Chapter 2: Copernicus, Brahe, and Kepler
Student Worksheet

Objective: Use simple activities to understand the concepts of retrograde motion, parallax, and
ellipses, and to develop awareness of the contributions of Nicolaus Copernicus, Tycho Brahe, and
Johannes Kepler to our modern understanding of the universe.

Engage: Imagine for a moment that you do not know whether we live in a heliocentric or a
geocentric solar system. Make an argument for each case using what you could observe without a
telescope. If you lived thousands of years ago, how would you think of the map of our solar system
and why?

Introduction: These days it seems wild to think of the Sun and the planets of our solar system
revolving around the Earth. But it took a very long time for people to move from this Ptolemaic,
geocentric view to a sun centered or heliocentric view of our solar system. Nicolaus Copernicus re-
proposed Aristarchus’s idea of heliocentric solar system after being unable to make a working
geocentric model that explained retrograde motion. Tycho Brahe also sought a better model than
the geocentric model, but he did not embrace a heliocentric model due to the problem of parallax.
Brahe was an excellent observer. His observatory was full of new instruments to precisely calculate
the positions of the planets, although his observatory lacked the instruments we most commonly
associate with observatories —i.e., telescopes. The telescope was invented just a few years after
Brahe’s death. Johannes Kepler worked to solve the problems of planetary motion that Copernicus
and Brahe could not solve. Kepler published three laws of planetary motion that solved the puzzle
— elliptical orbits.

In this investigation you will do three short experiments — one related to each of the three thinkers:
Copernicus and retrograde motion, Brahe and parallax, Kepler and the ellipse.

Retrograde, or backward motion, of planets is observable from Earth. Typically, planets appear to
move eastward relative to the background stars. At times though, they appear to move westward.
This puzzled humans for quite a long time. Part 1 is dedicated to enhancing your understanding of
retrograde motion.

Parallax is defined in astronomy as the shift of a star’s apparent position due to the motion of the
Earth. By measuring parallax , sky watchers have long been able to measure the distances to nearby
stars and planets. The closer the object, the greater the apparent shift. Hence, planets display a
great shift, while stars exhibit a miniscule shift. In Part 2 you will measure the distance to an object
using parallax.



An ellipse is a shape that looks like an elongated circle. The long diameter (the major axis) and the

short diameter (the minor axis) define ellipses. Kepler proved that planets travel in ellipses around

the Sun, a discovery which lead to his three laws of planetary motion:

1** Law: Planets move in ellipses about the Sun at one focus.
2" Law: Planets sweep out equal areas in equal times.
3 Law: The period of a planet squared is equal to the semi-major axis cubed. P* = a°.

In Part 3 you will draw ellipses and learn about the ellipse terms used in astronomy.

Procedure:

Part 1:

1.
2.

Part 2:

2.

Copernicus and Retrograde Motion

Your teacher will give you a diagram entitled Copernicus and Retrograde Motion.

On this diagram, use a straight edge to draw a line from each Earth position through the
Mars position for the same month. Extend the line approximately 1 cm past the curved line
on the right hand side of the page. Place a dot at the end of the line and label the dots in
order, with the dot on the January line being number 1, the dot on the February line being
number 2, and so on. Note: If paths cross, draw the lines slightly long and place the dots
slightly farther away than you did for the other lines. Notice that the line for January is
already drawn and the dot is labeled.

Next, start with the dot labeled "1" and carefully connect the dots in order. (This line
represents the path the planet Mars would follow in its orbit around the sun as seen from
Earth.)

The dots you plotted represent the positions where an observer on Earth would see Mars.
The line you drew connecting the dots represents the path Mars appears to follow.

Brahe and Parallax

Review angular size with your instructor. When star-gazing at night, it is useful to use your
hands as an angular measurement reference. For this activity we will want to be as precise
as possible so we will use a makeshift astrolabe based on a protractor to help us.

Make your measuring tool.
a. Place two coffee straws together. Stick a safety pin through the straws, pinning them
together about a centimeter from the end.
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Pin the safety pin through the hole in the flat edge of the protractor.

Close the safety pin.

You should now be able to move the coffee straws independently of one another.
Eventually each straw will point at the background location of your object as viewed
from two different observing places.

3. Do a thumb parallax demonstration.

a.
b.

Hold out your thumb with your arm straight.

Close one eye. Notice where your thumb appears. For example, it might be covering
a certain letter on a poster on the wall behind you or it might be covering someone’s
face across the room.

Keeping your thumb where it is, close the other eye. Notice what your thumb now
covers.

This apparent shift in the background position of your eye is due to the distance
between the two view points, or in this case, the distance between your eyes. This
apparent shift also occurs with nearby stars and planets. It is parallax, and it can be
used to measure and calculate distances to these nearby celestial objects.

Hold your astrolabe in your line of sight, keeping the flat edge of the protractor
closest to you and parallel to your object. Arrange the coffee straws so that one is
pointed in the direction of where your thumb appeared with the first eye closed, and
the other points to the location where your thumb shifted when looking through the
other eye.

The separation between the coffee straws is your angular separation, or parallax
shift. For example: if one straw points to 36 degrees and the other points to 43
degrees, your angular separation is 7 degrees. Your parallax angle is half of this. So,
in this example your parallax angle would be 3.5 degrees.



Parallax

Shift

Figure 1: Parallax Shift NASA/GSEC

Now, take a look at Figure 1 which shows how parallax is measured in astronomy. The
measurements are taken 6 months apart so the baseline is as long as possible - in this case
twice the distance of the Earth to the Sun.

Choose an object to which you will determine the distance using parallax. Your object
should be easily moveable (a chair, a backpack, a stick in the ground...) It is best if there are
some things in the distant background behind your object for use in comparing the
apparent shift when viewed from a different place.

Place your object a few meters in front of you.

Choose two locations from which to measure your object. The distance between your two
measuring points is called your baseline. In the thumb demo your baseline was the distance
between your two eyes. Your new baseline can be a few meters in length. Figure 2 below
shows an example of what this may look like.



Background objects

-

-
-
-
- -
-
~
Y -
So b
~ -
~ -
~ -
~ -
~
~ -

~. o1 g
/>\ 1 Object

Observing spot1 -~ i Observing spot 2
& -7 s, 4

i

Baseline

Figure 2

8.

10.

11.

12.

13.

Measure the length of your baseline in meters. Record this length.

Make a sketch of the set up. Include the baseline, your object, and a brief sketch of the
background.

Stand at one of your two observing sites (one of the ends of your baseline). Hold your
protractor in front of you so the straight edge of the protractor is parallel to your baseline
and the round edge points away from you. Align your coffee straw to point at your target
object while keeping the flat edge of the protractor parallel to your baseline. Keep this coffee
straw in place.

Notice and record what appears behind your object from this vantage point.

Move to the other observing site. Note how your object now appears in front of a different
part of the background. Arrange your second coffee straw to point to it. You now have an
angular separation or a parallax shift. You will use the parallax angle in your calculation. It
has a value of half the parallax shift you measured.

You can now calculate the distance to your object. As you can see in Figure 3 below, you
have a right triangle. When you know an angle and a side you can know any other angle or
side of the right triangle. The distance you will calculate is represented by the dashed line
extending from the baseline to the object. This is the opposite side to your angle. The side
you know the length of is the adjacent side (half the length of the baseline).
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14. Record your calculation.
15. With a meter stick, measure the distance you just calculated. Record your measurement.

16. Move your object closer to or further from the baseline along the same center-line. Repeat
the angle measurements along the baseline and repeat your calculations. Notice how the
objects in the background have shifted.

Part 3: Kepler and Ellipses

1. Assemble your ellipse drawing materials:
a. Tape your piece of paper firmly to the cardboard
b. Tie a piece of string in a loop 10-20 cm in circumference
c. Push one pushpin firmly into the cardboard at the center of your page



Conclusion:

Part 1:

d. Put your pencil in the loop of your string at on end, and loop the string
around the pushpin at the other. Pull your pencil away from the pushpin
until the string is taut.

Trace around the push pin (in a circle)

Now place the second pushpin in the cardboard just a few centimeters from the
other pushpin. Loop the string and pencil around both pins and trace around. You
have now drawn an ellipse.

Experiment with the elongation of your ellipse by moving the pushpins closer and
farther from one another and tracing the ellipses that result. Draw three ellipses
total.

Eccentricity is the term to describe the elongation of the ellipse. A circle has an
eccentricity of zero and a highly elongated ellipse has an eccentricity closer to 1. The

c
formula for finding the eccentricity of an ellipse is: e = —
a

Measure the lengths of a and ¢ in your ellipses to calculate the eccentricities of the
ellipses you drew. Figure 4 below shows how a, b, & c are defined.
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Figure 4



1. Describe the motion of Mars as seen from the Earth during the months you plotted. How
did Mars appear to move during July and August?

2. How did Mars actually move during July and August?

3. What causes this apparent backward motion?

4. Would it be possible to see this sort of motion with all the planets?

5. Why would it be especially difficult to observe the retrograde motion of Venus and
Mercury? If you need help with this question draw a new set of lines beginning on Mars’s
orbit and passing through Earth’s orbit to the left edge of the page. Number them as you
did before.

Part 2:
6. Describe the accuracy of your calculations for the distance to your object. What would you
change to make this more precise?

7. Did you notice a larger shift in the background of your object when it was closer to you or
further away?

8. The following three diagrams in Figure 5 below represent the measure of parallax of three
different stars. Rank them from closest to furthest.
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Figure 5 (a)

Part 3:

9. Earth’s orbit has an eccentricity of 0.017. Describe this shape. If it has a value of 1 A.U. for

Figure 5 (b)

Figure 5 (c)

the semi-major axis, a, then what must be the distance of cin A.U.?

10. Look at the planetary data below in Figure 6. Which solar system body has the most

eccentric orbit?

‘Solar System BodyHSemi—major axisHPeriod of revolutionH Eccentricity ‘
| C . | » I - |
Mercury | o03s7auU. | 87.969 d | 02056 |
[Venus | o0723auU. | 2247014 || o0.0068 |
[Earth | 1000AU. | 365256d | 00167 |
[Mars | 1524aU. | 686.98 d | 00934 |
upiter | s5203aU. | 11.862y | 00484 |
[saturn | 9s37aU. | 29.457y | 00542 |
|Uranus | 19191AU. | 84.011y | 00472 |
[Neptune | 30069 AU. | 164.79 y | 00086 |
[Pluto | 39482aU. | 247.68 y | 02488 |
Figure 6

11. Calculate the c value for the ellipse that represents Pluto’s orbit. Do your best to draw this
ellipse with your pushpin/ cardboard set- up.

12. Kepler’s third law is P? = a’. Use the data in Figure 6 above to show that this holds true. For

example: for Saturn does 29.457% = 9.537°? Kepler’s third law says it should. Remember, the
period has to be in the unit, years.

13. What would you expect the semi-major axis of a planet with a period of 50 years to be?



Extend:

e Tycho Brahe has a very colorful history. Do some research into his life. In your opinion,
what are some of the most interesting things about the man, Tycho Brahe?

e Johannes Kepler dealt with more than his fair share of heartache. What are some emotional
trials suffered by Kepler?

e Nicolaus Copernicus waited until he was near death to publish his work De Revolutionibus
Orbium Coelestium (On Revolutions of Heavenly Spheres). Why do you think he waited?



