAMPLE Use SAS Inequality in a Proof

1 Write a two-column proof.
Given: $\overline{K L} \| \overline{J H}, J K=H L$

$m \angle J K H+m \angle H K L<m \angle J H K+m \angle K H L$
Prove: $J H<K L$
Proof:
Statements \mid Reasons

1. $m \angle J K H+m \angle H K L<$
2. Given $m \angle J H K+m \angle K H L$
3. $m \angle H K L=m \angle J H K$
4. $m \angle J K H+m \angle J H K<$ $m \angle J H K+m \angle K H L$
5. $m \angle J K H<m \angle K H L$
6.

6. $H K=H K$
7.

6. Reflexive Property
7.
4. Subtraction Property
5. Given
3. Substitution

Theorem 5.14 SSS Inequality

If two sides of a triangle are congruent to two sides of another triangle and the third side in one triangle is longer than the third side in the other, then the angle between the pair of congruent sides in the first triangle is greater than the corresponding angle in the second triangle.

EXAMPIE Prove Triangle Relationships

2 Given: $S T=P Q$ $S R=Q R$ $S T=\frac{2}{3} S P$

Prove: $m \angle S R P>m \angle P R Q$
Proof:
Statements
Reasons

1. $S R=Q R$
2. Given
3. $P R=P R$
4. $S T=P Q$
5. $S T=\frac{2}{3} S P ; S P>S T$
6. $S P>P Q$
7.

Check Your Progress

Given: X is the midpoint of $\overline{M B}$.
$\triangle M C X$ is isosceles. $C B>C M$
Prove: $m \angle C X B>m \angle C M X$
3. Given
4. Given
5. Substitution
6.

Proof:
Statements

1. X is the midpoint of $\overline{M B}$.
2. \square

Reasons

1. Given
2.

3.

3.
4.

5.
6.

7. \square

4.

.
6. \square
7. \square
2. \square

5-5

FOLDABLES

Organize It

Under the tab for Lesson 5-5, draw two sets of two triangles each with two pairs of congruent sides. Measure and mark the sides and angles to illustrate the SAS Inequality Theorem and the SSS Inequality Theorem.

Homework
 Assignment

Page(s):
Exercises:

EXAMPLE Relationships Between Two Triangles

3 Write an inequality using the information in the figure.
a. Compare $m \angle L D M$ and $m \angle M D N$.

In $\triangle M D L$ and $\triangle M D N$, $\overline{L D} \cong \overline{N D}, \overline{M D} \cong \overline{M D}$, and $M L>M N$.

The
 allows us to conclude that

b. Find the range of values containing a.

By the SSS Inequality, $m \angle L D M>m \angle M D N$ or $m \angle M D N<m \angle L D M$.
 that

$$
\begin{aligned}
m \angle M D N & <m \angle L D M \\
9 a+15 & <141 \\
\square & <\square
\end{aligned}
$$

Substitution

Subtract 15 from each side and divide each side by 9 .

Also, recall that the measure of any angle is always greater than 0.

$$
\begin{array}{rlrl}
9 a+15 & >0 & & \\
9 a & >-15 & & \text { Subtract } 15 \text { from each side. } \\
\square & >\square & \text { or }-\frac{5}{3} & \\
\hline
\end{array}
$$

The two inequalities can be written as the compound inequality \square

Check Your Progress Write an

 inequality using the information in the figure.a. Compare $m \angle W Y X$ and $m \angle Z Y W$.

b. Find the range of values containing n.

\square

BRINGING IT ALL TOGETHER

STUDY GUIDE

| FOLDABLES |
| :--- | :--- | :--- |\quad| VOCABULARY |
| :--- |
| PUZZLEMAKER |\quad| BOCABU YOUR |
| :--- |

5-1

Bisectors, Medians, and Altitudes
Fill in the correct word or phrase to complete each sentence.

1. $\mathrm{A}(\mathrm{n})$ \square of a triangle is a segment drawn from a
vertex of the triangle perpendicular to the line containing the opposite side.
2. The point of concurrency of the three perpendicular bisectors of a triangle is called the \square
3. Any point in the interior of an angle that is equidistant from
the sides of that angle lies on the \square
4. The vertices of $\triangle P Q R$ are $P(0,0), Q(2,6)$, and $R(6,4)$. Find the coordinates of the orthocenter of $\triangle P Q R$.

5. If $\overline{X Z}$ is the perpendicular bisector of $\overline{W Y}$ and $\overline{W Y}$ is the perpendicular bisector of $\overline{X Z}$, find x and y.

5-2

Inequalities and Triangles

Determine which angle has the greatest measure.
6. $\angle 1, \angle 3, \angle 4$ \square
7. $\angle 5, \angle 6, \angle 8$ \square

Determine the relationship between the measures of the given angles.
8. $m \angle A B D, m \angle B D A$

9. $m \angle D B C, m \angle B C D$

5-3
Indirect Proof
Write the assumption you would make to start an indirect proof of each statement.
10. If $3 x-8=10$, then $x=6$. \square
11. If $m \angle 1=100$ and $m \angle 2=80$, then $\angle 1$ and $\angle 2$ are supplementary.

Write the assumption you would make to start an indirect proof.
12. Given: $5 x+4<14$

Prove: $x<2$

13. Given: $\triangle E F G$ is a right triangle. $\angle G$ is a right angle.

\square

5-4

The Triangle Inequality
Determine whether the given measures can be the lengths of a triangle. Write yes or no.
14. $5,6,7$

15. $6,8,10$

16. $10,10,21$

17. $12,12,12$

Refer to the figure. Determine whether each statement is true or false.
18. $D E>E F+F D$ \square
19. $E G=E F+F G$ \square
20. The shortest distance from D to $\overleftrightarrow{E G}$ is $D F$.

21. The shortest distance from D to $\overleftrightarrow{E G}$ is $D G$. \square

5-5

Inequalities Involving Two Triangles
Write an inequality relating the given pair of segment measures.

23.

$A D$ \square $C D$
22.
MR \square $R P$
$\square R P$

Checklist

Math nline

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 5.

ARE YOU READY FOR THE CHAPTER TEST?

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 5 Practice Test on page 313 of your textbook as a final check.

I used my Foldable or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 5 Study Guide and Review on pages 310-312 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 5 Practice Test on page 313.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 5 Foldable.
- Then complete the Chapter 5 Study Guide and Review on pages 310-312 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 5 Practice Test on page 313.

Teacher Signature

6

Quadrilaterals

OLDABLES

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.

 6

BUILD YOUR VOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 6. As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

Vocabulary Term	Found on Page	Definition	Description or Example
diagonal			
isosceles trapezoid			
kite			
median			
parallelogram			
rectangle			
rhombus			
square			
trapezoid			

6-1 Angles of Polygons

BUILD YOUR VOCABULARY (page 138)

Main Ideas

- Find the sum of the measures of the interior angles of a polygon.
- Find the sum of the measures of the exterior angles of a polygon.

The diagonals of a polygon are segments that connect any two nonconsecutive \square

Theorem 6.1 Interior Angle Sum Theorem

If a convex polygon has n sides and S is the sum of the measures of its interior angles, then $S=180(n-2)$.

EXAMPLE Interior Angles of Regular Polygons

(1) ARCHITECTURE A mall is designed so that five walkways meet at a food court that is in the shape of a regular

A pentagon is a convex polygon. Use the Angle Sum Theorem.
Interior Angle Sum Theorem
pentagon. Find the sum of measures of the interior angles of the pentagon.

$$
\begin{aligned}
S & =180(n-2) \\
& =180(\square-2) \\
& =180(\square) \text { or } \square
\end{aligned}
$$ polygons, circles, and three-dimensional figures and determine the validity of the conjectures, choosing from a variety of approaches such as coordinate, transformational, or axiomatic. G. 5 The student uses a variety of representations to describe geometric relationships and solve problems. (B) Use numeric and geometric patterns to make generalizations about geometric properties, including properties of polygons, ratios in similar figures and solids, and angle relationships in polygons and circles. Also addresses TEKS G.3(B), G.5(A), and G.9(B).

TEKS G. 2
The student analyzes geometric relationships in order to make and verify conjectures.
(B) Make conjectures about angles, lines,
\qquad

$\xrightarrow{2}$nalyzes res
.

\qquad
\qquad

\qquad

[^0] the measures of the interior angles
of the octagon.
The sum of the measures of the angles is

Check Your Progress

A decorative window is designed to have the shape of a regular octagon. Find the sum of

EXAMPIE Sides of a Polygon

2) The measure of an interior angle of a regular polygon is 135. Find the number of sides in the polygon.

Write IT

Can you use the method in Example 2 if the polygon is not regular? Explain why or why not.
\qquad
\qquad
\qquad
\qquad
\qquad

FOLDAbLES

OrGanize It

Sketch a quadrilateral with two pairs of parallel sides. Write the sum of the angle measures below the figure. Include the sketch under the parallelograms tab of your Foldable.

EXAMPLE Interior Angles

3 Find the measure of each interior angle.
Since $n=4$, the sum of the measures of the interior angles is $180(4-2)$ or 360 . Write an equation to express the sum of
 the measures of the interior angles of the polygon.

Use the value of x to find the measure of each angle.

REVIEW IT

What is an exterior angle? (Lesson 4-2)
\qquad
\qquad
\qquad
\qquad

Check Your Progress
a. The measure of an interior angle of a regular polygon is 144 . Find the number of sides in the polygon.
b. Refer to the figure shown. Find the measure of each interior angle.

Theorem 6.2 Exterior Angle Sum Theorem

If a polygon is convex, then the sum of the measures of the exterior angles, one at each vertex, is 360.

EXAMPIE Exterior Angles

4 Find the measures of an exterior angle and an interior angle of convex regular nonagon $A B C D E F G H J$.

At each vertex, extend a side to form one exterior angle. The sum of the measures of the exterior angles is 360 . A convex regular nonagon has 9 congruent exterior angles.
$9 n=360$
\square

Divide each side by 9 .

Since each exterior angle and its corresponding interior angle form a linear pair, the measure of the interior angle is

Homework Assignment

Exercises:

Check Your Progress Find the measures of an exterior angle and an interior angle of convex regular hexagon $A B C D E F$.

6-2 Parallelograms TESS a 2 The subuer anayzes somenerc relationships in order to make and verify conjectures.

 and and determine the validity of the conjectures, choosing from a variety of approaches such as coordinate, transformational, or axiomatic. Also addresses TEKS G.3(B), G.7(A), G.7(B), G.7(C), and G.9(B).
Main Ideas

Recognize and apply properties of the sides and angles of parallelograms.

- Recognize and apply properties of the diagonals of parallelograms.

KEy CONCEPT

Parallelogram A

 parallelogram is a quadrilateral with both pairs of opposite sides parallel.
Foldabies

Write the properties of parallelograms under the parallelograms tab.

BUILD YOUR VOCABULARY (page 138)

Theorem 6.3

Opposite sides of a parallelogram are congruent.
Theorem 6.4
Opposite angles in a parallelogram are congruent.
Theorem 6.5
Consecutive angles in a parallelogram are supplementary.
Theorem 6.6
If a parallelogram has one right angle, it has four right angles.

EXAMPIE Properties of Parallelograms

(1) Quadrilateral RSTU is a parallelogram. Find $m \angle U R T$, $m \angle R S T$, and y.
First, find $m \angle U R T$.

Now, find $m \angle R S T$.

Subtract.
Opposite sides of \square are \cong.

WRITE IT

Write what it means for diagonals to bisect each other.
\qquad
\qquad
\qquad

Homework

Assignment
Page(s):
$R S=T U \quad$ Congruent segments

$m \angle U R T=\square, m \angle R S T=\square, y=\square$

Check Your Progress

$A B C D$ is a parallelogram. Find $m \angle B D C, m \angle B C D$, and x.

Theorem 6.7

The diagonals of a parallelogram bisect each other.

Theorem 6.8

The diagonal of a parallelogram separates the parallelogram into two congruent triangles.

EXAMPLE Diagonals of a Parallelogram

2 TEST EXAMPLE What are the coordinates of the intersection of the diagonals of parallelogram MNPR, with vertices $M(-3,0), N(-1,3), P(5,4)$, and $R(3,1)$?
A (2, 4)
B $\left(\frac{9}{2}, \frac{5}{2}\right)$
C (1, 2)
D $\left(-2, \frac{3}{2}\right)$

Read the Test Item Since the diagonals of a parallelogram bisect each other, the intersection point is the midpoint of $\overline{M P}$ and $\overline{N R}$.

Solve the Test Item Find the midpoint of $\overline{M P}$.
$\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)=\left(\frac{\square}{2}, \frac{\square}{2}\right)=\square$

Exercises:
The answer is \qquad

Check Your Progress What are the coordinates of the intersection of the diagonals of parallelogram $L M N O$, with vertices $L(0,-3), M(-2,1), N(1,5), O(3,1)$?

6-3 Tests for Parallelograms

Main Ideas

- Recognize the conditions that ensure a quadrilateral is a parallelogram.
- Prove that a set of points forms a parallelogram in the coordinate plane.

TEKS G. 2 The
student analyzes geometric relationships in order to make and verify conjectures. (B) Make conjectures about angles, lines, polygons, circles, and threedimensional figures and determine the validity of the conjectures, choosing from a variety of approaches such as coordinate, transformational, or axiomatic. G. 3 The student applies logical reasoning to justify and prove mathematical statements. (B) Construct and justify statements about geometric figures and their properties. Also addresses TEKS G.3(C), G.7(A), G.7(B), G.7(C), and G.9(B).

Theorem 6.9 If both pairs of opposite sides of a quadrilateral are congruent, then the quadrilateral is a parallelogram.
Theorem 6.10 If both pairs of opposite angles of a quadrilateral are congruent, then the quadrilateral is a parallelogram.
Theorem 6.11 If the diagonals of a quadrilateral bisect each other, then the quadrilateral is a parallelogram.
Theorem 6.12 If one pair of opposite sides of a quadrilateral is both parallel and congruent, then the quadrilateral is a parallelogram.

EXAMPLE Properties of Parallelograms

1) Some of the shapes in this Bavarian crest appear to be parallelograms. Describe the information needed to determine whether the shapes are parallelograms.

If both pairs of opposite sides are the same length or if one pair of opposite sides is \square, the quadrilateral is a parallelogram. If both pairs of opposite angles are \square or if the
 bisect each other, the quadrilateral is a parallelogram.

Check Your Progress

The shapes in the vest pictured here appear to be parallelograms. Describe the information needed to determine whether the shapes are parallelograms.

EXAMPIE Properties of Parallelograms

FOLDABles

Organize It

Record the tests for parallelograms under the parallelograms tab.

What does it mean for two segments to be congruent? (Lesson 1-2)
\qquad
\qquad
\qquad
\longrightarrow
\qquad
\qquad

2 Determine whether the quadrilateral is a parallelogram. Justify your answer.

Each pair of opposite sides have the same
 measure. Therefore, they are \square If both pairs of opposite sides of a quadrilateral are \square, the quadrilateral is a parallelogram.

Check Your Progress Determine whether the quadrilateral is a parallelogram. Justify your answer.
 are congruent.

Opposite sides of a \square are \cong.

$$
\overline{A B} \cong \overline{D C}
$$

Definition of \cong segments.
Substitution

Distributive Property
Subtract $3 x$ from each side.
Add 1 to each side.

When x is \square , $A B C D$ is a parallelogram.

Homework Assignment

Page(s):
Exercises:

6-4 Rectangles

```
MAIN IDEAS
- Recognize and apply properties of rectangles.
- Determine whether parallelograms are rectangles.
```


BUILD YOUR VOCABULARY (page 138)

A rectangle is a quadrilateral with four \square

Theorem 6.13 If a parallelogram is a rectangle, then the diagonals are congruent.

EXAMPLE Diagonals of a Rectangle

TEKS G. 1

The student understands the structure of, and relationships within, an axiomatic system. (C) Compare and contrast the structures and implications of Euclidean and non-Euclidean geometries. G. 2 The student analyzes geometric relationships in order to make and verify conjectures. (B) Make conjectures about angles, lines, polygons, circles, and three-dimensional figures and determine the validity of the conjectures, choosing from a variety of approaches such as coordinate, transformational, or axiomatic. Also addresses TEKS G.2(A), G.3(B), G.3(C), G.7(A), G.7(B), G.7(C), and G.9(B).
(1) Quadrilateral RSTU is a rectangle. If $R T=6 x+4$ and $S U=7 x-4$, find x.

The diagonals of a rectangle are congruent, so $\overline{R T} \cong \overline{S U}$.

Diagonals of a rectangle are \cong.

Definition of congruent segments

Substitution

Subtract $6 x$ from each side.
Add 4 to each side.

Check Your Progress
Quadrilateral $E F G H$ is a rectangle. If $F H=5 x+4$ and $G E=7 x-6$, find x.

KEy Concept

Properties of a
Rectangle

1. Opposite sides are congruent and parallel.
2. Opposite angles are congruent.
3. Consecutive angles are supplementary.
4. Diagonals are congruent and bisect each other.
5. All four angles are right angles.

EXAMPLE Angles of a Rectangle

2) Quadrilateral $L M N P$ is a rectangle. Find x.
$\angle M L P$ is a right angle, so $m \angle M L P=90$.
$m \angle M L N+m \angle N L P=m \angle M L P$

$$
5 x+8+3 x+2=\square
$$

$x=$ \square

Angle Addition Postulate

Substitution.

Simplify.

Subtract.

Divide each side by 8.

Check Your Progress Quadrilateral EFGH is a

 rectangle.a. Find x.
b. Find y.

Theorem 6.14

If the diagonals of a parallelogram are congruent, then the parallelogram is a rectangle.

EXAMPLE Diagonals of a Parallelogram

Kyle is building a barn for his horse. He measures the diagonals of the door opening to make sure that they bisect each other and they are congruent. How does he know that the measure of each corner is 90 ?

We know that $\overline{A C} \cong \overline{B D}$. A parallelogram with \square
diagonals is a rectangle. Therefore, the corners are
 angles.

FOLDABLES

Organize It

Record similarities and differences between rectangles and other types of parallelograms under the rectangles tab.

Check Your Progress Max is building a swimming pool in his backyard. He measures the length and width of the pool so that opposite sides are parallel. He also measures the diagonals of the pool to make sure that they are congruent. How does he know that the measure of each corner is 90 ?

EXAMPLE Rectangle on a Coordinate Plane

4 Quadrilateral $A B C D$ has vertices $A(-2,1), B(4,3)$, $C(5,0)$, and $D(-1,-2)$. Determine whether $A B C D$ is a rectangle.

Method 1

Use the Slope Formula, $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$, to see if consecutive sides are perpendicular.
slope of $\overline{A B}=\frac{3-1}{4-(-2)}$ or \square
slope of $\overline{C D}=\frac{-2-0}{-1-5}$ or \square
slope of $\overline{B C}=\frac{0-3}{5-4}$ or \square
slope of $\overline{A D}=\frac{1-(-2)}{-2-(-1)}$ or \square

Review It

What do you know about the slopes of two perpendicular lines? (Lesson 3-3)
\qquad
\qquad
\qquad
\qquad
\qquad

Because $\overline{A B} \| \overline{C D}$ and $\overline{B C} \| \overline{A D}$, quadrilateral $A B C D$ is a
\square The product of the slopes of consecutive sides is \square This means that $\overline{A B} \perp \overline{B C}, \overline{A B} \perp \overline{A D}, \overline{A D} \perp \overline{C D}$, and $\overline{B C} \perp \overline{C D}$.

The perpendicular segments create four right angles.
Therefore, by definition $A B C D$ is a \square

Method 2

Use the Distance Formula, $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$, to determine whether opposite sides are congruent.

Since each pair of opposite sides of the quadrilateral have the same measure, they are congruent. Quadrilateral $A B C D$ is a parallelogram.

Find the length of the diagonals.
$A C=\sqrt{[-5-(-2)]^{2}+(0-1)^{2}}$

$D B=\sqrt{[4-(-1)]^{2}+[3-(-2)]^{2}}$

$=$

The length of each diagonal is \square
Since the diagonals are congruent, $A B C D$ is a rectangle.

Check Your Progress
Quadrilateral $W X Y Z$ has vertices $W(-2,1), X(-1,3), Y(3,1)$, and $Z(2,-1)$. Determine whether $W X Y Z$ is a rectangle using the Distance Formula.

Homework Assignment

Page(s):
Exercises:

6-5 Rhombi and Squares

Main Ideas

- Recognize and apply the properties of rhombi.
- Recognize and apply the properties of squares.

TEKS G. 2 The student analyzes geometric relationships in order to make and verify conjectures. (B) Make conjectures about angles, lines, polygons, circles, and threedimensional figures and determine the validity of the conjectures, choosing from a variety of approaches such as coordinate, transformational, or axiomatic. G. 3 The student applies logical reasoning to justify and prove mathematical statements. (B) Construct and justify statements about geometric figures and their properties. Also addresses TEKS G.2(A), G.3(C), G.7(A), G.7(B), G.7(C), and G.9(B).

BUILD YOUR VOGABULARY (page 138)

A rhombus is a quadrilateral with all four sides congruent.

Theorem 6.15 The diagonals of a rhombus are perpendicular.
Theorem 6.16 If the diagonals of a parallelogram are perpendicular, then the parallelogram is a rhombus.
Theorem 6.17 Each diagonal of a rhombus bisects a pair of opposite angles.

EXAMPLE Measures of a Rhombus

1 Use rhombus LMNP and the given information to find the value of each variable.
a. Find y if $m \angle 1=y^{2}-54$.

The diagonals of a rhombus are perpendicular.

Substitution
Add 54 to each side.
Take the square root of each side.

The value of y can be

b. Find $m \angle P N L$ if $m \angle M L P=64$.

The diagonals of a rhombus bisect the angles.

Remember It

A square is a rhombus, but a rhombus is not necessarily a square.

Check Your Progress Use rhombus $A B C D$ and the given information to find the value of each variable.
a. Find x if $m \angle 1=2 x^{2}-38$.

b. Find $m \angle C D B$ if $m \angle A B C=126$.

BUILD YOUR VOcabulary (page 138)

If a quadrilateral is both a \square and a rectangle, then it is a square.

EXAMPLE Squares

2 Determine whether parallelogram $A B C D$ is a rhombus, a rectangle, or a square for $A(-2,-1), B(-1,3), C(3,2)$, and $D(2,-2)$. List all that apply. Explain.

Use the Distance Formula to compare the lengths of the diagonals.

$$
\begin{align*}
D B & =\sqrt{(-1-2)^{2}+[3-(-2)]^{2}} \\
& =\square \\
& =\square
\end{align*}
$$

$$
\begin{aligned}
A C & =\sqrt{[3-(-2)]^{2}+[2-(-1)]^{2}} \\
& =\square \\
& =\square
\end{aligned}
$$

FOLDABLES

Organize It

Record the concepts about squares and rhombi, including their similarities and differences, under the squares and rhombi tab.

Homework Assignment

Page(s):

Exercises:

6-6 Trapezoids

BUILD YOUR VOCABULARY (page 138)

```
Main Ideas
- Recognize and apply the properties of trapezoids.
- Solve problems involving the medians of trapezoids.
```

TEKS G. 2 The student analyzes geometric relationships in order to make and verify conjectures. (B) Make conjectures about angles, lines, polygons, circles, and threedimensional figures and determine the validity of the conjectures, choosing from a variety of approaches such as coordinate, transformational, or axiomatic. G. 3 The student applies logical reasoning to justify and prove mathematical statements. (B) Construct and justify statements about geometric figures and their properties. Also addresses TEKS G.2(A), G.3(C), G.7(A), G.7(B), G.7(C), and G.9(B).

A trapezoid is a quadrilateral with exactly one pair of sides.

If the legs are \square , then the trapezoid is an isosceles trapezoid.

Theorem 6.18 Both pairs of base angles of an isosceles trapezoid are congruent.

Theorem 6.19 The diagonals of an isosceles trapezoid are congruent.

5XAMPLE Identify Isosceles Trapezoids

(1) The top of this work station appears to be two adjacent trapezoids. Determine if they are isosceles trapezoids.

Each pair of base angles is
 so the legs are the same length. Both trapezoids are \square Check Your Progress The sides of a picture frame appear to be two adjacent trapezoids. Determine if they are isosceles trapezoids.

FOLDABLES

Organize It

Draw an isosceles trapezoid under the trapezoids tab. Include labels on the drawing to show congruent angles, congruent diagonals, and parallel sides.

EXAMPLE Identify Trapezoids

$2 A B C D$ is a quadrilateral with vertices $A(5,1), B(-3,-1)$, $C(-2,3)$, and $D(2,4)$.
a. Verify that $A B C D$ is a trapezoid.

A quadrilateral is a trapezoid if exactly one pair of opposite sides are parallel. Use the Slope Formula.

slope of $\overline{A B}=\frac{-1-1}{-3-5}$ slope of $\overline{C D}=\frac{4-3}{2-(-2)}$

slope of $\overline{D A}=\frac{1-4}{5-2}$
slope of $\overline{B C}=\frac{3-(-1)}{-2-(-3)}$

Exactly one pair of opposite sides are parallel,
\square and \square So, $A B C D$ is a trapezoid.
b. Determine whether $A B C D$ is an isosceles trapezoid. Explain.

First use the Distance Formula to determine whether the legs are congruent.

$B C=\sqrt{[-2-(-3)]^{2}+[3-(-1)]^{2}}$

Since the legs are not \square , $A B C D$ is not an isosceles trapezoid.
Check Your Progress QRST is a quadrilateral with vertices $Q(-3,-2), R(-2,2), S(1,4)$, and $T(6,4)$.
a. Verify that $Q R S T$ is a trapezoid.

b. Determine whether $Q R S T$ is an isosceles trapezoid. Explain.

BUILD YOUR YOGABULARY (page 138)

The segment that joins \square of the \square of a trapezoid is the median.

Theorem 6.20
The median of a trapezoid is parallel to the bases, and its measure is one-half the sum of the measures of the bases.

EXAMPIE Median of a Trapezoid

3 DEFG is an isosceles trapezoid with median $\overline{M N}$.
a. Find $D G$ if $E F=20$ and $M N=30$.

$$
\begin{array}{lll}
M N & =\frac{1}{2}(E F+D G) & \text { Theorem } 6.20 \\
\square & =\frac{1}{2}(\square+D G) & \text { Substitution } \\
\square=\square+D G & \text { Multiply each side by } 2 . \\
\square=\square & \text { Subtract } 20 \text { from each side. }
\end{array}
$$

Homework Assignment

Page(s):
Exercises:

6-7 Coordinate Proof With Quadrilaterals

EXAMPLE Positioning a Rectangle

MAIN IdEAS

- Position and label quadrilaterals for use in coordinate proofs.
- Prove theorems using coordinate proofs.

TEKS G. 1

The student understands the structure of, and relationships within, an axiomatic system. (A) Develop an awareness of the structure of a mathematical system, connecting definitions, postulates, logical reasoning, and theorems. G. 7 The student understands that coordinate systems provide convenient and efficient ways of representing geometric figures and uses them accordingly. (A) Use oneand two-dimensional coordinate systems to represent points, lines, rays, line segments, and figures. Also addresses TEKS G.7(B) and G.7(C).
(1) Position and label a rectangle with sides a and b units long on the coordinate plane.

- Let A, B, C, and D be vertices of a rectangle with sides $\overline{A B}$ and $\overline{C D} a$ units long, and sides $\overline{B C}$ and $\overline{A D} b$ units long.
- Place the rectangle with vertex A at the \square $\overline{A B}$ along the positive \square , and $\overline{A D}$ along the

Label the vertices A, B, C, and D.

- The y-coordinate of B is \square because the vertex is on the x-axis. Since the side length is a, the x-coordinate is \square
- D is on the y-axis so the x-coordinate is \square Since the side length is b, the y-coordinate is \square
- The x-coordinate of C is also . The y-coordinate is $0+b$ or b because the side $\overline{B C}$ is b units long.

Check Your Progress
Position and label a parallelogram with sides a and c units long on the coordinate plane.

EXAMPIE Coordinate Proof

FOLDAbles

Organize It

Make sketches to show how each type of quadrilateral in this chapter can be placed in the coordinate plane to have the simplest coordinates for the vertices. Label the vertices with their coordinates. Include each sketch under the appropriate tab.

2 Place a rhombus on the coordinate plane. Label the midpoints of the sides M, N, P, and Q. Write a coordinate proof to prove that $M N P Q$ is a rectangle.

The first step is to position a rhombus on the coordinate plane so that the origin is the midpoint of the diagonals and the diagonals are on the axes, as shown. Label the
 vertices to make computations as simple as possible.

Given: $A B C D$ is a rhombus as labeled. M, N, P, Q are midpoints.

Prove: $M N P Q$ is a rectangle.
Proof: By the Midpoint Formula, the coordinates of M, N, P, and Q are as follows.
$M\left(\frac{-2 a+0}{2}, \frac{0-2 b}{2}\right)=\square$
$N\left(\frac{0-2 a}{2}, \frac{2 b+0}{2}\right)=\square$
$P\left(\frac{2 a+0}{2}, \frac{0+2 b}{2}\right)=\square$
$Q\left(\frac{0+2 a}{2}, \frac{-2 b+0}{2}\right)=\square$

Find the slopes of $\overline{Q P}, \overline{M N}, \overline{Q M}$, and $\overline{P N}$.

slope of $\overline{Q M}=\frac{\square-(-b)}{-a-a}$ or \square
slope of $\overline{P N}=\frac{b-\square}{-a-a}$ or \square

Write IT

When proving theorems about quadrilaterals, why is it convenient to place a figure on the coordinate plane with one side parallel to an axis and one vertex at (0,0) ?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Homework
 Assignment

Page(s):

A segment with slope 0 is perpendicular to a segment with
\square slope. Therefore, consecutive sides of this quadrilateral are \square Since consecutive sides are perpendicular, $M N P Q$ is, by definition, a \square

Check Your Progress

Write a coordinate proof.
Given: $A B C D$ is an isosceles trapezoid. M, N, P, and Q are midpoints.

Prove: $M N P Q$ is a rhombus.

Proof:

Exercises: BRINGING IT ALL TOGETHER

STUDY GUIDE

| FOLDABLES |
| :--- | :--- | :--- |\quad| VOCABULARY |
| :--- |
| PUZZLEMAKER |\quad| BUILD YOUR |
| :--- |
| Use your Chapter 6 Foldable to
 help you study for your chapter
 test. |
| To make a crossword puzzle,
 word search, or jumble
 puzzle of the vocabulary words
 in Chapter 6, go to: |
| glencoe.com |
| Yocabulary Builder (page 138)
 to help you solve the puzzle. |

6-1

Angles of Polygons

Give the measure of an interior angle and the measure of an exterior angle of each polygon.

1. equilateral triangle
2. regular hexagon \square
3. Find the sum of the measures of the interior angles of a convex 20 -gon.
\square

6-2

Parallelograms

For Exercises 4-7, let $A B C D$ be a parallelogram with $A B \neq B C$ and with no right angles.
4. Sketch a parallelogram that matches the description above and draw diagonal $\overline{B D}$.

Complete each sentence.

5. $\overline{A B} \|$ \square and $\overline{A D} \|$ \square
6. $\overline{A B} \cong$ \square and $\overline{B C} \cong$ \square
7. $\angle A \cong \square$ and $\angle A B C \cong \square$.

6-3
Tests for Parallelograms
8. Which of the following conditions guarantee that a quadrilateral is a parallelogram?
a. Two sides are parallel.
b. Both pairs of opposite sides are congruent.
c. A pair of opposite sides is both parallel and congruent.
d. There are two right angles.
e. All four sides are congruent.
f. Both pairs of opposite angles are congruent.
g. The diagonals bisect each other.
h. All four angles are right angles.

Determine whether there is enough given information to know that each figure is a parallelogram. If so, state the definition or theorem that justifies your conclusion.
9.

10.

6-4

Rectangles

11. Find $m \angle 1, m \angle 2$, and $m \angle 3$ in the rectangle shown.

$A B C D$ is a rectangle with $A D>A B$. Name each of the following in this figure.

12. all segments that are congruent to $\overline{B E}$

13. all angles congruent to $\angle 1$ \square
14. two pairs of congruent triangles
\square

6-5

Rhombi and Squares

Sketch each of the following.

15. a quadrilateral with perpendicular diagonals that is not a rhombus

16. a quadrilateral with congruent diagonals that is not a rectangle

List all of the special quadrilaterals that have each listed property: parallelogram, rectangle, rhombus, square.
17. Opposite sides are congruent.
\square
18. The diagonals are perpendicular. \square
19. The quadrilateral is equilateral. \square
20. The quadrilateral is equiangular. \square
21. The diagonals are perpendicular and congruent. \square 6-6
Trapezoids
Complete each sentence.
22. A quadrilateral with only one pair of opposite sides parallel and the other pair of opposite sides congruent is a(n)

23. The segment joining the midpoints of the nonparallel sides of a trapezoid is called the \square
24. A quadrilateral with only one pair of opposite sides parallel is $\mathrm{a}(\mathrm{n})$ \square
$E F G H$ is a trapezoid, I is the midpoint of $\overline{F E}$, and J is the midpoint of $G H$. Identify each of the following segments or angles.

25. the bases of trapezoid $E F G H$

26. the legs of trapezoid EFGH \square
27. the median of trapezoid $E F G H$ \square

6-7

Coordinate Proof with Quadrilaterals

28. Find the missing coordinates in the figure. Then write the coordinates of the four vertices of the quadrilateral.

Refer to quadrilateral EFGH.

29. Find the slope of each side.

30. Find the length of each side.
\square
31. Find the slope of each diagonal.
\square
32. Find the length of each diagonal.

33. What can you conclude about the sides of $E F G H$?

34. What can you conclude about the diagonals of EFGH?

6

Checklist

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 6.

ARE YOU READY FOR THE CHAPTER TEST?

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 6 Practice Test on page 373 of your textbook as a final check.

I used my Foldable or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 6 Study Guide and Review on pages 369-372 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 6 Practice Test on page 373.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 6 Foldable.
- Then complete the Chapter 6 Study Guide and Review on pages 369-372 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 6 Practice Test on page 373.

Proportions and Similarity

FOLDABLES
Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.

NOTE-TAKING TIP: A visual study guide like the Foldable shown above helps you organize what you know and remember what you have learned. You can use them to review main ideas or keywords.

BUILD YOUR VOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 7. As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

Vocabulary Term	Found on Page	Definition	Description or Example
cross products			
extremes			
means			

Vocabulary Term	Found on Page	Definition	Description or Example
midsegment			
proportion			
ratio			
scale factor			

7-1 Proportions

TEKS G. 11 The student applies the concepts of similarity to justify properties of figures and solve problems. (B) Use ratios to solve problems involving similar figures.

MAIN IDEAS

- Write ratios.
- Use properties of proportions.

BUILD YOUR VOCABULARY (pages 168-169)

A ratio is a comparison of two quantities. The ratio of a to b can be expressed \square where b is not zero. An equation stating that two ratios are \square is called a proportion.

EXAMPIE Write a Ratio

(1) The total number of students who participate in sports programs at Central High School is 520. The total number of students in the school is $\mathbf{1 8 5 0}$. Find the athlete-to-student ratio to the nearest tenth.

To find this ratio, divide the number of athletes by the total number of students.

The athlete-to-student ratio is \square athletes for each student in the school.

Check Your Progress
The country with the longest school year is China with 251 days. Find the ratio of school days to total days in a year for China to the nearest tenth. (Use 365 as the number of days in a year.)

5XAMPLE Solve Proportions by Using Cross Products

2 Solve each proportion.

Key Concept

Property of Proportions
For any numbers a and c and any nonzero
numbers b and $d, \frac{a}{b}=\frac{c}{d}$ if and only if $a d=b c$.
a. $\frac{6}{18.2}=\frac{9}{y}$.

$$
\frac{6}{18.2}=\frac{9}{y}
$$

Original proportion
Cross products
Divide each side by 6.
b. $\frac{4 x-5}{3}=\frac{-26}{6}$

Check Your Progress
Solve each proportion.

FOLDABLES

Organize IT

As you skim the lesson, write down questions that you have on the section for Lesson 7-1. Then write the answers next to each question.

Homework
 Assignment

Page(s):
Exercises:
a. $\frac{13.5}{42}=\frac{b}{14}$
b. $\frac{7 n-1}{8}=\frac{15.5}{2}$

EXAMPIE Solve Problems Using Proportions

3 TRAINS A boxcar on a train has a length of 40 feet and a width of 9 feet. A scale model is made with a length of 16 inches. Find the width of the model.

Write and solve a proportion.
$\frac{\text { boxcar's length }(\mathrm{ft})}{\text { model's length (in.) }}=\frac{\text { boxcar's width (ft) }}{\text { model's width (in.) }}$

The width of the model is \square inches.

Check Your Progress

Two large cylindrical containers are in proportion. The height of the larger container is 25 meters with a diameter of 8 meters. The height of the smaller container is 7 meters. Find the diameter of the smaller container.

7-2 Similar Polygons

Main Ideas

- Identify similar figures.
- Solve problems involving scale factors.

BUILD YOUR VOCABULARY (page 169)

When polygons have the same shape but may be different in \square they are called similar polygons.

When you compare the lengths of \qquad sides of similar figures, you usually get a numerical ratio. This ratio is called the scale factor for the two figures.

EXAMPLE Similar Polygons

KEy Concept

Similar polygons Two polygons are similar if and only if their corresponding angles are congruent and the measures of their corresponding sides are proportional.

TEKS G. 11

The student applies the concepts of similarity to justify properties of figures and solve problems. (A) Use and extend similarity properties and transformations to explore and justify conjectures about geometric figures.
(B) Use ratios to solve problems involving similar figures.
(1) Determine whether the pair of figures is similar. Justify your answer.

Since $m \angle B=m \angle S$, \square
The $m \angle C=40$ and $m \angle R=60$.

So, $\angle C \cong \angle T$ and \square
Thus, all the corresponding angles are congruent.
Now determine whether corresponding sides are proportional.
$\frac{A C}{R T}=\frac{8}{6}$ or $1 . \overline{3} \frac{A B}{R S}=\frac{\square}{\square}$ or $1 . \overline{3} \frac{B C}{S T}=\frac{\square}{\square}$ or $1 . \overline{3}$
The ratio of the measures of the corresponding sides are equal and the corresponding angles are \square so $\triangle A B C \sim \triangle R S T$.

Check Your Progress Determine whether the pair of figures is similar. Justify your answer.

EXAMPIE Scale Factor

2 ARCHITECTURE An architect prepared a 12 -inch model of a skyscraper to look like an actual 1100 -foot building. What is the scale factor of the model compared to the actual building?

Before finding the scale factor you must make sure that both

Write It

Explain why two congruent polygons must also be similar.
\qquad
\qquad
\qquad
\qquad
$1100(12)=13,200$ inches

The ratio comparing the two heights is
 or
\square The scale factor is \square which means that the model is \square the height of the actual skyscraper.

Check Your Progress A space shuttle is about 122 feet in length. The Science Club plans to make a model of the space shuttle with a length of 24 inches. What is the scale factor of the model compared to the real space shuttle?

EXAMPLE Proportional Parts and Scale Factor

3 The two polygons are similar.
a. Write a similarity statement. Then find x, y, and $U V$.

Use the congruent angles to write the corresponding vertices in order.

polygon $\square \sim$ polygon \square

FOLDAbles

Organize It

Write a description of the information you would include in a diagram of two polygons to enable a friend to decide that the polygons are similar. Record your description on the section for Lesson 7-2.

0	$7-1$	$7-2$
0	$7-3$	$7-4$
0	$7-5$	Vocabulary

Homework Assignment

Page(s):
Exercises:

7-3 Similar Triangles

Main Ideas

Identify similar triangles.

- Use similar triangles to solve problems.

Postulate 7.1 Angle-Angle (AA) Similarity

If the two angles of one triangle are congruent to two angles of another triangle, then the triangles are similar.

Theorem 7.1 Side-Side-Side (SSS) Similarity
If the measures of the corresponding sides of two triangles are proportional, then the triangles are similar.
Theorem 7.2 Side-Angle-Side (SAS) Similarity If the measures of two sides of a triangle are proportional to the measures of two corresponding sides of another triangle and the included angles are congruent, then the triangles are similar.

EXAMPIE Determine Whether Triangles are Similar

(1) In the figure, $\overline{A B} \| \overline{D C}, B E=27, D E=45, A E=21$, and $C E=35$. Determine which triangles in the figure are similar.

Since $\overline{A B} \| \overline{D C}, \angle B A C \cong \square$ by the Alternate Interior Angles Theorem.

Vertical angles are congruent, so \square
\square
Therefore, by the AA Similarity Theorem,

Check Your Progress In the figure, $O W=7, B W=9$, $W T=17.5$, and $W I=22.5$. Determine which triangles in the figure are similar.

Theorem 7.3

Similarity of triangles is reflexive, symmeteric, and transitive.

EXAMPL Parts of Similar Triangles

FOLDABLES

Organize It

Write a short paragraph to describe how you could apply the postulate and theorems in this lesson to help you construct similar triangles. Include your paragraph on the section for Lesson 7-3.

0	$7-1$	$7-2$
0	$7-3$	$7-4$
0	$7-5$	Vocabulany

2. ALGEBRA Given $\overline{R S} \| \overline{U T}, R S=4, R Q=x+3$, $Q T=2 x+10, U T=10$, find $R Q$ and $Q T$.

Since $\overline{R S} \| \overline{U T}, \angle S R Q \cong$ and $\square \cong T U Q$
because they are alternate interior angles. By AA Similarity,

$\frac{4}{10}$	$=\frac{x+3}{2 x+10}$		Substitution
$4(2 x+10)$	$=10(x+3)$		Cross products
$8 x+40$	$=10 x+30$		Distributive Property
\square	$=x$		Simplify.

Now find $R Q$ and $Q T$.

$$
Q T=2 x+10
$$

$$
=\square+\square
$$

or

\square

Check Your Progress
Given
$\overline{A B} \| \overline{D E}, A B=38.5, D E=11$,
$A C=3 x+8$, and $C E=x+2$, find $A C$ and $C E$.

EXAMPIE Find a Measurement

(3) INDIRECT MEASUREMENT Josh wanted to measure the height of the Sears Tower in Chicago. He used a 12 -foot light pole and measured its shadow at 1 P.m. The length of the shadow was 2 feet. Then he measured the length of the Sears Tower's shadow and it was 242 feet at the time. What is the
 height of the Sears Tower?

Assuming that the sun's rays form similar triangles, the following proportion can be written.

Now substitute the known values and let x be the height of the Sears Tower.

Remember It

Shadows and similar triangles are commonly used for indirectly measuring the heights of objects that are otherwise too tall to measure.

Homework
 Assignment

Page(s):
Exercises:

Substitution

Cross products
Simplify and divide each side by 2 .

The Sears Tower is \square feet tall.

Check Your Progress On her trip along the East coast, Jennie stops to look at the tallest lighthouse in the U.S. located at Cape Hatteras, North Carolina. Jennie measures her shadow to be 1 feet 6 inches in length and the length of the shadow of the lighthouse to be 53 feet 6 inches. Jennie's height is 5 feet 6 inches.
 What is the height of the Cape Hatteras lighthouse to the nearest foot?

7-4 Parallel Lines and Proportional Parts

MAIN IDEAS

- Use proportional parts of triangles.
- Divide a segment into parts.

TEKS G. 2
The student analyzes geometric relationships in order to make and verify conjectures.
(A) Use constructions to explore attributes of geometric figures and to make conjectures about geometric relationships.
G. 11 The student applies the concepts of similarity to justify properties of figures and solve problems. (B) Use ratios to solve problems involving similar figures.

Theorem 7.4 Triangle Proportionality Theorem

If a line is parallel to one side of a triangle and intersects the other two sides in two distinct points, then it separates these sides into segments of proportional lengths.

EXAMPIE Find the Length of a Side

(1) In $\triangle R S T, \overline{R T} \| \overline{V U}, S V=3$, $V R=8$, and $U T=12$. Find $\boldsymbol{S U}$.

From the Triangle Proportionality Theorem, $\frac{S V}{V R}=$ Substitute the known measures.

$$
3(12)=8 x \quad \text { Cross products }
$$

$$
36=8 x \quad \text { Multiply }
$$

$$
\frac{36}{8}=x
$$

$$
\text { Divide each side by } 8 \text {. }
$$

Simplify.

Check Your Progress

In $\triangle A B C, \overline{A C} \| \overline{X Y}, A X=4$, $X B=10.5$, and $C Y=6$. Find $B Y$.

Theorem 7.5 Converse of the Triangle Proportionality If a line intersects two sides of a triangle and separates the sides into corresponding segments of proportional lengths, then the line is parallel to the third side.

EXAMPIE Determine Parallel Lines

FOLDABLES

Organize It

Sketch a pentagon that is not regular. Write a brief explanation of how you could use the theorems in this lesson to construct a pentagon similar to the given pentagon. Include the sketch and explanation on the section for Lesson 7-4.

0	$7-1$	$7-2$
0	$7-3$	$7-4$
0	$7-5$	Vocabulary

Write the Midpoint Formula.

Write It

(2) In $\triangle D E F, D H=18, H E=36$, and $D G=\frac{1}{2} G F$. Determine whether $\overline{\boldsymbol{G H}} \| \overline{\boldsymbol{F E}}$. Explain.

In order to show that $\overline{G H} \| \overline{F E}$, we must show that $\frac{D G}{G F}=\frac{D H}{H E}$. $D G=\frac{1}{2} G F$, so $\frac{D G}{G F}=\frac{1}{2}$.

Since, $\frac{D G}{G F}=\square$ and $\frac{D H}{H E}=\square$ or \square, the sides

Check Your Progress In $\triangle W X Z, X Y=15, Y Z=25$, $W A=18$, and $A Z=32$. Determine whether $\overline{W X} \| \overline{A Y}$. Explain.

BUILD YOUR VOCABULARY (page 135)

A midsegment of a triangle is a segment whose endpoints are the \square of the two sides of the triangle.
\qquad
\qquad
Theorem 7.6 Triangle Midsegment Theorem A midsegment of a triangle is parallel to one side of the triangle, and its length is one-half of that side.

EXAMPIE Proportional Segments

3 MAPS In the figure, Larch, Maple, and Nuthatch Streets are all parallel. The figure shows the distances in between city blocks. Find \boldsymbol{x}.

From Corollary 7.1, if three or more parallel lines intersect two transversals, then they cut off the transversals
\square Write a proportion.
$26(16)=13 x$
Triangle Proportionality Theorem

Multiply.
\square $=x$
Divide.

Check Your Progress
In the figure, Davis, Broad, and
Main Streets are all parallel. The figure shows the distances in city blocks that the streets are apart. Find x.

Homework

 AssignmentA 4
B 5
C 6
D 7

7-5 Parts of Similar Triangles

TEKS G. 11 The student applies the concepts of similarity to justify properties of figures and solve problems. (B) Use ratios to solve problems involving similar figures.

MAIN IDEAS

Recognize and use proportional relationships of corresponding perimeters of similar triangles.

- Recognize and use proportional relationships of corresponding angle bisectors, altitudes, and medians of similar triangles.

Theorem 7.7 Proportional Perimeters Theorem If two triangles are similar, then the perimeters are proportional to the measures of corresponding sides.

EXAMPLE Perimeters of Similar Triangles

1) If $\triangle A B C \sim \triangle X Y Z, A C=32, A B=16$, $B C=16 \sqrt{5}$, and $X Y=24$, find the perimeter of $\triangle X Y Z$.

Let x represent the perimeter of $\triangle X Y Z$. The perimeter of

$\triangle A B C=16+16 \sqrt{5}+32$ or $\square+16 \sqrt{5}$.

Substitution
$24(48+16 \sqrt{5})=16 x \quad$ Cross products
$1152+384 \sqrt{5}=16 x \quad$ Multiply.
$\square+24 \sqrt{5}=x$ Divide.

The perimeter of $\triangle X Y Z$ is \square units.

Check Your Progress If $\triangle P N O \sim \triangle X Q R, P N=6, X Q=20$, $Q R=20 \sqrt{2}$, and $R X=20$, find the perimeter of $\triangle P N O$.

Theorem 7.8

If two triangles are similar, then the measures of the corresponding altitudes are proportional to the measures of the corresponding sides.

Theorem 7.9
If two triangles are similar, then the measures of the corresponding angle bisectors of the triangles are proportional to the measures of the corresponding sides.
Theorem 7.10
If two triangles are similar, then the measures of the corresponding medians are proportional to the measures of the corresponding sides.

EXAMPIE Write a Proof

FOLDABLES

ORGANIZE IT

Use a pair of similar isosceles triangles to illustrate all of the theorems in this lesson. Include a sketch and explanation on the section for Lesson 7-5.

2 Write a paragraph proof.

Given: $\triangle J K L \sim \triangle Q R S$
$\overline{M K}$ is a median of $\triangle J K L$.
$\overline{T R}$ is a median of $\triangle Q R S$.
Prove: $\triangle J K M \sim \triangle Q R T$

Proof: By \square $\frac{J K}{Q R}=\frac{J L}{Q S}$.

Since similar triangles have corresponding \square proportional to the corresponding sides, $\frac{J L}{Q S}=\frac{K M}{R T}$. By substitution, $\frac{J K}{Q R}=\frac{K M}{R T}$. Since $\overline{M K}$ and $\overline{T R}$ are of $\triangle J K L$ and $\triangle Q R S$, respectively, M and T are midpoints of
\square
and $2 Q T=Q S$. Substitute in the equation $\frac{J K}{Q R}=\frac{J L}{Q S}$ to get $\frac{J K}{Q R}=\frac{2 J M}{2 Q T}$. Simplify to find $\frac{J K}{Q R}=\frac{J M}{Q T}$. Therefore,
$\triangle J K M \sim \triangle Q R T$ by

EXAMPIE Medians of Similar Triangles

3 In the figure, $\triangle E F D \sim \triangle J K I . \overline{E G}$ is a median of $\triangle E F D$, and $\overline{J L}$ is a median of $\triangle J K I$. Find $J L$ if $E F=36, E G=18$, and $J K=56$.

ReVIew It

An altitude of a triangle is a segment from a vertex to the line containing the opposite side and perpendicular to the line containing the side. (Lesson 5-1)

Homework

Assignment
Page(s):
Thus, \square

Check Your Progress

a. $\triangle E F G \sim \triangle M S Y$ and $E F=\frac{5}{4} M S$. Find the ratio of the length of an altitude of $\triangle E F G$ to the length of an altitude of $\triangle M S Y$.

b. In the figure, $\triangle A B D \sim \triangle M N P . \overline{A C}$ is a median of $\triangle A B D$ and $\overline{M O}$ is a median of $\triangle M N P$. Find x if $A C=5, A B=7$, and $M O=12.5$.

Exercises:

Write a proportion.
$E G=18, J L=x, E F=36$, and $J K=56$
Cross products
Divide each side by 36 .

Theorem 7.11 Angle Bisector Theorem

An angle bisector in a triangle separates the opposite side into segments that have the same ratio as the other two sides.

BRINGING IT ALL TOGETHER

STUDY GUIDE

| GOLDABLES |
| :--- | :--- | :--- |\quad| VOCABULARY |
| :--- |
| PUZZLEMAKER |\quad BUID YOUR

7-1

Proportions

1. ADVERTISEMENT A poster measures 10 inches by 14 inches. If it is enlarged to have a width of 60 inches, how tall will the new poster be?

Solve each proportion.
2. $\frac{3}{8}=\frac{x}{40}$

3. $\frac{9}{11}=\frac{15}{x}$

4. $\frac{x+2}{5}=\frac{4}{3}$

7-2

Similar Polygons

Determine whether each pair of figures is similar. If so, write the appropriate similarity statement.
5.

\square
6.

If $\triangle H I J \sim \triangle M K J$, find x and the scale factor of $\triangle H I J$ to $\triangle M K J$.
7.

\square
8.

7-3

Similar Triangles

9. SHADOWS A tree casts a 60 foot shadow. At the same time, a 6 -foot tall man casts a shadow that is 2 feet long. How tall is the tree?
\square

7-4

Parallel Lines and Proportional Parts

Determine whether $\overline{B C} \| \overline{D E}$.

10. $A D=16, D B=12, A E=14$, and $E C=10.5$
11. $B D=5, B A=20$, and $C E$ is one third of $E A$ \square

7-5

Parts of Similar Triangles
12. Find $F G$ if $\triangle R S T \sim \triangle E F G, \overline{S H}$ is an altitude of $\triangle R S T, \overline{F J}$ is an altitude of $\triangle E F G, S T=10, S H=8$, and $F J=10$.

Checklist

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 7.

ARE YOU READY FOR THE CHAPTER TEST?

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 7 Practice Test on page 427 of your textbook as a final check.

I used my Foldable or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 7 Study Guide and Review on pages 424-426 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 7 Practice Test on page 427 of your textbook.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 7 Foldable.
- Then complete the Chapter 7 Study Guide and Review on pages 424-426 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 7 Practice Test on page 427 of your textbook.

8

Right Triangles and Trigonometry

OLDABLES

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.

Begin with seven sheets of grid paper.

STEP 1 Stack the sheets. Fold the top right corner to the bottom edge to form a square.

STEP 2 Fold the rectangular part in half.

STEP 3 Staple the sheets along the fold in four places.

STEP 4 Label each sheet with a lesson number and the rectangular part with the chapter title.

NOTE-TAKING TIP: When you take notes, draw a visual (graph, diagram, picture, chart) that presents the information introduced in the lesson in a concise, easy-to-study format.

BUILD YOUR VOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 8. As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

Vocabulary Term	Found on Page	Definition	Description or Example
angle of depression			
angle of elevation			
cosine			
geometric mean			
Law of Cosines			
Law of Sines			

Vocabulary Term	Found on Page	Definition	Description or Example
Pythagorean triple			
sine			
solving a triangle			
tangent			
trigonometric ratio			

8-1 Geometric Mean

TEKS G. 11 The student applies the concepts of similarity to justify properties of figures and solve problems. (C) Develop, apply, and justify triangle similarity relationships, such as right triangle ratios, trigonometric ratios, and Pythagorean triples using a variety of methods.

BUILD YOUR VOGABULARY (page 188)

Main Ideas

Find the geometric mean between two numbers.

- Solve problems involving relationships between parts of a right triangle and the altitude to its hypotenuse.

KEy Concept

Geometric Mean For two positive numbers a and b, the geometric mean is the positive number x where the proportion $a: x=x: b$ is true. This proportion can be written using fractions as $\frac{a}{x}=\frac{x}{b}$ or with cross products as $x^{2}=a b$ or $x=\sqrt{a b}$.

EXAMPLE Altitude and Segments of the Hypotenuse

Write IT

Why do you automatically discard the negative root when finding the altitude or geometric mean?
\qquad
\qquad
\qquad
\qquad

2 In $\triangle A B C, B D=6$ and $A D=27$. Find $C D$.
Let $x=C D$.
 and $C D=x$.

Cross products

$$
x=9 \sqrt{2}
$$

Take the positive square root of each side.

Use a calculator.
$C D$ is about

Check Your Progress

In $\triangle D E F, F G=18$, and $D G=4$.
Find $E G$.

3 KITES Ms. Alspach constructed a kite for her son. She had to arrange perpendicularly two support rods, the shorter of which was 27 inches long. If she had to place the short rod 7.25 inches from one end of the long rod in order to form two right triangles with the kite
 fabric, what was the length of the long rod?

Draw a diagram of one of the right triangles formed.

Let $X Y$ be the altitude drawn from the right angle of $\triangle W Y Z$.

$$
\frac{W X}{Y X}=\frac{Y X}{Z X}
$$

The length of the long rod is $7.25+\square$, or about \square inches long.

Check Your Progress

A jetliner has a wingspan, $B D$, of 211 feet. The segment drawn from the front of the plane to the tail, $\overline{A C}$, intersects $\overline{B D}$ at point E. If $A E$ is 163 feet, what is the length of the aircraft?

Theorem 8.3

If the altitude is drawn from the vertex of the right angle of a right triangle to its hypotenuse, then the measure of a leg of the triangle is the geometric mean between the measures of the hypotenuse and the segment of the hypotenuse adjacent to that leg.

FOLDABLES

Organize It

On the Lesson 8-1
Foldable, include drawings to show how to solve problems involving the relationships between parts of a right triangle and the altitude to its hypotenuse.

EXAMPIE Hypotenuse and Segment of Hypotenuse

4 Find c and d in JKL.

$\overline{K M}$ is the altitude of right triangle $J K L$. Use Theorem 8.2 to write a proportion.

$$
\frac{J M}{K M}=\frac{K M}{L M}
$$

$100=5 c$
Cross products

Divide each side by

$\overline{J K}$ is a leg of right triangle $J K L$. Use Theorem 8.3 to write a proportion.

Check Your Progress Find e and f.

8-2 The Pythagorean Theorem and Its Converse

Main Ideas

- Use the Pythagorean Theorem.
- Use the converse of the Pythagorean Theorem.

TEKS G. 5 The student uses a variety of representations to describe geometric relationships and solve problems. (D) Identify and apply patterns from right triangles to solve meaningful problems, including special right triangles (45-45-90 and 30-60-90) and triangles whose sides are Pythagorean triples.
G. 8 The student uses tools to determine measurements of geometric figures and extends measurement concepts to find perimeter, area, and volume in problem situations. (C) Derive, extend, and use the Pythagorean Theorem. G. 11 The student applies the concepts of similarity to justify properties of figures and solve problems. (C) Develop, apply, and justify triangle similarity relationships, such as right triangle ratios, trigonometric ratios, and Pythagorean triples using a variety of methods. Also addresses TEKS G.7(C).

Theorem 8.4 Pythagorean Theorem

In a right triangle, the sum of the squares of the measures of the legs equals the square of the measure of the hypotenuse.

5XAMPLE Find the Length of the Hypotenuse

ONGITUDE AND LATITUDE Carson City, Nevada, is located at about 120 degrees longitude and 39 degrees latitude, NASA Ames is located at about 122 degrees longitude and 37 degrees latitude. Use the lines of longitude and latitude to find the degree distance to
 the nearest tenth degree if you were to travel directly from NASA Ames to Carson City.

The change in longitude between NASA Ames and Carson City is $|119-122|$ or 3 degrees. Let this distance be a.
The change in latitude is $|39-37|$ or 2 degrees.
Let this distance be b.
Use the Pythagorean Theorem to find the distance from NASA Ames to Carson City.

$a^{2}+b^{2}$	$=c^{2}$		Pythagorean Theorem
$3^{2}+2^{2}$	$=c^{2}$		$a=3, b=2$
$+\square$	$=c^{2}$		Simplify.
13	$=c^{2}$		Add.
\square	$=c$		Take the square root of each side.
\square	$\approx c$		Use a calculator.

The degree distance between NASA Ames and Carson City is
about \square degrees.

Check Your Progress Carson City, Nevada, is located at about 120 degrees longitude and 39 degrees latitude. NASA Dryden is located about 117 degrees longitude and 34 degrees latitude. Use the lines of longitude and latitude to find the degree distance to the nearest tenth degree if you were to travel directly from NASA Dryden to Carson City.

EXAMPLE Find the Length of a Leg

FOLDABLES

ORGANIZE IT

On the Lesson 8-2
Foldable, write the Pythagorean Theorem and its converse.

2 Find d.

$(P Q)^{2}+(Q R)^{2}=(P R)^{2} \quad$ Pythagorean Theorem

$$
3^{2}+d^{2}=6^{2} \quad P Q=3, P R=6
$$

$$
9+d^{2}=36 \quad \text { Simplify }
$$

$d=\square$ Take the square root of each side.
$d \approx \square$ Use a calculator.

Check Your Progress

Find x.

Theorem 8.5 Converse of the Pythagorean Theorem If the sum of the squares of the measures of two sides of a triangle equals the square of the measure of the longest side, then the triangle is a right triangle.

EXAMPLE Verify a Triangle is a Right Triangle

(3) COORDINATE GEOMETRY

 Verify that $\triangle A B C$ is a right triangle.Use the Distance Formula to determine the lengths of the sides.

8-2

$$
\begin{array}{rlrl}
A B & =\sqrt{[1-(-9)]^{2}+[-1-(-3)]^{2}} & & \begin{array}{l}
x_{1}=-9, y_{1}=-3, \\
x_{2}=1, y_{2}=-1
\end{array} \\
& =\sqrt{\square^{2}+\square^{2}} & & \text { Subtract. } \\
& =\square \\
B C & =\sqrt{(-3-1)^{2}+[-7-(-1)]^{2}} & & \begin{array}{l}
\text { Simplify. } \\
x_{1}=1, y_{1}=-1, \\
x_{2}=-3, y_{2}=-7
\end{array} \\
& =\sqrt{(-4)^{2}+(-6)^{2}} & & \begin{array}{l}
\text { Subtract. }
\end{array} \\
& =\square \\
A C & =\sqrt{[-3-(-9)]^{2}+[-7-(-3)]^{2}} & & \begin{array}{l}
\text { Simplify. } \\
x_{1}=-9, y_{1}=-3, \\
x_{2}=-3, y_{2}=-7
\end{array} \\
& =\sqrt{6^{2}+(-4)^{2}} & \begin{array}{ll}
\text { Subtract. }
\end{array} \\
& =\sqrt{ } \quad \begin{array}{l}
\text { Simplify. }
\end{array}
\end{array}
$$

By the converse of the Pythagorean Theorem, if the sum of the squares of the measures of two sides of a triangle equals the square of the measure of the longest side, then the triangle is a right triangle.

Since the sum of the squares of two sides equals the square of the \square , $\triangle A B C$ is a right triangle.

Check Your Progress Verify that $\triangle R S T$ is a right triangle.

BUILD YOUR VOGABULARY (page 189)

A Pythagorean triple is three whole numbers that satisfy the equation \square, where c is the greatest number.

EXAMPLE Pythagorean Triples

FOLDABLES

Organize IT

Write examples of Pythagorean triples under the Lesson 8-2 tab.

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

4 Determine whether each set of measures can be the sides of a right triangle. Then state whether they form a Pythagorean triple.
a. 9, 12, 15

Since the measure of the longest side is 15,15 must be c. Let a and b be 9 and 12 .

These segments form the sides of a right triangle since they satisfy the Pythagorean Theorem. The measures are whole numbers and form a Pythagorean triple.
b. $4 \sqrt{3}, 4$, and 8

Since the measure of the longest side is 8 , let $c=8$.

Since these measures satisfy the Pythagorean Theorem, they form a right triangle. Since the measures are not all whole numbers, they do not form a Pythagorean triple.

Check Your Progress
Determine whether each set of measures are the sides of a right triangle. Then state whether they form a Pythagorean triple.
a. $5,8,9$

b. $3, \sqrt{5}, \sqrt{14}$

8-3 Special Right Triangles

Main Ideas

Use properties of $45^{\circ}-45^{\circ}-90^{\circ}$ triangles.

- Use properties of $30^{\circ}-60^{\circ}-90^{\circ}$ triangles.

Theorem 8.6

In a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle, the length of the hypotenuse is $\sqrt{2}$ times the length of a leg.

EXAMPIE Find the Measure of the Legs

(1) Find a.

The length of the hypotenuse of a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle is $\sqrt{2}$ times as long as a leg of the triangle.

$$
\begin{aligned}
R S & =(S T) \sqrt{2} \\
\square & =\square \sqrt{2} \\
\frac{8}{\sqrt{2}} & =a
\end{aligned}
$$ product in the denominator is a denominator is a

TEKS G. 5 The student uses a variety of representations to describe geometric relationships and solve problems. (D) Identify and apply patterns from right triangles to solve meaningful problems, including special right triangles (45-45-90 and 30-60-90) and triangles whose sides are Pythagorean triples. G. 11 The student applies the concepts of similarity to justify properties of figures and solve problems. (C) Develop, apply, and justify triangle similarity relationships, such as right triangle ratios, trigonometric ratios, and Pythagorean triples using a variety of methods.

Remember It

To rationalize a denominator, multiply the fraction by 1 in the form of a radical over itself so that the
 .

EXAMPLE $30^{\circ}-60^{\circ}-90^{\circ}$ Triangles

2 Find $Q R$.

Explain what it means for a triangle to be classified as a right triangle. (Lesson 4-1)
\qquad

FOLDABLES

Organize It

On the Lesson 8-3 Foldable, include drawings of a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle and of a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle. Show how to use the Pythagorean Theorem and properties of these special triangles to find missing parts.

$\overline{P R}$ is the longer leg, $\overline{P Q}$ is the shorter leg, and $\overline{Q R}$ is the hypotenuse.

$$
P Q=\frac{1}{2}(Q R)
$$

$=Q R \quad$ Multiply each side by 2.

The length of $Q R$ is
 centimeters.

Check Your Progress

Find $B C$.

EXAMPLE Special Triangles in a Coordinate Plane

3 COORDINATE GEOMETRY $\triangle W X Y$ is a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle with right angle X and $\overline{W X}$ as the longer leg. Graph points $X(-2,7)$ and $Y(-7,7)$ and locate point W in Quadrant III.

Graph X and $Y . \overline{X Y}$ lies on a horizontal gridline of the coordinate plane. Since $\overline{W X}$ will be perpendicular to $\overline{X Y}$, it lies on a vertical gridline. Find the length of $\overline{X Y}$.

Homework Assignment

Page(s):
Exercises:

TEKS G. 1 The student understands the structure of, and relationships within, an axiomatic system. (B) Recognize the historical development of geometric systems and know mathematics is developed for a variety of purposes. G. 11 The student applies the concepts of similarity to justify properties of figures and solve problems. (C) Develop, apply, and justify triangle similarity relationships, such as right triangle ratios, trigonometric ratios, and Pythagorean triples using a variety of methods.

BUILD YOUR VOCABULARY (page 189)

Main Ideas

Find trigonometric ratios using right triangles.

- Solve problems using trigonometric ratios.

Key Concept

Trigonometric Ratios
$\sin A=\frac{B C}{A B}$
$\sin B=\frac{A C}{A B}$

$\cos A=\frac{A C}{A B}$
$\cos B=\frac{B C}{A B}$

$\tan A=\frac{B C}{A C}$
$\tan B=\frac{A C}{B C}$

5XAMPLE Find Sine, Cosine, and Tangent Ratios

The three most common trigonometric ratios are sine, cosine, and tangent.

1 Find $\sin L, \cos L, \tan L, \sin N, \cos N$, and $\tan N$. Express each ratio as a fraction and as a decimal.
$\sin L=\frac{\text { opposite leg }}{\text { hypotenuse }}$

$$
=\frac{M N}{L N}
$$

$\tan L=\frac{\text { opposite leg }}{\text { adjacent leg }}$
$\tan N=\frac{\text { opposite leg }}{\text { adjacent leg }}$
$=\frac{M N}{L M}$

$=\frac{L M}{M N}$

Organize It

On your Lesson 8-4 Foldable, include steps to follow when finding trigonometric ratios on a calculator. Be sure to note that the calculator should be in degree mode rather than radian mode.

Check Your Progress Find $\sin A, \cos A, \tan A, \sin B, \cos B$, and $\tan B$. Express each ratio as a fraction and as a decimal.

EXAMPLE Evaluate Expressions

2 Use a calculator to find each value to the nearest ten-thousandth.
a. $\tan 56^{\circ}$

b. $\cos 90^{\circ}$

Check Your Progress
Use a calculator to find each value to the nearest ten-thousandth.
a. $\sin 48^{\circ}$
b. $\cos 85^{\circ}$

EXAMPLE Use Trigonometric Ratios to Find a Length

3 EXERCISING A fitness trainer sets the incline on a treadmill to 7°. The walking surface is 5 feet long. Approximately how many inches did the trainer raise the end of the treadmill from the floor?

Let y be the height of the treadmill from the floor in inches. The length of the treadmill is \square feet, or \square inches.

The treadmill is about \square inches high.

Check Your Progress The bottom of a handicap ramp is 15 feet from the entrance of a building. If the angle of the ramp is about 4.8°, how high does the ramp rise off the ground to the nearest inch?

Homework

 AssignmentPage(s):
Exercises:

8-5 Angles of Elevation and Depression

TEKS G. 11 The student applies the concepts of similarity to justify properties of figures and solve problems. (C) Develop, apply, and justify triangle similarity relationships, such as right triangle ratios, trigonometric ratios, and Pythagorean triples using a variety of methods.

BUILD YOUR VOCABULARY (page 188)

An angle of elevation is the angle between the line of sight and the horizontal when an observer looks \square

EXAMPIE Angle of Elevation

1 CIRCUS ACTS At the circus, a person in the audience watches the high-wire routine. A 5 -foot- 6 -inch tall acrobat is standing on a platform that is $\mathbf{2 5}$ feet off the ground. How far is the audience member from the base of the platform, if the angle of elevation from the audience member's line of sight to the top of the acrobat is 27° ? Make a drawing.

Since $Q R$ is 25 feet and $R S$ is 5 feet 6 inches or \square feet, $Q S$ is 30.5 feet. Let x represent $P Q$.

$\tan =\frac{\text { opposite }}{\text { adjacent }}$

$\tan 27^{\circ}$	$=\frac{30.5}{x}$		$Q S=30.5, P Q=x$
$x \tan 27^{\circ}$	$=30.5$		Multiply each side by x.
x	$=\frac{30.5}{\tan 27^{\circ}}$		Divide each side by $\tan 27^{\circ}$.

Simplify.

The audience member is about \square feet from the base of the platform.

FOLDABLES

Organize It

On the Lesson 8-5 Foldable, include a drawing that illustrates angle of elevation and one that illustrates angle of depression.

Remember It

There may be more than one way to solve a problem. Refer to page 465 of your textbook for another method you could use to solve Example 2.

Check Your Progress At a diving competition, a 6-foot-tall diver stands atop the 32 -foot platform. The front edge of the platform projects 5 feet beyond the end of the pool. The pool itself is 50 feet in length. A camera is set up at the opposite end of the pool even with the pool's edge. If the camera is angled so that its line of sight extends to the top of the diver's head, what is the camera's angle of elevation to the nearest degree?

BUILD YOUR VOCABULARY (page 188)

An angle of depression is the angle between the line of sight when an observer looks \square and the horizontal.

EXAMPIE Angle of Depression

2 TEST EXAMPLE A wheelchair ramp is 3 meters long and inclines at 6°. Find the height of the ramp to the nearest tenth centimeter.
A 0.3 cm
B 31.4 cm
C 31.5 cm
D 298.4 cm

Read the Test Item

The angle of depression between the ramp and the horizontal
\square Use trigonometry to find the height of the ramp.

Solve the Test Item

The ground and the horizontal level with the platform to which the ramp extends are \square. Therefore, $m \angle Z Y X=m \angle W X Y$ since they are \square angles.
Homework Assignment
Check Your Progress A roller coaster car is at one of its highest points. It drops at a 63° angle for 320 feet. How high was the roller coaster car to the nearest foot before it began its fall?

The height of the ramp is about \square meters, or $0.314(100)=31.4$ centimeters. The answer is \square
\square

8-6 The Law of Sines

TESS G. 11 The student applies the concepts of similarity to justify properties of figures and solve problems. (C) Develop, apply, and justify triangle similarity relationships, such as right triangle ratios, trigonometric ratios, and Pythagorean triples using a variety of methods.

Main Ideas

- Use the Law of Sines to solve triangles.
- Solve problems by using the Law of Sines.

KEY CONCEPT

Law of Sines Let $\triangle A B C$ be any triangle with a, b, and c representing the measures of the sides opposite the angles with measures A, B, and C, respectively. Then $\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$.

BUILD YOUR VOGABULARY (page 188)

In trigonometry, the Law of Sines can be used to find missing parts of triangles that are not right triangles.

EXAMPIE Use the Law of Sines

(1) a. Find p. Round to the nearest tenth.

$$
\frac{\sin P}{p}=\frac{\sin R}{r} \quad \text { Law of Sines }
$$

$$
\frac{\sin 17^{\circ}}{p}=\frac{\sin 29^{\circ}}{8} \quad m \angle P=17, m \angle R=29, r=8
$$

Divide.

$$
4.8 \approx p
$$

Use a calculator.
b. Find $m \angle L$ to the nearest degree in $\triangle L M N$ if $n=7$, $\ell=9$, and $m \angle N=43$.

$$
\frac{\sin L}{\ell}=\frac{\sin N}{n} \quad \text { Law of Sines }
$$

$\square \sin L=\square \sin 43 \quad$ Cross Products
$\sin L=\frac{9 \sin 43}{7} \quad$ Divide.

$$
\begin{array}{ll}
L=\sin ^{-1}\left(\frac{9 \sin 43}{7}\right) & \text { Solve for } L . \\
L \approx \square & \text { Use a calcul }
\end{array}
$$

Check Your Progress

a. Find c.

b. Find $m \angle T$ to the nearest degree in $\triangle R S T$ if $r=12, t=7$, and $m \angle R=76$.

BUILD YoUR VOCABULARY (page 189)

Solving a triangle means finding the measures of all of the

EXAMPIE Solve Triangles

a. Solve $\triangle D E F$ if $m \angle D=112, m \angle F=8$, and $f=2$. Round angle measures to the nearest degree and side measures to the nearest tenth.

We know the measures of two angles of the triangle. Use the Angle Sum Theorem to find $m \angle E$.

$$
\begin{aligned}
m \angle D+m \angle E+m \angle F & =180 \\
+m \angle E+\square & =180
\end{aligned}
$$

Angle Sum Theorem

$$
m \angle D=\square
$$

$$
m \angle F=\square
$$

$$
\begin{aligned}
\square+m \angle E & =180 \\
m \angle E & =\square
\end{aligned}
$$

Add.
Subtract 120 from each side.

Since we know $m \angle F$ and f, use proportions involving $\frac{\sin F}{f}$.

To find d :

$$
\begin{array}{ll}
\frac{\sin F}{f}=\frac{\sin d}{d} & \text { Law of Sines } \\
\frac{\sin 8^{\circ}}{2}=\frac{\sin \square}{d} & \text { Substitute. }
\end{array}
$$

$d \sin 8^{\circ}=2 \sin \quad$ Cross products.

$$
\begin{array}{ll}
d=\frac{2 \sin \square}{\sin 8^{\circ}} \quad \text { Divide each side by } \sin 8^{\circ} . \\
d \approx \square & \text { Use a calculator. }
\end{array}
$$

To find e :

$$
\begin{aligned}
\frac{\sin F}{f} & =\frac{\sin E}{e} & \text { Law of Sines } \\
\frac{\sin 8^{\circ}}{\square} & =\frac{\sin 60^{\circ}}{e} & \text { Substitute. } \\
e \sin 8^{\circ} & =\square \sin 60^{\circ} & \text { Cross products. } \\
e & =\frac{\square \sin 60^{\circ}}{\sin 8^{\circ}} & \text { Divide each side by } \sin 8^{\circ} . \\
e & \approx \square & \text { Use a calculator. }
\end{aligned}
$$

Therefore $m \angle E=\square, d \approx \square$, and $e \approx \square$.

Check Your Progress Solve $\triangle R S T$ if $m \angle R=43$, $m \angle T=103$, and $r=14$. Round angle measures to the nearest degree and side measures to the nearest tenth.

Remember It

If you round before the final answer, your results may differ from results in which rounding was not done until the final answer.

Homework

Assignment

Page(s):
Exercises:
b. Solve $\triangle H J K$ if $m \angle J=32, h=30$, and $j=16$. Round angle measures to the nearest degree and side measures to the nearest tenth.
We know the measure of two sides and an angle opposite one of the sides. Use the Law of Sines.

Check Your Progress
Solve $\triangle T U V$ if $m \angle T=54, t=12$,
side measures to the nearest tenth.

8-7 The Law of Cosines

TEKS G. 11 The student applies the concepts of similarity to justify properties of figures and solve problems. (C) Develop, apply, and justify triangle similarity relationships, such as right triangle ratios, trigonometric ratios, and Pythagorean triples using a variety of methods.

Main Ideas

- Use the Law of Cosines to solve triangles.
- Solve problems by using the Law of Cosines.

BUILD YOUR VOGABULARY (page 188)

The Law of Cosines allows us to solve a triangle when the
\square cannot be used.

EXAMPLE Two Sides and the Included Angle

(1) Find x if $y=11, z=25$, and $m \angle X=45$.

Use the Law of Cosines since the measures of two sides and the included angle are known.

$$
\begin{array}{ll}
x^{2}=y^{2}+z^{2}-2 y z \cos \square & \text { Law of Cosines } \\
x^{2}=11^{2}+25^{2}-2(11)(25) \cos \square & y=11, z=25 \\
& m \angle \square=\square
\end{array}
$$

$x^{2}=746-550 \cos$ \square
$x=\sqrt{746-550 \cos \square}$
\square
Simplify.

Take the square root of each side.

Use a calculator.

Check Your Progress Find r if $s=15, t=32$, and $m \angle R=40$.

EXAMPIE Three Sides

FOLDABLES

OrGANIze IT

On the Lesson 8-7 Foldable, try to include your own example of a problem that can be solved using the Law of Cosines. Show how you solved your problem.

Write IT

Name two cases when you would use the Law of Cosines to solve a triangle and two cases when you would use the Law of Sines to solve a triangle.
\qquad
\qquad
\qquad
\qquad
\qquad

2 Find $m \angle L$.

$$
\begin{array}{rlrl}
\ell^{2} & =m^{2}+n^{2}-2 m n \cos L & & \text { Law of Cosines } \\
\square & =27^{2}+5^{2}-2(27)(5) \cos L & & \text { Replace } \ell, m \text {, and } n . \\
-\square & =754-270 \cos L & & \text { Simplify. } \\
\frac{-178}{}=-270 \cos L & & \text { Subtract. } \\
\cos ^{-1}\left(\frac{178}{270}\right) & =L & & \text { Divide. } \\
\square & & \text { Solve for } L . \\
& \approx L & & \text { Use a calculator. }
\end{array}
$$

Check Your Progress
 Find $m \angle F$.

EXAMPIE Select a Strategy

3 Solve $\triangle D E F$. Round angle

 measures to the nearest degree and side measures to the nearest tenth.

Since we know the measures of two sides and the included angle, use the Law of Cosines.

$$
\begin{array}{ll}
f^{2}=d^{2}+e^{2}-2 d e \cos F & \text { Law of Cosines } \\
f^{2}=32^{2}+17^{2}-2(32)(17) \cos 145^{\circ} & d=32, e=17,
\end{array}
$$

$$
f=\sqrt{\square-1088 \cos 145^{\circ}}
$$

$$
f \approx \square
$$

Homework
 Assignment

Page(s):
Exercises:

Next, we can find $m \angle D$ or $m \angle E$. If we decide to find $m \angle D$, we can use either the Law of Sines or the Law of Cosines to find this value.

$$
\frac{\sin F}{f}=\frac{\sin D}{d} \quad \text { Law of Sines }
$$

$32 \sin 145^{\circ}=46.9 \sin D \quad$ Cross products

$$
\frac{32 \sin 145^{\circ}}{46.9}=\sin D
$$

Divide each side by 46.9.
$\sin ^{-1}\left(\frac{32 \sin 145^{\circ}}{46.9}\right)=D \quad$ Take the inverse of each side.

$$
\square \approx D \quad \text { Use a calculator }
$$

Use the Angle Sum Theorem to find $m \angle E$.

Therefore, $f \approx \square, m \angle E \approx \square$, and $m \angle D \approx \square$.

Check Your Progress Determine whether the Law of Sines or the Law of Cosines should be used first to solve $\triangle A B C$. Then solve $\triangle A B C$. Round angle measures to the nearest degree and side measures to the nearest tenth.

BRINGING IT ALL TOGETHER

STUDY GUIDE

| FOLDABLES |
| :--- | :--- | :--- |\quad| VOCABULARY |
| :--- |
| PUZZLEMAKER |\quad| BUILDYOUR |
| :--- |
| Use your Chapter 8 Foldable to
 help you study for your chapter
 test. |
| To make a crossword puzzle,
 word search, or jumble
 puzzle of the vocabulary words
 in Chapter 8, go to: |
| You can use your completed
 Vocabulary Builder
 (pages 188-189) to help you
 solve the puzzle. |

8-1

Geometric Mean

Find the geometric mean between each pair of numbers.

1. 4 and 9

2. 20 and 30

3. Find x and y.

8-2

The Pythagorean Theorem and Its Converse

4. For the figure shown, which statements are true?
a. $m^{2}+n^{2}=p^{2}$
b. $n^{2}=m^{2}+p^{2}$
c. $m^{2}=n^{2}+p^{2}$
d. $m^{2}=p^{2}-n^{2}$
e. $p^{2}=n^{2}-m^{2}$
f. $n^{2}-p^{2}=m^{2}$
g. $n=\sqrt{m^{2}+p^{2}}$
h. $p=\sqrt{m^{2}-n^{2}}$
.

Pythagorean
 Which of the following are Pythagorean triples? Write yes or no.

5. $10,24,26$
\square
6. $\sqrt{2}, \sqrt{2}, 2$

7. $10,6,8$

8-3

Special Right Triangles

Complete each statement.

8. In a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle, to find the length of the
hypotenuse, multiply the length of a leg by \square
9. In a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle, to find the length of the hypotenuse, multiply the length of the shorter leg by \square
10. In a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle, to find the length of the longer leg, multiply the length of the shorter leg by \square

Indicate whether each statement is always, sometimes,

 or never true.11. The lengths of the three sides of an isosceles triangle satisfy the Pythagorean Theorem. \square
12. The lengths of the sides of a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle form a Pythagorean triple. \square
13. The lengths of all three sides of a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle are positive integers. \square
8-4

Trigonometry

Write a ratio using the side lengths in the figure to represent each of the following trigonometric ratios.

14. $\sin N$

15
17. $\tan M$ \square
\square
16. $\tan N$

18. $\sin M$ \square
19. $\cos M$
\square

Chapter 8 BRINGING IT ALL TOGETHER

8-5

Angles of Elevation and Depression

Refer to the figure. The two observers are looking at one another. Select the correct choice for each question.
20. What is the line of sight?

a. line $R S$
b. line $S T$
c. line $R T$
d. line $T U$
21. What is the angle of elevation? \square
a. $\angle R S T$
b. $\angle S R T$
c. $\angle R T S$
d. $\angle U T R$
22. What is the angle of depression? \square
a. $\angle R S T$
b. $\angle S R T$
c. $\angle R T S$
d. $\angle U T R$
23. A tree that is 12 meters tall casts a shadow that is 15 meters long. What is the angle of elevation of the sun?

8-6
The Law of Sines
24. Refer to the figure. According to the Law of Sines, which of the following are correct statements?

a. $\frac{m}{\sin M}=\frac{n}{\sin N}=\frac{p}{\sin P}$
b. $\frac{\sin m}{M}=\frac{\sin n}{N}=\frac{\sin p}{P}$
c. $\frac{\cos M}{m}=\frac{\cos N}{n}=\frac{\cos P}{p}$
d. $\frac{\sin M}{m}+\frac{\sin N}{n}=\frac{\sin P}{p}$
e. $(\sin M)^{2}+(\sin N)^{2}=(\sin P)^{2}$
f. $\frac{\sin P}{p}=\frac{\sin M}{m}=\frac{\sin N}{n}$
25. Solve $\triangle A B C$ if $m \angle A=50, m \angle B=65$, and $a=12$. Round angle measures to the nearest degree and side measures to the nearest tenth.

8-7

The Law of Cosines
Write true or false for each statement. If the statement is false, explain why.
26. The Law of Cosines applies to right triangles.

27. The Law of Cosines is used to find the third side of a triangle when you are given the measures of two sides and the nonincluded angle.
\square
28. Refer to the figure. According to the Law of Cosines, which statements are correct for $\triangle D E F$?

a. $d^{2}=e^{2}+f^{2}-e f \cos D$
b. $e^{2}=d^{2}+f^{2}-2 d f \cos E$
c. $d^{2}=e^{2}+f^{2}+2 e f \cos D$
d. $f^{2}=d^{2}+e^{2}-2 e f \cos F$
e. $f^{2}=d^{2}+e^{2}-2 d e \cos F$
f. $d^{2}=e^{2}+f^{2}$
g. $\frac{\sin D}{d}=\frac{\sin E}{e}=\frac{\sin F}{f}$
h. $d^{2}=e^{2}+f^{2}-2 e f \cos D$
29. Solve $\triangle D E F$ if $m \angle F=37, d=3$, and $e=7$. Round angle measures to the nearest degree and side measures to the nearest tenth.

8

Checklist

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 8.

ARE YOU READY FOR THE CHAPTER TEST?

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 8 Practice Test on page 491 of your textbook as a final check.

I used my Foldable or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 8 Study Guide and Review on pages 486-490 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 8 Practice Test on page 491 of your textbook.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 8 Foldable.
- Then complete the Chapter 8 Study Guide and Review on pages 486-490 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 8 Practice Test on page 491 of your textbook.

9
Transformations

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.

Begin with one sheet of notebook paper.

STEP 1 Fold a sheet of notebook paper in half lengthwise.

STEP 2 Cut on every third line to create 8 tabs.

STEP 3 Label each tab with a vocabulary word from this chapter.

NOTE-TAKING TIP: In addition to writing important definitions in your notes, be sure to include your own examples of the concepts presented.

curven 9

BUILD YOUR VOCABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 9. As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

Vocabulary Term	Found on Page	Definition	Description or Example
angle of rotation			
center of rotation			
component form			
composition			
dilation			
direction			
invariant points			
isometry			
line of reflection			
line of symmetry			
magnitude			
point of symmetry			
reflection			

9-1 Reflections

Main Ideas

Draw reflected images.

- Recognize and draw lines of symmetry and points of symmetry.

TEKS G. 5 The student uses a variety of representations to describe geometric relationships and solve problems. (C) Use properties of transformations and their compositions to make connections between mathematics and the real world, such as tessellations. G. 10 The student applies the concept of congruence to justify properties of figures and solve problems.
(A) Use congruence transformations to make conjectures and justify properties of geometric figures including figures represented on a coordinate plane.

BUILD YOUR VOGABULARY (pages 220-221)

A reflection is a transformation representing a \square of a figure.

The segment connecting a point and its image is

by line m. Line m is called the line of reflection.
A reflection is a congruence transformation, or an isometry.

EXAMPIE Reflecting a Figure in a Line

(1) Draw the reflected image of quadrilateral $W X Y Z$ in line p.

STEP 1 Draw segments perpendicular to line p from each point W, X, Y, and Z.

STEP 2 Locate $W^{\prime}, X^{\prime}, Y^{\prime}$, and Z^{\prime} so that line p is the \square bisector of $\overline{W W^{\prime}}, \overline{X X^{\prime}}, \overline{Y Y^{\prime}}$, and $\overline{Z Z^{\prime}}$. Points $W^{\prime}, X^{\prime}, Y^{\prime}$, and Z^{\prime} are the respective images of

STEP 3 Connect vertices $W^{\prime}, X^{\prime}, Y^{\prime}$, and Z^{\prime}.

Check Your Progress

Draw the reflected image of quadrilateral $A B C D$ in line n.

EXAMPLE Relection in the x-axis

Organize It

Write the definition of reflection under the reflection tab. Include a sketch to illustrate a reflection.

2 COORDINATE GEOMETRY Quadrilateral $A B C D$ has

 vertices $A(1,1), B(3,2), C(4,-1)$, and $D(2,-3)$.a. Graph $A B C D$ and its image under reflection in the x-axis. Compare the coordinates of each vertex with the coordinates of its image.

Use the vertical grid lines to find the corresponding point for each vertex so that the x-axis is equidistant from each vertex and its image.

$D(2,-3) \longrightarrow D^{\prime}$

Plot the reflected vertices and connect to form the image $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$. The x-coordinates stay the same, but the y-coordinates are opposite. That is, $(a, b) \longrightarrow(a,-b)$.
b. Graph $A B C D$ and its image under reflection in the origin. Compare the coordinates of each vertex with the coordinates of its image.

Use the horizontal and vertical distances. From A to the origin is 2 units down and 1 unit left. So, A^{\prime} is located by repeating that pattern from the origin.

Plot the reflected vertices and connect to form the image $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$. Both the x-coordinates and y-coordinates are opposite. That is, $(a, b) \longrightarrow(-a,-b)$.

c. Graph $A B C D$ and its image under reflection in the

 line $y=x$. Compare the coordinates of each vertex with the coordinates of its image.The slope of $y=x$ is $1 . \overline{C^{\prime} C}$ is perpendicular to $y=x$, so its slope is -1 . From C, move up 5 units and to the left 5 units to C^{\prime}.

Plot the reflected vertices and connect. Comparing coordinates shows that $(a, b) \longrightarrow(b, a)$.

Check Your Progress

a. Quadrilateral $L M N P$ has vertices $L(-1,1), M(5,1)$, $N(4,-1)$, and $P(0,-1)$. Graph $L M N P$ and its image under reflection in the x-axis.

b. Quadrilateral $L M N P$ has vertices $L(-1,1), M(5,1)$, $N(4,-1)$, and $P(0,-1)$. Graph $L M N P$ and its image under reflection in the origin.

c. Quadrilateral $L M N P$ has vertices $L(-1,1), M(5,1)$, $N(4,-1)$, and $P(0,-1)$. Graph $L M N P$ and its image under reflection in the line $y=x$.

BUILD YOUR VOCABULARY (pages 220-221)

Some figures can be folded so that the two halves

a line of symmetry.
For some figures, a point can be found that is a common point of reflection for all points on a figure. This common point of reflection is called a point of symmetry.

Homework Assignment

Page(s):
Exercises:

EXAMPLE Draw Lines of Summetry

3 Determine how many lines of symmetry a regular pentagon has. Then determine whether a regular pentagon has a point of symmetry.

A regular pentagon has \square lines of symmetry.

A point of symmetry is a point that is a common point of reflection for all points on the figure. There is not one point of symmetry in a regular pentagon.

Check Your Progress Determine how many lines of symmetry an equilateral triangle has. Then determine whether an equilateral triangle has a point of symmetry.

9-2 Translations

MAIN IDEAS

Draw translated images using coordinates.

- Draw translated images by using repeated reflections.

TEKS G. 2 The student analyzes geometric relationships in order to make and verify conjectures. (B) Make conjectures about angles, lines, polygons, circles, and three-dimensional figures and determine the validity of the conjectures, choosing from a variety of approaches such as coordinate, transformational, or axiomatic. G. 5 The student uses a variety of representations to describe geometric relationships and solve problems.
(C) Use properties of transformations and their compositions to make connections between mathematics and the real world, such as tessellations. Also addresses TEKS G.10(A).

BUILD YOUR VOCABULARY (pages 220-221)

A translation is a transformation that moves all points of a figure the same distance in the same \square

EXAMPIE Translations in the Coordinate Plane

(1) COORDINATE GEOMETRY

 Parallelogram TUVW has vertices $T(-1,4), U(2,5), V(4,3)$, and $W(1,2)$. Graph $T U V W$ and its image for the translation $(x, y) \longrightarrow(x-4, y-5)$.This translation moved every point of the preimage 4 units left and 5 units down.

Plot and then connect the translated vertices $T^{\prime} U^{\prime} V^{\prime}$ and W^{\prime}.

Check Your Progress Parallelogram $L M N P$ has vertices $L(-1,2), M(1,4), N(3,2)$, and $P(1,0)$. Graph $L M N P$ and its image for the translation $(x, y) \longrightarrow(x+3, y-4)$.

EXAMPIE Repeated Translations

FOLDABLES

Organize It

Write the definition of translation under the translation tab. Draw a figure and its image for a translation on a coordinate plane.

Remember It

When you translate the point at (x, y) to the point at $(x+a, y+b)$, the number a tells how far to move left or right. The number b tells how far to move up or down.

2 ANIMATION The graph shows

 repeated translations that result in the animation of a raindrop. Find the translation that moves raindrop 2 to raindrop 3, and then the translation that moves raindrop 3 to raindrop 4.To find the translation from raindrop 2 to raindrop 3, use the coordinates
 at the top of each raindrop. Use the coordinates $(1,2)$ and $(-1,-1)$ in the formula.
$(x, y) \longrightarrow(x+a, y+b)$.
$(1,2) \longrightarrow(-1,-1)$

$a=$
Subtract 1 from each side.
$y=2$
Subtract 2 from each side.

The translation is \square
\square from raindrop 2 to raindrop 3 . Use the coordinates $(-1,-1)$ and $(-1,-4)$ to find the translation from raindrop 3 to raindrop 4.

$$
\begin{aligned}
(x, y) & \longrightarrow(x+a, y+b) \\
(-1,-1) & \longrightarrow(-1,-4)
\end{aligned}
$$

The translation is \square from raindrop 3 to raindrop 4.

Homework Assignment

Page(s):
Exercises:

9-3 Rotations

Main IDEAS

- Draw rotated images using the angle of rotation.
- Identify figures with rotational symmetry.

TEKS G. 5 The student uses a variety of representations to describe geometric relationships and solve problems. (C) Use properties of transformations and their compositions to make connections between mathematics and the real world, such as tessellations. G. 10 The student applies the concept of congruence to justify properties of figures and solve problems. (A) Use congruence transformations to make conjectures and justify properties of geometric figures including figures represented on a coordinate plane.

BUILD YOUR VOGABULARY (pages 220-221)

A rotation is a transformation that turns every point of a preimage through a specified \square about a fixed point.

Postulate 9.1

In a given rotation, if A is the preimage, A^{\prime} is the image, and P is the center of rotation, then the measure of the angle of rotation, $\angle A P A^{\prime}$ is twice the measure of the acute or right angle formed by the intersecting lines of reflection.

Corollary 9.1

Reflecting an image successively in two perpendicular lines results in a 180° rotation.

EXAMPL Reflections in Intersection Lines

Find the image of parallelogram WXYZ under reflections in line p and then line q.

First reflect parallelogram $W X Y Z$ in line \square Then label the image $W^{\prime} X^{\prime} Y^{\prime} Z^{\prime}$.

Next, reflect the image in line \square Then label the image $W^{\prime \prime} X^{\prime \prime} Y^{\prime \prime} Z^{\prime \prime}$.

Parallelogram $W^{\prime \prime} X^{\prime \prime} Y^{\prime \prime} Z^{\prime \prime}$ is the image of parallelogram
\square under reflections in lines p and q.

Foldabies

OrGanize It

Write the definition of rotation under the rotation tab. Include a sketch that indicates the angle, direction, and center of rotation.

Write IT

How many degrees are in a half-turn rotation? a full-turn rotation?
\qquad
\qquad
\qquad
\qquad

Homework Assignment

Page(s):

Exercises:
QUILTS Using the quilt in Example 3 in the Student Edition, identify the order and magnitude of the symmetry in each part of the quilt.
a. medium star directly to the left of the large star in the center of the quilt

The medium-sized star has \square points. So it has a rotational symmetry of order 16 . To find the magnitude, divide \square by 16 to find that the magnitude is

b. tiny star above the medium sized star in part a

The tiny star has 8 points, so the order is \square. Divide
360° by 8 to find that the magnitude is \square

Identify the order and magnitude of the rotational symmetry for each regular polygon.
a. nonagon \square
b. 18-gon \square

9-4 Tessellations

TEKS G. 5 The student uses a variety of representations to describe geometric relationships and solve problems. (C) Use properties of transformations and their compositions to make connections between mathematics and the real world, such as tessellations.

Main IDEAS

- Identify regular tessellations.
- Create tessellations with specific attributes.

BUILD YOUR VOCABULARY (pages 220-221)

A pattern that \square a plane by \square the same figure or set of figures so that there are no overlapping or empty spaces is called a tessellation.
A regular tessellation is a tessellation formed by only one type of regular polygon.

Tessellations containing the same arrangement of shapes and \square at each vertex are called uniform.

A uniform tessellation formed using two or more regular
 is called a semi-regular tessellation.

EXAMPLE Regular Polygons

FOLDABLES

Organize It

Write the definitions of tessellation, regular tessellation, and uniform tessellation under the appropriate tabs. In each case, include a sketch that illustrates the definition.

(1) Determine whether a regular 16-gon tessellates the plane. Explain.

Use the Interior Angle Theorem. Let $\angle 1$ represent one interior angle of a regular 16-gon.
$m \angle 1=\frac{180(n-2)}{n}=\frac{180(16-2)}{16}$ or \square
Since \square is not a factor of 360 , a 16 -gon will not tessellate the plane.

Check Your Progress
Determine whether a regular 20-gon tessellates the plane. Explain.

EXAMPIE Semi-Regular Tessellation

2 Determine whether a semi-regular tessellation can be created from regular nonagons and squares, all having sides 1 unit long.

Each interior angle of a regular nonagon measures 140°. Each angle of a square measures 90°. Find whole-number values for

Review It
What is the sum of the interior angles of a regular pentagon? (Lesson 8-1)
\qquad
\qquad
n and s such that $140 n+90 s=360$. All whole numbers greater than 3 will result in a negative value for s.

There are no whole number values for n and s so that $140 n+90 s=360$.

Check Your Progress Determine whether a semi-regular tessellation can be created from regular hexagon and squares, all having sides 1 unit long. Explain.

EXAMPLE Classify Tessellations

3 STAINED GLASS Determine whether the pattern is a tessellation. If so, describe it as uniform, regular, semi-regular, or not uniform.

The pattern is a tessellation because at the different vertices the sum of the angles is \square The tessellation is not uniform because each vertex does not have the same arrangement of shapes and \square

Check Your Progress
Determine whether the pattern is a tessellation. If so, describe it as uniform, regular, semi-regular, or not uniform.

TEKS G. 5 The student uses a variety of representations to describe geometric relationships and solve problems. (C) Use properties of transformations and their compositions to make connections between mathematics and the real world, such as tessellations. G. 11 The student applies the concepts of similarity to justify properties of figures and solve problems. (A) Use and extend similarity properties and transformations to explore and justify conjectures about geometric figures.

Main Ideas

- Determine whether a dilation is an enlargement, a reduction, or a congruence transformation.
- Determine the scale factor for a given dilation.

Key Concept

Dilation

- If $|r|>1$, the dilation is an enlargement.
- If $0<|r|<1$, the dilation is a reduction.
- If $|r|=1$, the dilation is a congruence transformation.
- If $r>0, P^{\prime}$ lies on $\overrightarrow{C P}$ and $C P=r \cdot C P$. If $r<0, P^{\prime}$ lies on $\overrightarrow{C P^{\prime}}$ the ray opposite $\overrightarrow{C P}$, and $C P^{\prime}=|r| \cdot C P$. The center of a dilation is always its own image.

BUILD YOUR VOCABULARY (pages 220-221)

A dilation is a transformation that changes the \square of a figure.

A dilation is a similarity transformation; that is, dilations produce \square figures.

Theorem 9.1

If a dilation with center C and a scale factor of r transforms A to E and B to D, then $E D=|r|(A B)$.

Theorem 9.2

If $P(x, y)$ is the preimage of a dilation centered at the origin with a scale factor r, then the image is $P^{\prime}(r x, r y)$.

EXAMPIE Determine Measures Under Dilations

(1) Find the measure of the dilation image or the preimage of $\overline{C D}$ using the given scale factor.
a. $C D=15, r=3$

Since $|r|>1$, the dilation is an enlargement.
$C^{\prime} D^{\prime}=|r|(C D)$

Dilation Theorem
$|r|=3, C D=15$
Multiply.
b. $C^{\prime} D^{\prime}=7, r=-\frac{2}{3}$

Since $0<|r|<1$, the dilation is a reduction.

$$
\begin{array}{rll}
C^{\prime} D^{\prime} & =|r|(C D) & \text { Dilation Theorem } \\
\square=\square(C D) & |r|=\frac{2}{3}, C^{\prime} D^{\prime}=7 \\
\square=C D & \text { Multiply each side by } \frac{3}{2} .
\end{array}
$$

Check Your Progress Find the measure of the dilation image or the preimage of $\overline{A B}$ using the given scale factor.
a. $A B=16, r=22$
b. $A^{\prime} B^{\prime}=24, r=\frac{2}{3}$

EXAMPLE Dilations in the Coordinate Plane

FOLDABLES

Organize It

Write the definition of a dilation under the dilation tab. Then show with figures how dilations can result in a larger figure and a smaller figure than the original.

Write It

What image is produced when a dilation has a scale factor of $r=1$?
\qquad
\qquad

2 COORDINATE GEOMETRY Trapezoid EFGH has vertices $E(-8,4), F(-4,8), G(8,4)$ and $H(-4,-8)$. Find the image of trapezoid EFGH after a dilation centered at the origin with a scale factor of $\frac{1}{4}$. Sketch the preimage and the image. Name the vertices of the image.

Preimage (x, y)	Image $\left(\frac{1}{4} x, \frac{1}{4} y\right)$
$E(-8,4)$	$E^{\prime} \square$
$F(-4,8)$	$F^{\prime} \square$
$G(8,4)$	G^{\prime}
$H(-4,-8)$	H^{\prime}

Check Your Progress

Triangle $A B C$ has vertices $A(-1,1)$, $B(2,-2)$, and $C(-1,-2)$. Find the image of $\triangle A B C$ after a dilation centered at the origin with a scale factor of 2 . Sketch the preimage and the image.

EXAMPLE Identify Scale Factor

3 Determine the scale factor used for each dilation with center C. Determine whether the dilation is an enlargement, reduction, or congruence transformation.
a.

scale factor $=\frac{\text { image length }}{\text { preimage length }}$ $=\square \begin{aligned} & \leftarrow \text { image length } \\ & \leftarrow \text { preimage length }\end{aligned}$
$=\square \quad$ Simplify.

Since the scale factor is less than 1 , the dilation is a
\square
b.

scale factor $=\frac{\text { image length }}{\text { preimage length }}$

Since the image falls on the opposite side of the center, C, than the preimage, the scale factor is \square So the scale factor is $|-1|$. The absolute value of the scale factor equals 1 , so the dilation is a \square transformation.

Check Your Progress

Determine the scale factor used for each dilation with center C. Determine whether the dilation is an enlargement, reduction, or congruence transformation.

Homework Assignment

Exercises:
a.

b.

9-6 Vectors

Main IDEAS

Find magnitudes and directions of vectors.

- Perform translations with vectors.

KEy Concept

Vectors A vector is a quantity that has both magnitude, or length, and direction, and is represented by a directed segment.

TEKS G. 5 The student uses a variety of representations to describe geometric relationships and solve problems. (C) Use properties of transformations and their compositions to make connections between mathematics and the real world, such as tessellations. G. 7 The student understands that coordinate systems provide convenient and efficient ways of representing geometric figures and uses them accordingly. (A) Use oneand two-dimensional coordinate systems to represent points, lines, rays, line segments, and figures. (C) Derive and use formulas involving length, slope, and midpoint. Also addresses TEKS G.1(B) and G.10(A).

BUILD YOUR VOCABULARY (pages 220-221)

A vector in standard position has its initial point at the

The \square representation of a vector is called the component form of the vector.

EXAMPIE Write Vectors in Component Form

(1) Write the component form of $\overrightarrow{A B}$.

Find the change of x-values and the corresponding change in y-values.

Because the magnitude and direction of a vector are not changed by translation, the vector \square represents the same vector as $\overrightarrow{A B}$.

Check Your Progress Write the component form of $\overrightarrow{A B}$.

EXAMPLE Magnitude and Direction of a Vector

Key Concepts

Equal Vectors Two vectors are equal if and only if they have the same magnitude and direction.

Parallel Vectors Two vectors are parallel if and only if they have the same or opposite direction.

FOLDABLES

OrGANIZE IT

Write the definition of vector under the vector tab. Include a sketch to illustrate the definition.

2 Find the magnitude and direction of $\overrightarrow{S T}$ for $S(-3,-2)$ and $T(4,-7)$.
Find the magnitude.

$$
\begin{aligned}
|\overrightarrow{S T}| & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \quad \text { Distance Formula } \\
& =\square \\
& \begin{array}{l}
x_{1}=-3, y_{1}=-2 \\
\\
x_{2}=-4, y_{2}=-7
\end{array}
\end{aligned}
$$

\square Simplify.
\square Use a calculator.

Graph $\overrightarrow{S T}$ to determine how to find the direction. Draw a right triangle that has $\overrightarrow{S T}$ as its hypotenuse and an acute angle at S.

$\tan S=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad \tan =\frac{\text { length of opposite side }}{\text { length of adjacent side }}$

Substitution.

So, $\begin{aligned} m \angle S & =\tan ^{-1}(\square) \\ & \approx \square \text { Simplify. } \\ & \approx \square \text { Use a calculator. }\end{aligned}$
A vector in standard position that is equal to $\overrightarrow{S T}$ forms a angle with the positive x-axis in the fourth quadrant. So it forms a $360+(-35.5)$ or \square angle with the positive x-axis.

Check Your Progress Find the magnitude and direction of $\overrightarrow{A B}$ for $A(2,5)$ and $B(-2,1)$.

EXAMPLE Translations with Vectors

3 Graph the image of quadrilateral $H J L K$ with vertices $H(-4,4), J(-2,4), L(-1,2)$ and $K(-3,1)$ under the translation of $\overrightarrow{\mathbf{v}}=\langle 5,-5\rangle$.

First graph quadrilateral $H J L K$.
Next translate each vertex by $\stackrel{\rightharpoonup}{\mathrm{v}}$,
\square units \square and
\square units

Connect the vertices for quadrilateral
 $H^{\prime} J^{\prime} L^{\prime} K^{\prime}$.

Check Your Progress

Graph the image of triangle $A B C$ with vertices $A(7,6), B(6,2)$, and $C(2,3)$ under the translation of $\overrightarrow{\mathbf{v}}\langle-3,-4\rangle$.

9

BRINGING IT ALL TOGETHER

STUDY GUIDE

| FOLDABLES |
| :--- | :--- | :--- |\quad| VOCABULARY |
| :--- |
| PUZZLEMAKER |\quad| BUILD YOUR |
| :--- |

9-1

Reflections

1. Draw the reflected image for a reflection of pentagon $A B C D E$ in the origin. Label the image of $A B C D E$ as $A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime}$.

Determine the number of lines of symmetry for each figure described below. Then determine whether the figure has point symmetry and indicate this by writing yes or no.
2. a square \square 3. an isosceles trapezoid \square
4. the letter E \square 5. a regular hexagon

9-2

Translations

Find the image of each preimage under the indicated translation.
6. $(x, y) ; 5$ units right and 3 units up \square
7. $(x, y) ; 2$ units left and 4 units down \square
8. ($-7,5$); 7 units right and 5 units down \square
9. $\triangle R S T$ has vertices $R(-3,3), S(0,-2)$, and $T(2,1)$. Graph $\triangle R S T$ and its image $\triangle R^{\prime} S^{\prime} T^{\prime}$ under the translation $(x, y) \longrightarrow(x+3, y-2)$. List the coordinates of the vertices of the image.

9-3

Rotations
List all of the following types of transformations that satisfy each description: reflection, translation, rotation.
10. The transformation is also called a slide.

11. The transformation is also called a flip.
12. The transformation is also called a turn.

Determine the order and magnitude of the rotational symmetry for each figure.
13.

14.

9-4

Tessellations
Underline the correct word, phrase, or number to form a true statement.
15. A tessellation that uses only one type of regular polygon is called a (uniform/regular/semi-regular) tessellation.
16. The sum of the measures of the angles at any vertex in any tessellation is (90/180/360).

Write all of the following words that describe each tessellation: uniform, non-uniform, regular, semi-regular.
17.

18.

9-5
Dilations
19. $\triangle X Y Z$ has vertices $X(-4,3), Y(6,2)$, and $Z(8,-3)$. Find the coordinates of the image of $\triangle X Y Z$ after a dilation centered at the origin with a scale factor of 2 .

Each value of r represents the scale factor for a dilation. In each case, determine whether the dilation is an enlargement, a reduction, or a congruence transformation.
20. $r=3$
21. $r=0.5$
22. $r=-1$

\square
\square
9-6
Vectors
23. Find the magnitude and direction to the nearest degree of $\vec{x}=\langle 2,-5\rangle$.

Write each vector described below in component form.

24. a vector with initial point (a, b) and endpoint (c, d)
\square
25. a vector in standard position with endpoint $(-3,5)$

26. a vector with initial point $(2,-3)$ and endpoint $(6,-8)$

Checklist

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 9.

ARE YOU READY FOR THE CHAPTER TEST?

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 9 Practice Test on page 547 of your textbook as a final check.

I used my Foldable or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 9 Study Guide and Review on pages 543-546 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 9 Practice Test on page 547.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 9 Foldable.
- Then complete the Chapter 9 Study Guide and Review on pages 543-546 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 9 Practice Test on page 547.

10

Circles

OLDABLES

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.

> Begin with five sheets of plain $8 \frac{1}{2}{ }^{\prime \prime} \times 11^{\prime \prime}$ paper, and cut out five large circles that are the same size.

STEP 1 Fold two of the circles in half and cut one-inch slits at each end of the folds.

STEP 2 Fold the remaining three circles in half and cut a slit in the middle of the fold.

STEP 3 Slide the two circles with slits on the ends through the large slit of the other circles.

NOTE-TAKING TIP: Take notes in such a manner that someone who did not understand the topic will understand after reading what you have written.

BUILD YOUR VOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 10. As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

Vocabulary Term	Found on Page	Definition	Description or Example
arc			
center			
central angle			
chord			
circle			
circumference			
circumscribed			
diameter			
inscribed			

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Vocabulary Term	Found on Page	Definition	Description or Example
intercepted			
major arc			
minor arc			
pi (π)			
point of tangency			
secant			
semicircle			

10-1 Circles and Circumference

MAIN IDEAS

- Identify and use parts of circles.
- Solve problems involving the circumference of a circle.

TEKS G. 2

The student analyzes geometric relationships in order to make and verify conjectures. (B) Make conjectures about angles, lines, polygons, circles, and threedimensional figures and determine the validity of the conjectures, choosing from a variety of approaches such as coordinate, transformational, or axiomatic. G. 8 The student uses tools to determine measurements of geometric figures and extends measurement concepts to find perimeter, area, and volume in problem situations. (C) Derive, extend, and use the Pythagorean Theorem. Also addresses TEKS G.9(C).

Remember It

The letters d and r are usually used to represent diameter and radius. So, $d=2 r$ and $r=\frac{d}{2}$ or $r=\frac{1}{2} d$.

BUILD YOUR VOCABULARY (pages 244-245)

A circle is the locus of all points in a plane \square from a given point called the center of the circle. Any segment with \square that are on the circle is a chord of the circle.

A chord that passes through the \square is a diameter of the circle.

Any segment with endpoints that are the \square and a point on the circle is a radius.

EXAMPIE Find Radius and Diameter

(1) Circle R has diameters $\overline{S T}$ and $\overline{Q M}$.
a. If $S T=18$, find $R S$.
$r=\frac{1}{2} d$
$r=\frac{1}{2} \square$ or \square

Substitute and simplify.
b. If $\boldsymbol{R N}=2$, find $\boldsymbol{R P}$.

Since all radii are congruent, $R N=R P$.
So, $R P=$ \square

Check Your Progress
Circle M has
diameters $\overline{B G}$ and $\overline{D N}$.
a. If $B G=25$, find $M G$.

b. If $M F=8.5$, find $M G$.

EXAMPIE Find Measures in Intersecting Circles

2 The diameters of $\odot X, \odot Y$, and $\odot Z$ are 22 millimeters, 16 millimeters, and 10 millimeters, respectively. Find $E Z$.

FOLDABLES

Organize It

Under the tab for Lesson 10-1, sketch a circle and label its parts. List the parts of the circle and their definitions.

Since the diameter of $\odot X$ is

Since the diameter of $\odot Z$ is
\square
$\overline{F Z}$ is part of $\overline{E Z}$.

$$
E F+F Z=E Z \quad \text { Segment Addition Postulate }
$$

$$
\square+\square=E Z \quad \text { Substitution }
$$

So, the measure of $\overline{E Z}$ is \square millimeters.

Check Your Progress The diameters of $\odot \boldsymbol{D}, \odot \boldsymbol{B}$, and $\bigcirc A$ are 5 inches, 9 inches, and 18 inches respectively.
a. Find $A C$.

b. Find $E B$.

BUILD YOUR VOGABULARY (pages 244-245)

The circumference of a circle is the \square around a circle.
The ratio \square is an irrational number called pi (π).

EXAMPIE Find Circumference, Diameter, and Radius

Key Concept

Circumference For a circumference of C units and a diameter of d units or a radius of r units, $C=\pi d$ or $C=2 \pi r$.

Homework Assignment

10-2 Angles and Arcs

Main Ideas

- Recognize major arcs, minor arcs, semicircles, and central angles and their measures.
- Find arc length.

Key Concept

Sum of Central Angles The sum of the measures of the central angles of a circle with no interior points in common is 360 .

FOLDABLES
Include this
concept in your notes.

TEKS G. 5

The student uses a variety of representations to describe geometric relationships and solve problems. (B) Use numeric and geometric patterns to make generalizations about geometric properties, including properties of polygons, ratios in similar figures and solids, and angle relationships in polygons and circles. G. 8 The student uses tools to determine measurements of geometric figures and extends measurement concepts to find perimeter, area, and volume in problem situations. (B) Find areas of sectors and arc lengths of circles using proportional reasoning. Also addresses TEKS G.2(B).

BUILD YOUR VOGABULARY (pages 244-245)

A central angle has the \square of the circle as its vertex, and its sides contain two radii of the circle.

EXAMPIE Measures of Central Angles

1) ALGEBRA $\overline{\boldsymbol{R V}}$ is a diameter of $\odot T$. Find $m \angle R T S$.

The sum of the measures of $\angle R T S$, $\angle S T U$, and $\angle U T V$ is 180 .

Use the value of x to find $m \angle R T S$.

$$
m \angle R T S=8 x-4
$$

Given
Substitution

Check Your Progress
Find $m \angle C Z D$.

BUILD YOUR VOCABULARY (pages 244-245)

A central angle separates the circle into two parts, each of which is an arc.

Theorem 10.1

Two arcs are congruent if and only if their corresponding central angles are congruent.
Postulate 10.1 Arc Addition Postulate
The measure of an arc formed by two adjacent arcs is the sum of the measures of two arcs.

EXAMPLE Measures of Arcs

2 In $\odot P, m \angle N P M=46, \overline{P L}$ bisects $\angle K P M$, and $\overline{O P} \perp \overline{K N}$.

Key Concepts

Arcs of a Circle

A minor arc can be named by its endpoints and has a measure less than 180.
A major arc can be named by its endpoints and another point on the arc, and its measure is 360 minus the measure of the related minor arc.
A semicircle can be named by its endpoints and another point on the arc, and its measure is 180 .

a. Find $m \overparen{O K}$.

$\overparen{O K}$ is a minor arc, so $m \overparen{O K}=m \angle K P O$.
$\widehat{K O N}$ is a semicircle.

$$
\begin{aligned}
m \overparen{O N} & =m \angle N P O \\
& =\square
\end{aligned}
$$

$\angle N P O$ is a right angle.

$$
m \overparen{K O N}=m \overparen{O K}+m \overparen{O N}
$$

Arc Addition Postulate

$$
\square=m \overparen{O K}+\square
$$

Substitution

$$
J=m \overparen{O K}
$$

Subtract.
b. Find $m \overparen{L M}$.
$m \overparen{L M}=\frac{1}{2} \overparen{K M}$ since $\overline{P L}$ bisects $\angle K P M$.
$\widehat{K M N}$ is a semicircle.
$m \overparen{K M}+m \overparen{M N}=m \widehat{K M N} \quad$ Arc Addition Postulate
$m \overparen{K M}+\square=\square \quad m \overparen{M N}=m \angle N P M=46$

$$
\begin{aligned}
& m \overparen{K M}=\square \quad \text { Subtract. } \\
& m \overparen{L M}=\frac{1}{2} \square \text { or } 67
\end{aligned}
$$

c. $m \overparen{J K O}$
$\widehat{J K O}$ is a major arc.
$m \overparen{J K O}=m \overparen{J L M}+m \overparen{M N}+m \overparen{N O} \quad$ Arc Addition Postulate
$m \overparen{J K O}=180+\square+\square \quad$ Substitution
$m \overparen{J K O}=\square$

Check Your Progress In $\odot \boldsymbol{B}, \overline{\boldsymbol{X P}}$ and and $\overline{Y N}$ are diameters, $m \angle X B N=108$, and $\overline{B Z}$ bisects $\angle Y B P$. Find each measure.
a. $m \overparen{Y Z}$

b. $m \overparen{X Y}$
c. $m \overparen{X N Z}$

\square

EXAMPIE Arc Length

Key Concept

Arc Length Suppose a circle has radius r and circumference C. If an arc of the circle has degree measure A and
length ℓ, then $\frac{A}{360}=\frac{\ell}{2 \pi r}$ and $\frac{A}{360} \cdot C=\ell$.

Homework

Assignment
Page(s):
Exercises:

3 In $\odot B, A C=9$ and $m \angle A B D=40$. Find the length of $\overparen{A D}$.
In $\odot B, A C=9$ so $C=\pi(9)$ or 9π and $m \overparen{A D}=m \angle A B D$ or 40 . Write a proportion to compare each part to its whole.

Now solve the proportion for ℓ.

The length of $\overparen{A D}$ is \square units or about \square units.

Check Your Progress
In $\odot A, A Y=21$ and $m \angle X A Y=45$.
Find the length of $\overparen{W X}$.

10-3 Arcs and Chords

Main Ideas

- Recognize and use relationships between arcs and chords.
- Recognize and use relationships between chords and diameters.

TEKS G. 2

The student analyzes geometric relationships in order to make and verify conjectures. (B) Make conjectures about angles, lines, polygons, circles, and threedimensional figures and determine the validity of the conjectures, choosing from a variety of approaches such as coordinate, transformational, or axiomatic. G. 3 The student applies logical reasoning to justify and prove mathematical statements. (B) Construct and justify statements about geometric figures and their properties. A/so addresses TEKS G.8(C) and G.9(C).

Theorem 10.2

In a circle or in congruent circles, two minor arcs are congruent if and only if their corresponding chords are congruent.

EXAMPLE Prove Theorems

(1) PROOF Write a proof.

Given: $\overline{D E} \cong \overline{F G}$,

$$
\begin{aligned}
& m \angle E B F=24 \\
& \overparen{D F G} \text { is a semicircle. }
\end{aligned}
$$

Prove: $m \angle F B G=78$

Proof:

Statements

1. $\overline{D E} \cong \overline{F G} ; m \angle E B F=24$; $\overparen{D F G}$ is a semicircle.
2. $m \overparen{D F G}=$

3.

4. $m \overparen{D E}=m \overparen{F G}$
5. $m \overparen{E F}=$
6. $m \overparen{E D}+m \overparen{E F}+m \overparen{F G}$
$=m \overparen{D F G}$
7. $m \overparen{F G}+\square+m \overparen{F G}$
$=180$
8. $2(m \overparen{F G})=156$
9. $m \overparen{F G}=\square$
10. $m \overparen{F G}=\angle m F B G$
11. $m \angle F B G=78$

Reasons

1. Given
2. Def. of semicircle
3. In a circle, if 2 chords are \cong, corr. minor arcs are \cong.
4. Def. of $\cong \operatorname{arcs}$
5. Def. of arc measure
6. Arc Addition Postulate
7.

8. Subtraction Property and simplify
9. Division Property
10. \square
11.
$\begin{array}{ll}\text { Given: } & \overparen{A B} \cong \overparen{E F} \\ & \overline{A B} \cong \overline{C D} \\ \text { Prove: } & \overparen{C D} \cong \overparen{E F}\end{array}$

Proof:

Review It

What is a biconditional statement? Include an example in your explanation. (Lesson 2-3)

BUILD YoUR VocABULARY (pages 244-245)

A figure is considered inscribed if all of its vertices lie on the circle.

A circle is considered circumscribed about a polygon if it contains all the vertices of the polygon.

Theorem 10.3

In a circle, if a diameter (or radius) is perpendicular to a chord, then it bisects the chord and its arc.

5XAMPLE Radius Perpendicular to a Chord

2 Circle W has a radius of 10 centimeters. Radius $\overline{W L}$ is perpendicular to chord $\overline{H K}$, which is 16 centimeters long.
a. If $m \overparen{H L}=53$, find $m \overparen{M K}$.

You know that $\overparen{H L} \cong \overparen{L K}$.

b. Find JL.

Draw radius $\overline{W K} . \triangle W J K$ is a right triangle.
$W K=\square$
$\overline{H L}$ bisects $H K$.
$J K=\frac{1}{2}(H K)$

or \square
$r=$ \square

A radius perpendicular to a chord bisects it.
Definition of segment bisector.
$H K=\square$

Use the Pythagorean Theorem to find WJ.

Check Your Progress

Circle O has a radius of 25 units. Radius $\overline{O C}$ is perpendicular to chord $\overline{A E}$, which is 40 units long.
a. If $m \overparen{M G}=35$, find $m \overparen{C G}$.

b. Find CH .

Theorem 10.4

In a circle or in congruent circles, two chords are congruent if and only if they are equidistant from the center.

EXAMPLE Chords Equidistant from Center

FOLDABLES

Organize It

Summarize what you have learned in this lesson about arcs and chords of a circle. Include sketches that illustrate the important facts. Include this summary under the tab for Lesson 10-3.

3 Chords $\overline{\boldsymbol{E F}}$ and $\overline{\boldsymbol{G H}}$ are equidistant from the center. If the radius of $\bigcirc P$ is 15 and $E F=24$, find $P R$ and $R H$.
$\overline{E F}$ and $\overline{G H}$ are equidistant from P, so $\overline{E F} \cong \overline{G H}$.

$Q F=\frac{1}{2} E F$, so $Q F=\square$ or 12
$R H=\frac{1}{2} G H$, so $R H=\square$ or 12
Draw $\overline{P H}$ to form a right triangle. Use the Pythagorean Theorem.

Check Your Progress

Chords $\overline{S Z}$ and $\overline{U V}$ are equidistant from the center of $\odot X$. If $T X$ is 39 and $X Y$ is 15 , find $W Z$ and $U V$.

Homework
Assignment
Page(s):
Exercises:

10-4 Inscribed Angles

MAIN IDEAS

- Find measures of inscribed angles.
- Find measures of angles of inscribed polygons.

TEKS G. 2
The student analyzes geometric relationships in order to make and verify conjectures. (B) Make conjectures about angles, lines, polygons, circles, and threedimensional figures and determine the validity of the conjectures, choosing from a variety of approaches such as coordinate, transformational, or axiomatic. G. 5 The student uses a variety of representations to describe geometric relationships and solve problems. (B) Use numeric and geometric patterns to make generalizations about geometric properties, including properties of polygons, ratios in similar figures and solids, and angle relationships in polygons and circles.
Also addresses
TEKS G.3(B).

Theorem 10.5

If an angle is inscribed in a circle, then the measure of the angle equals one-half the measure of its intercepted arc (or the measure of the intercepted arc is twice the measure of the inscribed angle).

EXAMPLE Measures of Inscribed Angles

1) In $\odot F, m \overparen{W X}=20, m \overparen{X Y}=40$, $m \overparen{U Z}=108$, and $m \overparen{U W}=m \overparen{Y Z}$. Find the measures of the numbered angles.
First determine $m \overparen{Y Z}$ and $m \overparen{U W}$.
Use the Arc Addition Thereom.

$\begin{aligned} m \overparen{W X}+m \overparen{X Y}+m \overparen{Y Z}+m \overparen{U Z}+m \overparen{U W} & =360 \\ 20+40+m \overparen{Y Z}+108+m \overparen{Y Z} & =360\end{aligned}$

Simplify.

Subtract.

Divide.

So, $m \overparen{Y Z}=\square$ and $m \overparen{U W}=\square$. Now find the measures of the numbered angles.
$m \angle 1=\frac{1}{2} m \overparen{U W}$
$m \angle 2=\frac{1}{2} m \overparen{X Y}$

\square or

$m \angle 3=\frac{1}{2} m \overparen{U Z}$
$m \angle 5=\frac{1}{2} m \overparen{U Z}$

or \square

Check Your Progress In $\odot A, m \overparen{X Y}=60, m \overparen{Y Z}=80$, and $m \overparen{W X}=m \overparen{W Z}$. Find the measures of the numbered angles.

Theorem 10.6

If two inscribed angles of a circle (or congruent circles) intercept congruent arcs or the same arc, then the angles are congruent.
Theorem 10.7
If an inscribed angle intercepts a semicircle, the angle is a right angle.

EXAMPLE Angles of an Inscribed Triangle

FOLDABLES

Organize It

Explain how to find the measure of an inscribed angle in a circle if you know the measure of the intercepted arc. Include your explanation under the tab for Lesson 10-4.

2 ALGEBRA Triangles TVU and TSU

 are inscribed in $\odot P$ with $\overparen{V U} \cong \widetilde{S U}$. Find the measure of each numbered angle if $m \angle 2=x+9$ and $m \angle 4=2 x+6$.$\triangle U V T$ and $\triangle U S T$ are right triangles. $m \angle 1=m \angle 2$ since they intercept congruent
 arcs. Then the third angles of the triangles are also congruent, so $m \angle 3=m \angle 4$.

Use the value of x to find the measures of $\angle 1, \angle 2, \angle 3$, and $\angle 4$.

$$
\begin{aligned}
m \angle 2 & =x+9 \\
& =\square+9 \text { or } 34 \\
m \angle 1 & =m \angle 2=\square
\end{aligned}
$$

EXAMPLE Angles of an Inscribed Quadrilateral

(3) Quadrilateral $Q R S T$ is inscribed in $\odot M$. If $m \angle Q=87$ and $m \angle R=102$, find $m \angle S$ and $m \angle T$.

Draw a sketch of this situation.
To find $m \angle S$, we need to know $m \overparen{R Q T}$. To find $m \overparen{R Q T}$, first find $m \overparen{R S T}$.

$$
\begin{array}{rl}
m \overparen{R S T}=2(m \angle Q) & \text { Inscribed Angle Theorem } \\
=2(\square) \text { or } 174 & m \angle Q=\square \\
m \overparen{R S T}+m \overparen{R Q T}=360 & \text { Sum of angles }=360 \\
+m \overparen{R Q T}=360 & m \overparen{R S T}=\square \\
m \overparen{R Q T}=\square & \text { Subtract. } \\
m \overparen{R Q T}=2(m \angle S) & \text { Inscribed Angle Theorem } \\
\square=2(m \angle S) & \text { Substitution } \\
\square=(m \angle S) & \text { Divide. }
\end{array}
$$

To find $m \angle T$, we need to know $m \overparen{Q R S}$, but first find $m \overparen{S T Q}$.

$m \widehat{Q R S}$	$=2(m \angle T)$		Inscribed Angle Theorem
\square	$=2(m \angle T)$		$m \overparen{Q R S}=\square$
\square	$=m \angle T$		Divide.

Check Your Progress

a. Triangles $M N O$ and $M P O$ are inscribed in $\odot D$ with $\overparen{M N} \cong \overparen{O P}$. Find the measure of each numbered angle if $m \angle 2=4 x-8$ and $m \angle 3=3 x+9$.

b. $B C D E$ is inscribed in $\odot X$. If $m \angle B=99$ and $m \angle C=76$, find $m \angle D$ and $m \angle E$.

Theorem 10.8

If a quadrilateral is inscribed in a circle, then its opposite angles are supplementary.

Homework

 AssignmentPage(s):
Exercises:

MAIN IDEAS

- Use properties of tangents.
- Solve problems involving circumscribed polygons.

TEKS G. 2

The student analyzes geometric relationships in order to make and verify conjectures. (B) Make conjectures about angles, lines, polygons, circles, and threedimensional figures and determine the validity of the conjectures, choosing from a variety of approaches such as coordinate, transformational, or axiomatic. G. 9 The student analyzes properties and describes relationships in geometric figures. (C) Formulate and test conjectures about the properties and attributes of circles and the lines that intersect them based on explorations and concrete models. Also addresses TEKS G.2(A) and G.8(C).

BUILD YOUR YOGABULARY (pages 244-245)

A ray is tangent to a circle if the line containing the ray intersects the circle in exactly one point. This point is called the point of tangency.

Theorem 10.9

If a line is tangent to a circle, then it is perpendicular to the radius drawn to the point of tangency.
Theorem 10.10
If a line is perpendicular to a radius of a circle at its endpoint on the circle, then the line is a tangent to the circle.
Theorem 10.11
If two segments from the same exterior point are tangent to a circle, then they are congruent.

EXAMPIE Find Lengths

(1) ALGEBRA $\overline{\boldsymbol{R S}}$ is tangent to $\odot Q$ at point \boldsymbol{R}. Find \boldsymbol{y}.
Use the Pythagorean Theorem to find $Q R$, which is one-half the length y.

$$
\begin{array}{rlrl}
(S R)^{2}+(Q R)^{2} & =(S Q)^{2} & \text { Pythagorean Theorem } \\
\square+(Q R)^{2} & =\square & S R=\square, S Q=\square \\
+(Q R)^{2} & =\square & & \text { Simplify. } \\
(Q R)^{2} & =144 & \text { Subtract from each side. } \\
Q R & =\square & \text { Take the square root of each side. }
\end{array}
$$

Because y is the length of the diameter, ignore the negative result. Thus, y is twice $Q R$ or $y=$ \square
Check Your Progress
$\overline{C D}$ is a tangent to $\odot B$ at point D. Find a.

EXAMPIE Congruent Tangents

FOLDABLES

ORGANIZE IT

Explain what a tangent to a circle is. Provide a sketch to illustrate the explanation. Include your explanation and sketch under the tab for Lesson 10-5.

Review It

Write the Pythagorean Theorem in words and in symbols. Include a diagram. (Lesson 8-2)
\qquad
\qquad
\qquad
\qquad
\qquad

Homework

Assignment

Page(s):
Exercises:

2 ALGEBRA Find \boldsymbol{y}. Assume that segments that appear tangent to circles are tangent.
$\overline{D E}$ and $\overline{D F}$ are each drawn from the same exterior point and are both tangent to $\odot S$, so $\overline{D E} \cong \overline{D F}$. Likewise, $\overline{D G}$ and $\overline{D H}$ are both drawn from D and are tangent to $\odot T$, so $\overline{D G} \cong \overline{D H}$. From the Segment Addition Postulate,
$D G=D E+E G$ and $D H=D F+F H$.

$$
\begin{array}{rlrl}
D G & =D H & & \text { Definition of congruent segments } \\
D E+E G & =D F+F H & & \text { Substitution } \\
\square+y-5 & =y+\square, E G=y-5 \\
y+5 & =2 y+4 & & D E=\square \\
5 & =y+4 & & D F=y, F H=\square \\
\square & & \text { Simplify. } \\
\square & & \text { Subtract } y \text { from each side. } \\
\square & & \text { Subtract } 4 \text { from each side. }
\end{array}
$$

EXAMPLE Triangles Circumscribed About a Circle

3 Triangle $H J K$ is circumscribed about $\odot G$. Find the perimeter of $\triangle H J K$ if $N K=J L+29$.
Use Theorem 10.10. $J M=J L=$

$L H=H N=\square$, and $N K=\square$.
Since $N K=J L+29, N K=16+29$ or 45 . Then $M K=45$.

$$
\begin{aligned}
P & =J M+M K+H N+N K+J L+L H \\
& =16+45+18+45+16+18 \text { or } \square \text { units }
\end{aligned}
$$

Check Your Progress

Triangle
$N O T$ is circumscribed about $\odot M$. Find the perimeter of $\triangle N O T$ if $C T=N C-28$.

10-6 Secants, Tangents, and Angle Measures

MAIN IDEAS

- Find measures of angles formed by lines intersecting on or inside a circle
- Find measures of angles formed by lines intersecting outside the circle.

BUILD YOUR VOCABULARY (pages 244-245)

A line that intersects a circle in exactly two points is called a secant.

Theorem 10.12 If two secants intersect in the interior of a circle, then the measure of an angle formed is one-half the sum of the measure of the arcs intercepted by the angle and its vertical angle.

EXAMPIE Secant-Secant Angle

(1) Find $m \angle 4$ if $\boldsymbol{m F G}=88$ and $m \overparen{E H}=76$.

Method 1

TEKS G. 5
The student uses a variety of representations to describe geometric relationships and solve problems. (B) Use numeric and geometric patterns to make generalizations about geometric properties, including properties of polygons, ratios in similar figures and solids, and angle relationships in polygons and circles. G. 9 The student analyzes properties and describes relationships in geometric figures. (C) Formulate and test conjectures about the properties and attributes of circles and the lines that intersect them based on explorations and concrete models. Also addresses TEKS G.2(B) and G.3(B).
$m \angle 3=\frac{1}{2}(m \overparen{F G}+m \overparen{E H})$

$m \angle 4=180-m \angle 3$

Method 2

Find $m \overparen{E F}+m \overparen{G H}$.

$m \angle 4=\frac{1}{2}(m \overparen{E F}+m \overparen{G H})$

Check Your Progress
Find $m \angle 5$ if $m \overparen{A C}=63$ and $m \overparen{X Y}=21$.

Theorem 10.13

If a secant and a tangent intersect at the point of tangency, then the measure of each angle formed is one-half the measure of its intercepted arc.

Theorem 10.14
If two secants, a secant and a tangent, or two tangents intersect in the exterior of a circle, then the measure of the angle formed is one-half the positive difference of the measures of the intercepted arcs.

EXAMPIE Secant-Tangent Angle

2. Find $m \angle R P S$ if $m \overparen{P T}=114$ and $m \overparen{T S}=136$.
$m \overparen{P S}=360-m \overparen{P T S}$

$=$

$m \angle R P S=\frac{1}{2} m \overparen{P S}$

Check Your Progress Find $m \angle F E G$ if $m \overparen{H F}=80$ and $m \overparen{H E}=164$.

EXAMPIE Secant-Secant Angle

3 Find x.

Multiply
 each side by 2.

Add x to each side.

Subtract 124 from each side.

Check Your Progress
Find x.

EXAMPLE Secant-Tangent Angle

FOLDABLES

Organize It

Devise a chart that summarizes how the measure of an angle formed by chords, secants, or tangents is related to the measures of intercepted arcs. Include your chart under the tab for Lesson 10-6.

Homework

Assignment
Page(s):
Exercises:

10-7 Special Segments in a Circle

Main Ideas

Find measures of segments that intersect in the interior of a circle.

- Find measures of segments that intersect in the exterior of a circle.

TEKS G. 5

The student uses a variety of representations to describe geometric relationships and solve problems. (B) Use numeric and geometric patterns to make generalizations about geometric properties, including properties of polygons, ratios in similar figures and solids, and angle relationships in polygons and circles. G. 9 The student analyzes properties and describes relationships in geometric figures. (C) Formulate and test conjectures about the properties and attributes of circles and the lines that intersect them based on explorations and concrete models. Also addresses TEKS G.2(B).

Theorem 10.15
If two chords intersect in a circle, then the products of the measures of the segments of the chords are equal.

EXAMPIE Intersection of Two Chords

1 Find x.
To find x, use Theorem 10.15.

$$
\begin{aligned}
\square \cdot \square & =\square \cdot \square \\
8 x & =108 \\
x & =\square
\end{aligned}
$$

Theorem 10.16

If two secant segments are drawn to a circle from an exterior point, then the product of the measures of one secant segment and its external secant segment is equal to the product of the measures of the other secant segment and its external secant segment.

EXAMPIE Intersection of Two Secants

2 Find x if $E F=10, E H=8$, and $F G=24$.

$$
E H \cdot E I=E F \cdot E G
$$

$8 x=276$

Secant Segment Products

Subtract 64 from each side.

Divide each side by

Check Your Progress

Include your paragraph under the tab for Lesson 10-7.

Organize It

Write a paragraph to describe what you have learned about the relationships between the lengths of special segments in a circle. lesson 10-7.

Homework
 Assignment

Page(s):

Exercises:

Assume that segments that appear to be tangent are tangent.

Check Your Progress Find x.

Theorem 10.17 If a tangent segment and a secant segment are drawn to a circle from an exterior point, then the square of the measure of the tangent segment is equal to the product of the measures of the secant segment and its external secant segment.

EXAMPLE
 Intersection of Secant and a Tangent

3 Find x. Assume that segments that appear to be tangent are tangent.

$$
\begin{aligned}
(x+4)^{2} & =x(x+x+2) \\
x^{2}+8 x+16 & =x(2 x+2) \\
x^{2}+8 x+16 & =2 x^{2}+2 x
\end{aligned}
$$

a. Find x.

b. Find x if $G O=27$,
$O M=25$, and $K I=24$.
\square

10-8 Equations of Circles

EXAMPLE Equation of a Circle

Main Ideas

- Write the equation of a circle.
- Graph a circle on the coordinate plane.

KEY CONCEPT

Standard Equation of a Circle An equation for a circle with center at (h, k) and radius of r units is
$(x-h)^{2}+(y-k)^{2}=r^{2}$.

TEKS G. 2

The student analyzes geometric relationships in order to make and verify conjectures. (B) Make conjectures about angles, lines, polygons, circles, and threedimensional figures and determine the validity of the conjectures, choosing from a variety of approaches such as coordinate, transformational, or axiomatic. G. 7 The student understands that coordinate systems provide convenient and efficient ways of representing geometric figures and uses them accordingly. (A) Use oneand two-dimensional coordinate systems to represent points, lines, rays, line segments, and figures.
(1) Write an equation for the circle with center at $(3,-3)$, $d=12$.

If $d=12, r=6$.

$$
\begin{array}{ll}
(x-h)^{2}+(y-k)^{2}=r^{2} & \text { Equation of } \\
\text { a circle }
\end{array}
$$

\(\left.\begin{array}{cc}(\square)^{2}+[y-(-3)]^{2}=\square \& (h, k)=(3,-3),

r=6\end{array}\right]\)| | |
| :--- | :--- |
| $\square=\square$ | Simplify. |

Check Your Progress Write an equation for

 each circle.a. center at $(0,-5), d=18$

b. center at $(7,0), r=20$

EXAMPIE Graph a Circle

(2) Graph $(x-2)^{2}+(y+3)^{2}=4$.

Compare each expression in the equation to the standard form.
$(x-h)^{2}=$

$$
x-h=\square
$$

$$
(y-k)^{2}=\square
$$

$$
y-k=\square
$$

$$
-h=\square
$$

$$
-k=\square
$$

$$
h=\square
$$

$$
k=\square
$$

$r^{2}=$
 , so $r=$ \square

The center is at \square and
the radius is \square
Graph the center. Use a compass set to a width of \square grid squares to draw the circle.

Check Your Progress
Graph $x^{2}+(y-5)^{2}=25$

Homework

 Assignment
. 10

 BRINGING IT ALL TOGETHER
STUDY CUIDE

| GOLDABLES |
| :--- | :--- | :--- |\quad| VOCABULARY |
| :--- |
| PUZZLEMAKER |\quad BUILD YOUR

10-1
 Circles and Circumference

1. In $\odot A$, if $B D=18$, find $A E$.

Refer to the figure.

2. Name four radii of the circle.
3. Name two chords of the circle. \square

10-2

Angles and Arcs
Refer to $\odot P$. Indicate whether each statement is true or false.
4. $\overparen{D A B}$ is a major arc.
5. $\overparen{A D C}$ is a semicircle.
\square
6. $\overparen{A D} \cong \overparen{C D}$

7. $\overparen{D A}$ and $\overparen{A B}$ are adjacent arcs. \square
Refer to $\odot P$. Give each of the following arc measures.
8. $m \overparen{A B}$ \square 9. $m \overparen{B C}$
11. $m \overparen{D A C}$ \square

10-3

Arcs and Chords

If $\odot P$ has a diameter 40 centimeters long, and $A C=F D=24$ centimeters, find each measure.
12. $P A$

13. $H E$

In $\odot Q, R S=V W$ and $m \overparen{R S}=70$. Find each measure.
14. $m \overparen{R T}$

15. $m \overparen{V W}$

10-4

Inscribed Angles
Refer to the figure. Find each measure.
16. $m \angle A B C$

18. $m \angle B C A$

17. $m \angle \overparen{A D}$

19. $m \angle \overparen{B C D}$

10-5
Tangents
20. Two segments from P are tangent to $\odot O$. If $m \angle P=120$ and the radius of $\odot O$ is 8 feet, find the length of each tangent segment.

21. Each side of a circumscribed equilateral triangle is 10 meters. Find the radius of the circle.

10-6

Secants, Tangents, and Angle Measures
22. Find $m \angle 2$.

23. Find x.

Supply the missing length to complete each equation.
24. $B H \cdot H D=F H$. \square

25. $A D \cdot A E=A B$. \square
10-7
Special Segments in a Circle
Write an equation for each circle.
27. center at origin, $r=8$

28. center at $(3,9), r=1$

Write an equation for each circle.
29.

\square
30.

10

Checklist

Math nline

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 10.

ARE YOU READY FOR THE CHAPTER TEST?

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 10 Practice Test on page 625 of your textbook as a final check.

I used my Foldable or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 10 Study Guide and Review on pages 620-624 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 10 Practice Test on page 625.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 10 Foldable.
- Then complete the Chapter 10 Study Guide and Review on pages 620-624 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 10 Practice Test on page 625.

11 Areas of Polygons and Circles

OLDABLES

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter．You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes．

Begin with five sheets of notebook paper．

STEP 1 Stack 4 of the 5 sheets of notebook paper as illustrated．

STEP 2 Cut in about 1 inch along the heading line on the top sheet of paper．

STEP 3 Cut the margins off along the right edge．

STEP 4 Stack in order of cuts， placing the uncut fifth sheet at the back．Label the tabs as shown．Staple edge to form a book．

NOTE－TAKING TIP：When you take notes，write a summary of the lesson，or write in your own words what the lesson was about．

BUILD YOUR VOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 11.
As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

Vocabulary Term	Found on Page	Definition	Description or Example
apothem			
composite figure			
geometric probability			
height of a parallelogram			
sector			
segment			

11-1 Areas of Parallelograms

EXAMPLE Perimeter and Area of a Parallelogram

MAIN IDEAS

Find perimeters and areas of parallelograms.

- Determine whether points on a coordinate plane define a parallelogram.

KEy CONCEPT

Area of a Parallelogram If a parallelogram has an area of A square units, a base of b units, and a height of h units, then $A=b h$.

1 Find the perimeter and area of $\square R S T U$.

Base and Side:

Each base is \square inches long, and
 each side is \square inches long.

Perimeter:

The perimeter of $\square R S T U$ is $2(\square)+2(\square)$ or
\square

Height:

Use a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle to find the height. Recall that if the measure of the leg opposite the 30° angle is x, then the length of the hypotenuse is \square, and the length of the leg opposite the 60° angle is $x \sqrt{3}$.

$$
\begin{aligned}
24 & =2 x \\
12 & =x
\end{aligned}
$$

Substitute 24 for the hypotenuse.
Divide each side by 2 .
So, the height is $x \sqrt{3}$ or \square inches.

Area:

Check Your Progress

Find the perimeter and area of $\square D E F G$.

11-1

EXAMPLE Area of a Parallelogram

FOLDABLES

Organize It

Under the tab for Lesson 11-1, make a sketch to show how a parallelogram can be cut apart and reassembled to form a rectangle. Write the formula for the area of the parallelogram.

Homework

ASSIGNMENT
2 The Kanes want to sod a portion of their yard. Find the number of square yards of grass needed to sod the shaded region in the diagram.

The area of the shaded region is the sum of two rectangles. The dimensions of the first rectangle are 50 feet by $150-40$ or 110 feet. The dimensions of the second rectangle are $150-60$ or 90 feet and $50+100$ or 150 feet.
Area of shaded region = Area of Rectangle $1+$ Area of Rectangle 2

Next, change square feet to square yards.
$19,000 \mathrm{ft}^{2} \times \frac{1 \mathrm{yd}^{2}}{9 \mathrm{ft}^{2}} \approx \square$
The Kanes need approximately \square square yards of sod.

11-2 Areas of Triangles, Trapezoids, and Rhombi

EXAMPLE Area of Triangles

Main Ideas

- Find areas of triangles.
- Find areas of trapezoids and rhombi.

KEY CONCEPTS

Area of a Triangle If a triangle has an area of A square units, a base of b units, and a corresponding height of h units, then $A=\frac{1}{2} b h$.
Area of a Trapezoid If a trapezoid has an area of A square units, bases of b_{1} units and b_{2} units and a height of h units, then $A=\frac{1}{2} h\left(b_{1}+b_{2}\right)$.

TEKS G. 7

The student understands that coordinate systems provide convenient and efficient ways of representing geometric figures and uses them accordingly. (C) Derive and use formulas involving length, slope, and midpoint. G. 11 The student applies the concepts of similarity to justify properties of figures and solve problems. (D) Describe the effect on perimeter, area, and volume when one or more dimensions of a figure are changed and apply this idea in solving problems.
(1) Find the area of quadrilateral $A B C D$ if $A C=35, B F=18$, and $D E=10$.
area of $A B C D$

$$
\begin{array}{ll}
=\text { area of } \triangle A B C+\text { area of } \triangle A D C & \\
=\frac{1}{2} b h+\frac{1}{2} b h & \\
& \text { Area formula } \\
=\square+\square & \text { Substitution } \\
=\square \text { square units } & \text { Simplify. }
\end{array}
$$

Check Your Progress

 Find the area of quadrilateral $H I J K$ if $I K=16$, $H L=5$, and $J M=9$.

EXAMPIE Area of a Trapezoid on the Coordinate Plane

2 Find the area of trapezoid RSTU with vertices $R(4,2), S(6,-1)$, $T(-2,-1)$ and $U(-1,2)$.

Bases:

Since $\overline{U R}$ and $\overline{T S}$ are horizontal, find their length by subtracting the x-coordinates of their endpoints.

or

Height:

Because the bases are horizontal segments, the distance between them can be measured on a vertical line. So, subtract the y-coordinates to find the trapezoid's height.

$$
h=|2-(\square)| \text { or } \square
$$

Area:

$$
\begin{aligned}
A & =\frac{1}{2} h\left(b_{1}+b_{2}\right) \\
& =\frac{1}{2}(\square)(\square)+(\square) \text { or } \square \text { square units }
\end{aligned}
$$

EXAMPLE Area of a Rhombus on the Coordinate Plane

Key Concept

Area of a Rhombus If a rhombus has an area of A square units and diagonals of d_{1} and d_{2} units, then $A=\frac{1}{2} d_{1} d_{2}$.

Foldables

Solve three problems under the tab for Lesson 11-2: find the area of a triangle, find the area of a trapezoid, and find the area of a rhombus.

3 Find the area of rhombus MNPR with vertices at $M(0,1), N(4,2)$, $P(3,-2)$, and $R(-1,-3)$.

Let $\overline{M P}$ be d_{1} and $\overline{N R}$ be d_{2}.
Use the Distance Formula to find $M P$.
$d_{1}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

$=\sqrt{(0-3)^{2}+[\square]^{2}}=\sqrt{18}$ or \square

Use the Distance Formula to find $N R$.

Check Your Progress
Find the area of each figure.
a.

b.

EXAMPLE Algebra: Find Missing Measures

(4) Rhombus RSTU has an area of

 64 square inches. Find $U S$ if $R T=8$ inches.Use the formula for the area of a
 rhombus and solve for d_{2}.

A	$=\frac{1}{2} d_{1} d_{2}$		Area of rhombus
\square	$=\frac{1}{2}(\square)\left(d_{2}\right)$		$A=\square, d_{1}=\square$
64	$=4\left(d_{2}\right)$		Multiply.
\square	$=d_{2}$		$\overline{U S}$ is \square

Check Your Progress

a. Rhombus $A B C D$ has an area of 81 square centimeters. Find $B D$ if $A C=6$ centimeters.

b. Trapezoid $Q R S T$ has an area of 210 square yards. Find the height of $Q R S T$.

Homework

 AssignmentPage(s):
Exercises:

11-3 Areas of Regular Polygons and Circles

Main Ideas

- Find areas of regular polygons.

Find areas of circles.

KEy Concept

Area of a Regular

Polygon If a regular polygon has an area of A square units, a perimeter of P units, and an apothem of a units, then $A=\frac{1}{2} \mathrm{~Pa}$.

FOLDABLES

Write the
formula for the area of a regular polygon under the tab for Lesson 11-3.

TEKS G. 8
The student uses tools to determine measurements of geometric figures and extends measurement concepts to find perimeter, area, and volume in problem situations.
(A) Find areas of regular polygons, circles and composite figures. G. 11 The student applies the concepts of similarity to justify properties of figures and solve problems. (D) Describe the effect on perimeter, area, and volume when one or more dimensions of a figure are changed and apply this idea in solving problems. Also addresses TEKS G.5(B), G.9(B), and G.11(B).

BUILD YOUR VOCABULARY (page 278)

An apothem is a segment that is drawn from the \square of a regular polygon \square to a side of the polygon.

EXAMPLE Area of a Regular Polygon

(1) Find the area of a regular pentagon with a perimeter of 90 meters.

Apothem:

The central angles of a regular pentagon are all congruent. Therefore, the measure of each angle is $\frac{360}{5}$ or $72 . \overline{G F}$ is an apothem of pentagon $A B C D E$. It
 bisects $\angle E G D$ and is a perpendicular bisector of $\overline{E D}$. So, $m \angle D G F=\frac{1}{2}(72)$ or 36 . Since the perimeter is 90 meters, each side is 18 meters and $F D=9$ meters.

Write a trigonometric ratio to find the length of $\overline{G F}$.

$$
\tan \angle D G F=\frac{D F}{G F} \quad \tan \theta=\frac{\text { length of opposite side }}{\text { length of adjacent side }}
$$

(GF) \tan

Multiply each side by GF.

Divide each side by tan

Area: $A=\frac{1}{2} P a$

Area of a regular polygon

Simplify.
The area of the pentagon is about \square square meters.

Check Your Progress

 Find the area of a regular pentagon with a perimeter of 120 inches.

KEy Concept

Area of a Circle If a circle has an area of A square units and a radius of r units, then $A=\pi r^{2}$.

(2) MANUFACTURING An outdoor

 accessories company manufactures circular covers for outdoor umbrellas. If the cover is 8 inches longer than the umbrella on each side, find the area of the cover in square yards.

The diameter of the umbrella is 72 inches, and the cover must extend 8 inches in each direction. So the diameter of the cover is $\square+\square+\square$ or \square inches. Divide by 2 to find that the radius is 44 inches.
$A=\pi r^{2}$

Area of a circle
Substitution
Use a calculator.

The area of the cover is \square square inches. To convert to square yards, divide by 1296. The area of the cover is \square square yards to the nearest tenth.

Check Your Progress A swimming pool company manufactures circular covers for above-ground pools. If the cover is 10 inches longer than the pool on each side, find the area of the cover in square yards.

5XAMPLE Area of an Inscribed Polygon

Review It

Draw a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle with the shorter leg labeled 5 meters long. Label the angles and the remaining sides. (Lesson 8-3)
\qquad
\qquad
\qquad
\qquad

Homework Assignment

Page(s):
Exercises:

11-4 Areas of Composite Figures

TEKS G. 8 The student uses tools to determine measurements of geometric figures and extends measurement concepts to find perimeter, area, and volume in problem situations. (A) Find areas of regular polygons, circles, and composite figures.

Main Ideas

- Find areas of composite figures.
- Find areas of composite figures on the coordinate plane.

BUILD YOUR YOGABULARY (page 274)

A composite figure is a figure that \square be classified into the specific shapes that we have studied.

Postulate 11.2

The area of a region is the sum of the areas of all of its nonoverlapping parts.

EXAMPLE Find the Area of a Composite Figure

FOLDABLES

Organize It

Explain how to find the area of a composite figure. Include the explanation under the tab for Lesson 11-4. Also include an example to show how to find the area of such a figure.

(1) A rectangular rose garden is centered in a border of lawn. Find the area of the lawn around the garden in square feet.

One method to find the area of the lawn around the garden is to find the total area and then subtract the area of the garden. The overall length of the lawn and garden is $25+100+25$ or \square feet. The overall width of the lawn and garden is $25+20+25$ or \square feet.
Area of lawn = Area of lawn and garden - Area of garden

$$
\begin{aligned}
& =\ell_{1} w_{1}-\ell_{2} w_{2} \\
& =(150)(70)-(100)(20) \\
& =10,500-2000 \\
& =\square
\end{aligned}
$$

Area formulas

$$
\ell_{1}=150, w_{1}=70
$$

$$
\ell_{2}=100, w_{2}=20
$$

Multiply.
Subtract.
The area of the lawn around the garden is \square square feet.

EXAMPLE Coordinate Plane

Remember It

Estimate the area of the figure by counting the unit squares. Use the estimate to determine if your answer is reasonable.

Homework Assignment

Page(s):

Exercises:

2 Find the area of polygon MNPQR.

First, separate the figure into regions. Draw an auxiliary line perpendicular to $\overline{Q R}$ from M (we will call this point of intersection S) and an auxiliary line from N to the x-axis (we will
 call this point of intersection K).
This divides the figure into triangle $M R S$, triangle $N K M$, trapezoid $P O K N$, and trapezoid $P Q S O$.

Now, find the area of each of the figures. Find the difference between x-coordinates to find the lengths of the bases of the triangles and the lengths of the bases of the trapezoids. Find the difference between y-coordinates to find the heights of the triangles and trapezoids.
area of $M N P Q R$
$=$ area of $\triangle M R S+$ area of $\triangle N K M+$ area of trapezoid POKN + area of trapezoid $P Q S O$
$=\frac{1}{2} b h+\frac{1}{2} b h+\frac{1}{2} h\left(b_{1}+b_{2}\right)+\frac{1}{2} h\left(b_{1}+b_{2}\right)$

The area of polygon $M N P Q R$ is \square square units.

Check Your Progress

Find the area of polygon $A B C D E$.

11-5 Geometric Probability

TEKS G. 8 The student uses tools to determine measurements of geometric figures and extends measurement concepts to find perimeter, area, and volume in problem situations. (B) Find areas of sectors and arc lengths of circles using proportional reasoning.

MAIN IDEAS

- Solve problems involving geometric probability.
- Solve problems involving sectors and segments of circles.

BUILD YoUR VOGABULARY (page 274)

Probability that involves a geometric measure such as length or area is called geometric probability.
A sector of a circle is a region of a circle bounded by a

EXAMPIE Probability with Sectors

Key Concepts
 (1) Refer to the figure.

Probability and Area
If a point in region A is chosen at random, then the probability $P(B)$ that the point is in region B, which is in the interior of region A, is
$P(B)=\frac{\text { area of region } B}{\text { area of region } A}$.

Area of a Sector

If a sector of a circle has an area of A square units, a central angle measuring N°, and a radius of r units, then
$A=\frac{N}{360} \pi r^{2}$.

a. Find the total area of the

 shaded sectors.The shaded sectors have degree measures of 45 and 35 or 80° total. Use the formula to find the total area of the shaded sectors.

$A=\frac{N}{360} \pi r^{2}$
Area of a sector

Simplify.
b. Find the probability that a point chosen at random lies in the shaded region.
To find the probability, divide the area of the shaded sectors by the area of the circle. The area of the circle is πr^{2} with a radius of 9 .

The probability that a random point is in the shaded sectors is about \square

Check Your Progress Find the area of the shaded sectors. Then find the probability that a point chosen at random lies in the shaded regions.

BUILD YOUR VOCABULARY (page 274)

The region of a circle bounded by an arc and a is called a segment of a circle.

EXAMPIE Probability with Segments

2 A regular hexagon is inscribed in a circle with a diameter of 12 .
a. Find the area of the shaded regions.

Area of a sector:

Simplify. Then use a calculator.

Area of a triangle:

Since the hexagon was inscribed in the circle, the triangle is equilateral, with each side 6 units long. Use properties of $30^{\circ}-60^{\circ}-90^{\circ}$ triangles to find the apothem. The value of x is 3 and the apothem is $x \sqrt{3}$ or

FOLDABLES

Organize It

Write a paragraph to summarize what you have learned about finding geometric probabilities. Illustrate your remarks with sketches. Include your paragraph and sketches under the tab for Lesson 11-5.

ASSIGNMENT

Next, use the formula for the area of a triangle.
$A=\frac{1}{2} b h$

Area of a triangle

Simplify.

Area of segment:

area of one segment $=$ area of sector - area of triangle

Since three segments are shaded, we will multiply this by 3 .

The area of the shaded regions about \square square units.

b. Find the probability that a point chosen at random lies in the shaded regions.

Divide the area of the shaded regions by the area of the circle to find the probability. First, find the area of the circle. The radius is 6 , so the area is or about 113.10 square units.

$$
\begin{aligned}
P(\text { shaded }) & =\frac{\text { area of shaded region }}{\text { area of circle }} \\
& \approx \square \text { or about } \square
\end{aligned}
$$

The probability that a random point is on the shaded region
\square

Check Your Progress
A regular hexagon is inscribed in a circle with a diameter of 18. Find the area of the shaded regions. Find the probability that a point chosen at random lies in the shaded regions.

STUDY GUIDE

$\left.\begin{array}{|l|l|l|}\hline \text { COLDABLES }\end{array} \quad \begin{array}{l}\text { VOCABULARY } \\ \text { PUZZLEMAKER }\end{array} \quad \begin{array}{l}\text { BUILDYOUR } \\ \begin{array}{l}\text { Use your Chapter 11 Foldable } \\ \text { to help you study for your } \\ \text { chapter test. }\end{array} \\ \begin{array}{l}\text { To make a crossword puzzle, } \\ \text { word search, or jumble } \\ \text { puzzle of the vocabulary words } \\ \text { in Chapter 11, go to: }\end{array} \\ \text { glencoe.com }\end{array} \begin{array}{l}\text { You can use your completed } \\ \text { Vocabulary Builder (page 274) } \\ \text { to help you solve the puzzle. }\end{array}\right]$

11-1
 Areas of Parallelograms

Refer to the figure. Determine whether each statement is

 true or false. If the statement is false, explain why.1. $\overline{A B}$ is an altitude of the parallelogram.

2. $\overline{C D}$ is a base of parallelogram $A B C D$.
\square
3. Find the perimeter and area of the parallelogram. Round to the nearest tenth if necessary.
\square

11-2

Area of Triangles, Trapezoids, and Rhombi

Find the area of each quadrilateral.

\square
5.

11-3
Areas of Regular Polygons and Circles
6. Find the area of a regular pentagon with a perimeter of 100 meters.

7. Find the area of the shaded region to the nearest tenth. Assume that the polygon is regular.

11-4

Areas of Composite Figures

Find the area of the shaded region of each figure to the nearest tenth.

9.

11-5

Geometric Probability

10. Suppose you are playing a game of darts with a target like the one shown at the right. If your dart lands inside equilateral $\triangle U V W$, you get a point. Assume that every dart will land on the target. The radius of the circle is 1 . Find the probability of getting a point.
 Round to the nearest thousandth.

Checklist

Math nline

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 11.

ARE YOU READY FOR THE CHAPTER TEST?

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 11 Practice Test on page 675 of your textbook as a final check.

I used my Foldable or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 11 Study Guide and Review on pages 672-674 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 11 Practice Test on page 675.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 11 Foldable.
- Then complete the Chapter 11 Study Guide and Review on pages 672-674 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 11 Practice Test on page 675.

12

Extending Surface Area

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.

NOTE-TAKING TIP: When taking notes, place a question mark next to anything you do not understand. Then be sure to ask questions before any quizzes or tests.

 12

BUILD YOUR VOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 12. As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

Vocabulary Term	Found on Page	Definition	Description or Example
axis			
great circle			
hemisphere			
lateral area			
lateral edges			
lateral faces			

Vocabulary Term	Found on Page	Definition	Description or Example
oblique cone			
reflection symmetry			
regular pyramid			
right cone			
right cylinder			

12-1 Representations of Three-Dimensional Figures

EXAMPLE Draw a Solid

Main Ideas

Draw isometric views of three-dimensional figures.

- Investigate cross sections of threedimensional figures.

TEKS G. 6
The student analyzes the relationship between three-dimensional geometric figures and related two-dimensional representations and uses these representations to solve problems.
(A) Describe and draw the intersection of a given plane with various threedimensional geometric figures. (C) Use orthographic and isometric views of three-dimensional geometric figures to represent and construct three-dimensional geometric figures and solve problems. G. 9 The student analyzes properties and describes relationships in geometric figures. (D) Analyze the characteristics of polyhedra and other three-dimensional figures and their component parts based on explorations and concrete models.
(1) Sketch a triangular prism 6 units high with bases that are right triangles with legs 6 units and 4 units long.

STEP 1 Draw the corner of the solid: 4 units up, 6 units to the left, and 6 units to the right.

STEP 2 Draw a parallelogram for the back of the solid. Draw the hypotenuse of one base.

STEP 3 Draw a dashed line 6 units long.

STEP 4 Connect the corresponding vertices. Use dashed lines for the hidden edges.

Write It

What views are included in an orthographic drawing? Is each view the same shape?

EXAMPIE Use Orthographic Drawings

2 Draw the corner view of the figure given its orthographic drawing.

- The top view indicates one row of different heights and one column in the front right.
- The front view indicates that there are \square standing columns. The first column to the left is \square blocks high, the second column is \square blocks high, the third column is \square blocks high, and the fourth column to the far right is \square block high. The dark segments indicate breaks in the surface.
- The right view indicates that the front right column is only \square block high. The dark segments indicate breaks in the surface.
- The \square column
should be visible. Connect the dots on the isometric dot paper to represent the solid.

Foldables

Organize It

sketch a prism, pyramid, cylinder, cone, and sphere. Write the name of each figure below the sketch. Include each sketch under the appropriate tab.

Check Your Progress Draw the corner view of the figure given its orthogonal drawing.

left view

front view

EXAMPLE

3 BAKERY A customer ordered a two-layer sheet cake. Describe and draw the possible cross sections of the cake.

If the cake is cut \square, the cross section will be a
\square
If the cake is cut \square the cross section will be a \square. Sketch the cross sections.

Horizontal: Vertical:

Check Your Progress
ARCHITECTURE
An architect is building a scale model of the Great Pyramids of Egypt. Describe the possible cross sections of the model.

If the pyramid is cut vertically the cross section is a triangle.

If the pyramid is cut horizontally the cross section is a square.

Homework

Assignment
Page(s):
Exercises:

12-2 Surface Areas of Prisms

Main Ideas

Find lateral areas of prisms.

- Find surface areas of prisms.

Key Concept

Lateral Area of a Prism If a right prism has a lateral area of L square units, a height of h units, and each base has a perimeter of P units, then $L=P h$.

TEKS G. 8
The student uses tools to determine measurements of geometric figures and extends measurement concepts to find perimeter, area, and volume in problem situations.
(D) Find surface areas and volumes of prisms, pyramids, spheres, cones, cylinders, and composites of these figures in problem situations. G. 11 The student applies the concepts of similarity to justify properties of figures and solve problems. (D) Describe the effect on perimeter, area, and volume when one or more dimensions of a figure are changed and apply this idea in solving problems. Also addresses TEKS G.8(C).

BUILD YOUR YOCABULARY (pages 292-293)
In a prism, the faces that are not \square are called lateral faces.

The lateral faces intersect at the lateral edges. Lateral edges are \square segments.

A prism with lateral edges that are also
 is called a right prism.

The lateral area L is the sum of the \square of the lateral faces.

EXAMPIE Lateral Area of a Hexagonal Prism

(1) Find the lateral area of the regular hexagonal prism.

The bases are regular hexagons. So the perimeter of one base is $6(5)$ or 30 centimeters.

$$
L=P h
$$

Check Your Progress

Find the lateral area of the regular octagonal prism.

EXAMPIE Surface Area of a Square Prism

Key Concept

2 Find the surface area of the square prism.

Surface Area of a Prism If the surface area of a right prism is T square units, its height is h units, and each base has an area of B square units and a perimeter of P units, then $T=L+2 B$.

FOLDABLES
Sketch a right prism. Below the sketch, explain how finding the perimeter of the base can help you calculate the surface area of the prism. Include the sketch and explanation under the tab for Prisms.

Homework

 AssignmentPage(s):
Exercises:

$T=L+2 B$

$$
=\square
$$

Substitution
Simplify.

Surface area of a prism

The surface area is \square square centimeters.

Check Your Progress Find the surface area of the triangular prism.

12-3 Surface Areas of Cylinders

TEKS G. 8 The student uses tools to determine measurements of geometric figures and extends measurement concepts to find perimeter, area, and volume in problem situations. (D) Find surface areas and volumes of prisms, pyramids, spheres, cones, cylinders, and composites of these figures in problem situations.

BUILD YOUR VOGABULARY (pages 292-293)

MAIN IDEAS

- Find lateral areas of cylinders.
- Find surface areas of cylinders.

Key Concepts

Lateral Area of a Cylinder If a right cylinder has a lateral area of L square units, a height of h units, and the bases have radii of r units, then $L=2 \pi r h$.

Surface Area of a Cylinder If a right cylinder has a surface area of T square units, a height of h units, and the bases have radii of r units, then $T=2 \pi r h+2 \pi r^{2}$.

FOLDABLES

Take notes about cylinders under the Cylinders tab.

The axis of a cylinder is the segment with endpoints that are \square of the circular bases.

An altitude of a cylinder is a segment that is to the bases of the cylinder and has its endpoints on the bases.

If the axis is also the \square then the cylinder is called a right cylinder. Otherwise, the cylinder is an oblique cylinder.

EXAMPIE Lateral Area of a Cylinder

(1) MANUFACTURING A fruit juice can is cylindrical with aluminum sides and bases. The can is 12 centimeters tall, and the diameter of the can is 6.3 centimeters. How many square centimeters of aluminum are used to make the sides of the can?

The aluminum sides of the can represent the \square area of the cylinder. If the diameter of the can is 6.3 centimeters, then the radius is \square centimeters. The height is 12 centimeters. Use the formula to find the lateral area.

Lateral area of a cylinder

Use a calculator.

About \square square centimeters of aluminum are used to make the sides of the can.

Check Your Progress
A set of toy blocks are sold in a cylindrical shape container. A product label wraps around all sides of the container without any overlaps or gaps. How much paper is used to make the label the appropriate size if the diameter of the container is 12 inches and the height is 18 inches?

5XAMPLE Surface Area of a Cylinder

2 Find the surface area of the cylinder.

The radius of the base and the height of the cylinder are given. Substitute these values in the formula to find the surface area.

Surface area of a cylinder

$h=$

Use a calculator.

The surface area is approximately \square square feet.

Check Your Progress
Find the surface area of the cylinder.

Homework
 Assignment

Page(s):
Exercises:
 situations. (C) Derive, extend, and use the Pythagorean Theorem. (D) Find surface areas and volumes of prisms, pyramids, spheres, cones, cylinders, and composites of these figures in problem situations.

EXAMPIE Use Lateral Area to Solve a Problem

Main Ideas

Find lateral areas of regular pyramids.

- Find surface areas of regular pyramids.

KEy Concepts

Lateral Area of a

 Regular Pyramid If a regular pyramid has a lateral area of L square units, a slant height of ℓ units, and its base has a perimeter of P units,then $L=\frac{1}{2} P \ell$.
Surface Area of a Regular Pyramid If a regular pyramid has a surface area of T square units, a slant height of ℓ units, and its base has a perimeter of P units, and an area of B square units, then
$T=\frac{1}{2} P \ell+B$.

Foldables

 Define the basic properties of pyramids under the Pyramids tab. Include a sketch of a pyramid with the parts of a pyramid labeled.(1) CANDLES A candle store offers a pyramidal candle that burns for $\mathbf{2 0}$ hours. The square base is $\mathbf{6}$ centimeters on a side and the slant height of the candle is 22 centimeters. Find the lateral area of the candle.

The sides of the base measure 6 centimeters, so the perimeter is $4(6)$ or 24 centimeters.
$L=\frac{1}{2} P \ell$ Lateral area of a regular pyramid

Multiply.

The lateral area of the candle is \square square centimeters.

Check Your Progress
 A pyramidal shaped tent is put

 up by two campers. The square base is 7 feet on a side and the slant height of the tent is 7.4 feet. Find the lateral area of the tent.
EXAMPIE Surface Area of a Square Pyramid

2 Find the surface area of the square pyramid. Round to the nearest tenth if necessary.
To find the surface area, first find the slant height of the pyramid. The slant height is the hypotenuse of a right triangle with legs that are the altitude and a segment with a length that is
 one-half the side measure of the base.

Pythagorean Theorem
Replace a, b, and ℓ.
Use a calculator.

Now find the surface area of the regular pyramid. The perimeter of the base is $4(8)$ or 32 meters, and the area of the base is 8^{2} or 64 square meters.
$T=\frac{1}{2} \mathrm{P} \ell+B \quad$ Surface area of a regular pyramid
$T \approx \frac{1}{2}(\square)(\square)+\square$
Replace P, ℓ, and B.
$T \approx$

Use a calculator.
The surface area is \square square meters to the nearest tenth.

Check Your Progress

Find the surface area of the regular pyramid to the nearest tenth.

EXAMPLE Surface Area of a Pentagonal Pyramid

3 Find the surface area of the regular pyramid. Round to the nearest tenth.
The altitude, slant height, and apothem form a right triangle. Use the Pythagorean Theorem to find the apothem. Let x
 represent the length of the apothem.

$$
c^{2}=a^{2}+b^{2}
$$

$$
\square=\square+\square
$$

$$
\square=a
$$

Pythagorean Theorem
\square
Simplify.

Now find the length of the sides of the base. The central angle of the hexagon measures $\frac{360^{\circ}}{6}$ or 60°. Let a represent the measure of the angle formed by a radius and the apothem. Then $a=\frac{60}{2}$ or 30 .

Homework Assignment

Page(s):
Exercises:

12-5 Surface Areas of Cones

Main Ideas

Find lateral areas of cones.

- Find surface areas of cones.

KEy Concept

Lateral Area of a Cone If a right circular cone has a lateral area of L square units, a slant height of ℓ units, and the radius of the base is r units, then $L=\pi r \ell$.

TEKS G. 8
The student uses tools to determine measurements of geometric figures and extends measurement concepts to find perimeter, area, and volume in problem situations. (C) Derive, extend, and use the Pythagorean Theorem. (D) Find surface areas and volumes of prisms, pyramids, spheres, cones, cylinders, and composites of these figures in problem situations.

BUILD YOUR VOCABULARY (pages 292-293)
The shape of a tepee suggests a circular cone.

EXAMPIE Lateral Area of a Cone

ICE CREAM A sugar cone has an altitude of 8 inches and a diameter of $2 \frac{1}{2}$ inches. Find the lateral area of the sugar cone.

Use the Pythagorean Theorem. Write an equation and solve for ℓ.

Next, use the formula for the lateral area of a right circular cone.
$L=\pi r \ell$

The lateral area is approximately \square square inches.

Check Your Progress

A hat for a child's birthday party has a conical shape with an altitude of 9 inches and a diameter of 5 inches. Find the lateral area of the birthday hat.

EXAMPLE Surface Area of a Cone

2 Find the surface area of the cone. Round to the

 nearest tenth.
KEy CONCEPT

Surface Area of a Cone If a right circular cone has a surface area of T square units, a slant height of ℓ units, and the radius of the base is r units, then
$T=\pi r \ell+\pi r^{2}$.

Foldables

Sketch a right circular cone. Use the letters r, h, and ℓ to indicate the radius, height and slant height, respectively. Write the formula for the surface area. Include all this under the tab for Cones.

Homework Assignment

12-6 Surface Areas of Spheres

Main Ideas

- Recognize and define basic properties of spheres.
- Find surface areas of spheres.

TEKS G. 8

The student uses tools to determine measurements of geometric figures and extends measurement concepts to find perimeter, area, and volume in problem situations. (D) Find surface areas and volumes of prisms, pyramids, spheres, cones, cylinders, and composites of these figures in problem situations. G. 11 The student applies the concepts of similarity to justify properties of figures and solve problems.
(D) Describe the effect on perimeter, area, and volume when one or more dimensions of a figure are changed and apply this idea in solving problems. Also addresses TEKS G.8(C).

BUILD YOUR YOCABULARY (pages 292-293)

When a plane intersects a sphere so that it contains the
\square of the sphere, the intersection is called a great circle.

Each great circle separates a sphere into
\square

EXAMPIE Spheres and Circles

1 In the figure, O is the center of the sphere, and plane P intersects the sphere in the circle R. If $O R=6$ centimeters and $O S=14$ centimeters, find $\boldsymbol{R S}$.

The radius of circle R is segment \square and S is a point on circle R and on sphere O. Use the Pythagorean Theorem for right triangle $O R S$ to solve for $R S$.

Key Concept

Surface Area of a Sphere If a sphere has a surface area of T square units and a radius of r units, then $T=4 \pi r^{2}$.

FOLDABLES

terms great cir hemisphere under the Spheres tab. Also, include the formula for finding the surface area of a sphere.

Check Your Progress In the figure, O is the center of the sphere, and plane \mathcal{U} intersects the sphere in circle L. If $O L=3$ inches and $L M=8$ inches, find $O M$.

EXAMPLE Surface Area

a. Find the surface area of the sphere, given a great circle with an area of approximately 907.9 square centimeters.

The surface area of a sphere is four times the area of the great circle.
$T=4 \pi r^{2}$
Surface area of a sphere
$=4(\square)$
$=$

$\pi r^{2} \approx \square$
Multiply.

The surface area is approximately \square square centimeters.
b. Find the surface area of a hemisphere with a radius of 3.8 inches.

A hemisphere is half of a sphere. To find the surface area, find half of the surface area of the sphere and add the area of the great circle.

$$
\begin{array}{rlr}
T & =\frac{1}{2}\left(4 \pi r^{2}\right)+\pi r^{2} & \begin{array}{l}
\text { Surface area of a } \\
\text { hemisphere }
\end{array} \\
& =\frac{1}{2}\left[4 \pi(\square)^{2}\right]+\pi(\square)^{2} & \text { Substitution } \\
& \approx \square & \text { Use a calculator. }
\end{array}
$$

The surface area is approximately \square square inches.

Check Your Progress
a. Find the surface area of the sphere, given a great circle with an area of approximately 91.6 square centimeters.

b. Find the surface area of a hemisphere with a radius of 6.4 inches.

EXAMPIE

Review It

What is the circumference of a circle with a radius of 6 centimeters?
(Lesson 10-1)
\qquad
\square
(3) A ball is a sphere with a circumference of 24 inches. Find the approximate surface area of the ball to the nearest tenth of a square inch.

To find the surface area, first find the radius of the sphere.

Divide each side by

Simplify.
Next, find the surface area of the sphere.

Homework
 Assignment

Page(s):
Exercises:

Use a calculator.
\square

The surface area is approximately \square square inches.

Check Your Progress Find the approximate surface area

 of a ball with a circumference of 18 inches to the nearest tenth of a square inch.\square

为
 12

BRINGING IT ALL TOGETHER

STUDY GUIDE

FOLDABLES	VOCABULARY PUZZLEMAKER	BUILD YOUR MOCABULARY
Use your Chapter 12 Foldable to help you study for your chapter test.	To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 12, go to: glencoe.com	You can use your completed Vocabulary Builder (pages 292-293) to help you solve the puzzle.

12-1

Representations of Three-Dimensional Figures

Identify each solid. Name the bases, faces, edges, and vertices.

2.

12-2

Surface Areas of Prisms

Refer to the figure.

3. Name this solid with as specific a name as possible.

4. Name the bases of the solid.

\square
5. Name the lateral faces.
\square
6. Name the edges.

7. Name an altitude of the solid.
8. The lateral area of a prism is 90 square inches and the perimeters of its base is 15 inches. Find the height. \square
12-3

Surface Areas of Cylinders

Underline the correct word or phrase to form a true statement.

9. The bases of a cylinder are (rectangles/regular polygons/circles).
10. The (axis/radius/diameter) of a cylinder is the segment with endpoints that are the centers of the bases.
11. The net of a cylinder is composed of two congruent (rectangles/circles) and one (rectangle/semicircle).
12. In a right cylinder, the axis of the cylinders is also $\mathrm{a}(\mathrm{n})$ (base/lateral edge/altitude).
13. A cylinder that is not a right cylinder is called an (acute/obtuse/oblique) cylinder.

Chapter 12 BRINGING IT ALL TOGETHER

14. Find the lateral area and surface area of the cylinder. Round to the nearest tenth.

12-4

Surface Areas of Pyramids

In the figure, $A B C D E$ has congruent sides and congruent angles.
15. Use the figure to name the base of this pyramid.

16. Describe the base of the pyramid.

17. Name the vertex of the pyramid. \square
18. Name the altitude of the pyramid. \square
19. Write an expression for the height of the pyramid. \square
20. Write an expression for the slant height of the pyramid. \square
21. Find the lateral area and surface area of the regular figure. Round to the nearest tenth.
\square

12-5

Surface Areas of Cones

A right circular cone has a radius of 7 meters and a slant height of 13 meters.

22. Find the lateral area to the nearest tenth. \square
23. Find the surface area to the nearest tenth. \square
24. Suppose you have a right cone with radius r, diameter d, height h, and slant height ℓ. Which of the following relationships involving these lengths are correct?
a. $r=2 d$
b. $r+h=\ell$
c. $r^{2}+h^{2}=\ell^{2}$
d. $r^{2}+\ell^{2}=h^{2}$
e. $r=\sqrt{\ell^{2}-h^{2}}$
f. $h= \pm \sqrt{\ell^{2}-r^{2}}$

12-6

Surface Areas of Spheres
In the figure, P is the center of the sphere. Name each of the following in the figure.
25. two chords of the sphere

26. a great circle of the sphere

27. a tangent to the sphere \square
28. Complete: A sphere is separated by a great circle into two congruent halves, each called a(n) \square
Determine whether each sentence is sometimes, always, or never true.
29. If a sphere and a plane intersect in more than one point, their intersection will be a great circle. \square
30. A great circle has the same center as the sphere.
31. A chord of a sphere is diameter of the
32. $T=\pi r \ell+\pi r^{2}$

33. $T=P H+2 B$

34. $T=4 \pi r^{2}$

35. $T=\frac{1}{2} P \ell+B$

36. $T=2 \pi r h+2 \pi r^{2}$

37. $T=3 \pi r^{2}$

a. regular pyramid
b. hemisphere
c. cylinder
d. prism
e. sphere
f. cone
38. A sphere has a radius that is 28 inches long. Find the surface area to the nearest tenth.
\square
39. The radius of a sphere is doubled. How is the surface area changed?
\square

12
Checklist

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 12.

ARE YOU READY FOR THE CHAPTER TEST?

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 12 Practice Test on page 723 of your textbook as a final check.

I used my Foldable or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 12 Study Guide and Review on pages 719-722 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 12 Practice Test on page 723 of your textbook.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 12 Foldable.
- Then complete the Chapter 12 Study Guide and Review on pages 719-722 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 12 Practice Test on page 723 of your textbook.

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.

Begin with one sheet of $11 " \times 17$ " paper.

STEP 1 Fold in thirds.

STEP 2
Fold in half lengthwise. Label as
 shown.

STEP 3 Unfold book. Draw lines along folds and label as shown.

NOTE-TAKING TIP: When you take notes in geometry, be sure to make comparisons among the different formulas and concepts. For example, how are pyramids and cones similar? different? This will help you learn the material.

BUILD YOUR VOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 13. As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

Vocabulary Term	Found on Page	Definition	Description or Example
congruent solids			
ordered triple			
similar solids			

13-1 Volumes of Prisms and Cylinders

EXAMPIE Volume of a Triangular Prism

Main Ideas

- Find volumes of prisms.
- Find volumes of cylinders.

Key Concept

Volume of a Prism If a prism has a volume of V cubic units, a height of h units, and each base has an area of B square units, then $V=B h$.

V
TEKS G. 8 The student uses tools to determine measurements of geometric figures and extends measurement concepts to find perimeter, area, and volume in problem situations. (D) Find surface areas and volumes of prisms, pyramids, spheres, cones, cylinders, and composites of these figures in problem situations. G. 11 The student applies the concepts of similarity to justify properties of figures and solve problems. (D) Describe the effect on perimeter, area, and volume when one or more dimensions of a figure are changed and apply this idea in solving problems. Also addresses TEKS G.6(B), G.6(C) and G.8(C).
(1) Find the volume of the triangular prism.
$V=B h$

\square
The volume of the prism is \square cubic centimeters.

Check Your Progress Find the volume of the triangular prism.

EXAMPIE Volume of a Rectangular Prism

2 The weight of water is 0.036 pound times the volume of water in cubic inches. How many pounds of water would fit into a rectangular child's pool that is 12 inches deep, 3 feet wide, and 4 feet long?

First, convert feet to inches.

KEy Concept

Volume of a Cylinder

If a cylinder has a volume of V cubic units, a height of h units, and the bases have radii of r units, then $V=B h$ or $V=\pi r^{2} h$

FOLDABLES
Explain how to find the volume of a prism and a cylinder. Put the explanations under their respective tabs in the Foldable.

To find the pounds of water that would fit into the child's pool, find the volume of the pool.

$$
\begin{aligned}
V & =B h \\
& =36(48)(\square) \\
& =\square
\end{aligned}
$$

Volume of a prism
$B=36(48), h=\square$

Now multiply the volume by 0.036 .

A rectangular child's pool that is 12 inches deep, 3 feet wide, and 4 feet long, will hold about \square pounds of water.

Check Your Progress

The weight of water is 62.4 pounds per cubic foot. How many pounds of water would fit into a back yard pond that is rectangular prism 3 feet deep, 7 feet wide, and 12 feet long?

EXAMPLE Volume of a Cylinder

3 Find the volume of the cylinder.

The height h is
 centimeters, and the radius r is \square centimeters.
$V=\pi r^{2} h$

Volume of a cylinder

Use a calculator.

The volume is approximately \square cubic centimeters.

Remember It

The diameter of the base, the diagonal, and the lateral edge of the cylinder form a right triangle.

Key Concept

Cavalieri's Principle

If two solids have the same height and the same cross-sectional area at every level, then they have the same volume.

Homework

Assignment
Page(s):
Exercises:

Check Your Progress cylinder to the nearest tenth.
a.

b.

EXAMPLE Volume of an Oblique Cylinder

(4) Find the volume of the oblique cylinder to the nearest tenth.

To find the volume, use the formula for a right cylinder.

$$
V=\pi r^{2} h
$$

\square
Volume of a cylinder

Use a calculator.

The volume is approximately \square cubic feet.

Check Your Progress

Find the volume of the oblique cylinder to the nearest tenth.

13-2 Volumes of Pyramids and Cones

EXAMPIE Volume of a Pyramid

MAIN IDEAS

Find volumes of pyramids.

- Find volumes of cones.

KEy Concept

Volume of a Pyramid

 If a pyramid has a volume of V cubic units, a height of h units, and a base with an area of B square units, then $V=\frac{1}{3} B h$.TEKS G. 8 The student uses tools to determine measurements of geometric figures and extends measurement concepts to find perimeter, area, and volume in problem situations. (D) Find surface areas and volumes of prisms, pyramids, spheres, cones, cylinders, and composites of these figures in problem situations. G. 11 The student applies the concepts of similarity to justify properties of figures and solve problems.
(C) Develop, apply, and justify triangle similarity relationships, such as right triangle ratios, trigonometric ratios, and Pythagorean triples using a variety of methods.

1 CLOCKS Teofilo has a solid clock that is in the shape of a square pyramid. The clock has a base of 3 inches and a height of 7 inches. Find the volume of the clock.

The volume of the clock is \square cubic inches.

Check Your Progress

Brad is building a model pyramid for a social studies project. The model is a square pyramid with a base edge of 8 feet and a height of 6.5 feet. Find the volume of the pyramid.

EXAMPIE Volumes of Cones

Key Concept

Volume of a Cone If a right circular cone has a volume of V cubic units, a height of h units, and the base has a radius of r units, then
$V=\frac{1}{3} B h$ or $V=\frac{1}{3} \pi r^{2} h$.

FOLDABLES

ORGANIZE IT

Explain how to find the volume of a pyramid and a cone. Put the explanations under their respective tabs in the Foldable.

2 Find the volume of the cone to the nearest tenth.

$V=\frac{1}{3} \pi r^{2} h$
Volume of a cone

Use a calculator.

The volume is approximately \square cubic inches.

Check Your Progress Find the volume of each cone to the nearest tenth.
a.

b.

\square

EXAMPLE Volume of an Oblique Cone

3 Find the volume of the oblique cone to the nearest tenth.

Volume of a cone

Use a calculator.

The volume is approximately \square cubic inches.

Check Your Progress Find the volume of the oblique cone to the nearest tenth.

HOMEWORK
 ASSIGNMENT

13-3 Volumes of Spheres

EXAMPLE Volumes of Spheres

MAIN IDEAS

- Find volumes of spheres.
- Solve problems involving volumes of spheres.

Key Concept

Volume of a Sphere If a sphere has a volume of V cubic units and a radius of r units, then $V=\frac{4}{3} \pi r^{3}$.

TEKS G. 1 The
student understands
the structure of, and relationships within, an axiomatic system
(B) Recognize the historical development of geometric systems and know mathematics is developed for a variety of purposes. G. 8 The student uses tools to determine measurements of geometric figures and extends measurement concepts to find perimeter, area, and volume in problem situations.
(D) Find surface areas and volumes of prisms pyramids, spheres, cones, cylinders, and composites of these figures in problem situations.
(1) Find the volume of each sphere. Round to the nearest tenth.
a.

The volume is approximately \square cubic centimeters.
b.

First find the radius of the sphere.

Circumference of a circle
\square
Solve for r.

Now find the volume.

$$
\begin{aligned}
V & =\frac{4}{3} \pi r^{3} \\
& =\frac{4}{3} \pi(\square)^{3} \\
& \approx \square
\end{aligned}
$$

Volume of a sphere

Use a calculator.

The volume is approximately

13-3

FOLDABLES

Organize It

Write a paragraph that includes formulas for the volume of a sphere, cylinder, and cone.
Then describe how the volumes of these three solids are related. Put your paragraph under the Spheres tab.

Homework

Assignment
Page(s):
Exercises:

13-4 Congruent and Similar Solids

Main Ideas
 - Identify congruent or similar solids.
 - State the properties of similar solids.

Key Concept

Congruent Solids Two solids are congruent if the corresponding angles are congruent, the corresponding edges are congruent, the corresponding faces are congruent, and the volumes are equal.

TEKS G. 5
The student uses a variety of representations to describe geometric relationships and solve problems. (B) Use numeric and geometric patterns to make generalizations about geometric properties, including properties of polygons, ratios in similar figures and solids, and angle relationships in polygons and circles. G. 11 The student applies the concepts of similarity to justify properties of figures and solve problems.
(A) Use and extend similarity properties and transformations to

BUILD YOUR VOCABULARY (page 316)

Similar solids are solids that have exactly the same

Congruent solids are exactly the same \square and exactly the same \square

EXAMPLE Similar and Congruent Solids

1 Determine whether each pair of solids is similar, congruent, or neither.
a.
 explore and justify conjectures about geometric figures. Also addresses TEKS G.11(B).

The ratios of the measures are equal, so we can conclude that the pyramids are similar. Since the scale factor is not 1 , the solids are not congruent.

b.

Compare the ratios between the corresponding parts of the cones.

Remember It

All spheres are similar, just as all circles are similar.

FOLDABLES

Organize It

Describe the differences between congruent and similar solids under the Similar tab in the Foldables.

EXAMPLE Sports

2 SOFTBALL Softballs and baseballs are both used to play a game with a bat. A softball has a diameter of 3.8 inches, while a baseball has a diameter of 2.9 inches.

a. Find the scale factor of the two balls.

Write the ratio of the radii. The scale factor of the two balls is $3.8: 2.9$ or about \square

Homework

 AssignmentPage(s):
Exercises:
b. Find the ratio of the surface areas of the two balls.

If the scale factor is $a: b$, then the ratio of the surface areas is $a^{2}: b^{2}$.
$\frac{\text { surface area of the larger ball }}{\text { surface area of the smaller ball }}=\frac{a^{2}}{b^{2}}$

Theorem 13.1

$$
\approx \frac{1.3^{2}}{\square^{2}} \approx \square
$$

The ratio of the surface areas is about \square
c. Find the ratio of the volumes of the two balls.

If the scale factor is $a: b$, then the ratio of the volumes is $a^{3}: b^{3}$.
$\frac{\text { volume of the larger ball }}{\text { volume of the smaller ball }}=\frac{a^{3}}{b^{3}} \quad$ Theorem 13.1

The ratio of the volume of the two balls is about \square

Check Your Progress

Two
sizes of balloons are being used for decorating at a party. When fully inflated, the balloons are spheres. The first balloon has a diameter of 18 inches while the second balloon has a radius of 7 inches.
a. Find the scale factor of the two balloons.

b. Find the ratio of the surface areas of the two balloons.

c. Find the ratio of the volumes of the two balloons.

13-5 Coordinates in Space

TEKS G. 5 The student uses a variety of representations to describe geometric relationships and solve problems. (C) Use properties of transformations and their compositions to make connections between mathematics and the real world, such as tessellations. G. 7 The student understands that coordinate systems provide convenient and efficient ways of representing geometric figures and uses them accordingly. (C) Derive and use formulas involving length, slope, and midpoint.

MAIN IDEAS

- Graph solids in space.
- Use the Distance and Midpoint Formulas for points in space.

Remember It

The three planes determined by the axes of a three-dimensional coordinate system separate space into eight regions. These regions are called octants.

FOLDABLES

Organize It

Write a short paragraph to explain how to graph a rectagular solid. Record your paragraph under the Prisms tab.

BUILD YOUR VOCABULARY (page 316)

A point in space is represented by an ordered triple of real numbers (x, y, z).

EXAMPIE Graph a Rectangular Solid

(1) Graph the rectangular solid that contains the ordered triple $A(-3,1,2)$ and the origin as vertices. Label the coordinates of each vertex.

- Plot the x-coordinate first. Draw a segment from the origin \square units in the negative direction.
- To plot the y-coordinate, draw a segment
 unit in the positive direction.
- Next, to plot the z-coordinate, draw a segment \square units long in the positive direction.
- Label the coordinate A.
- Draw the rectangular prism and label each vertex.

Check Your Progress
Graph the rectangular solid that contains the ordered triple $N(1,2,-3)$ and the origin. Label the coordinates of each vertex.

Key Concepts

Distance Formula in
Space Given two points $A\left(x_{1}, y_{1}, z_{1}\right)$ and $B\left(x_{2}, y_{2}\right.$, z_{2}) in space, the distance between A and B is given by the following equation.

$$
d=\frac{\sqrt{\left(x_{2}-x_{1}\right)^{2}+}}{\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}
$$

Midpoint Formula in
Space Given two points
$A\left(x_{1}, y_{1}, z_{1}\right)$ and
$B\left(x_{2}, y_{2}, z_{2}\right)$ in space, the midpoint of $\overrightarrow{A B}$ is at $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}, \frac{z_{1}+z_{2}}{2}\right)$.

2 a. Determine the distance between $F(4,0,0)$ and $G(-2,3,-1)$.
$F G=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}} \quad$ Distance Formula in Space

b. Determine the midpoint M of $\overline{\boldsymbol{F G}}$.
$M=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}, \frac{z_{1}+z_{2}}{2}\right) \quad$ Midpoint Formula in Space

Substitution

Simpliify.

Check Your Progress

a. Determine the distance between $A(0,-5,0)$ and $B(1,-2,-3)$.

b. Determine the midpoint M of $\overline{A B}$.
 BRINGING IT ALL TOGETHER

STUDY GUIDE

| FOLDABLES |
| :--- | :--- | :--- |\quad| VOCABULARY |
| :--- |
| PUZZLEMAKER |\quad| BUILD YOUR |
| :--- |
| YOCABULARY |

13-1

Volumes of Prisms and Cylinders

In each case, write a formula for the volume V of the solid in terms of the given variables.

1. a rectangular box with length a, width b, and height c

2. a cylinder with height h whose bases each have diameter d

3. The volume of a rectangular prism is 224 cubic centimeters, the length is 7 centimeters, and the height is 8 centimeters. Find the width.

13-2

Volumes of Pyramids and Cones
4. Find the volume to the nearest tenth.

13-3

Volumes of Spheres
Let r represent the radius and d represent the diameter of a sphere. Determine whether each formula below can be used to find the volume of a sphere, a hemisphere, or neither.
5. $V=\frac{2 \pi r^{3}}{3}$

6. $V=\frac{1}{3} \pi r^{3}$

7. $V=\frac{1}{6} \pi d^{3}$

13-4

Congruent and Similar Solids

8. Determine whether the cylinders are congruent, similar, or neither.

9. If the ratio of the diameters of two spheres is $3: 1$, then the ratio of their surface areas is \square and the ratio of their
volumes is \square

13-5

Coordinates in Space

For the following questions, $A(-4,3,12)$ and $B(7,2,8)$.
10. Find the coordinates of the midpoint of $\overline{A B}$.

11. Find the distance between A and B.
\square
12. If B is the midpoint of $\overline{A C}$, find the coordinates of C.

13

Checklist

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 13.

ARE YOU READY FOR THE CHAPTER TEST?

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 13 Practice Test on page 769 of your textbook as a final check.

I used my Foldable or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 13 Study Guide and Review on pages 765-768 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 13 Practice Test on page 769 .

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 13 Foldable.
- Then complete the Chapter 13 Study Guide and Review on pages 765-768 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 13 Practice Test on page 769.

[^0]:

