Assignment 4: Trigonometry and Exponentials (0.4&5) Please provide a handwritten response.

Name____

1a. In *Maple*, $\sin x$ is expressed as $\sin(x)$, and the constant $\pi \approx 3.14$ is denoted by Pi. We can plot the sine function over the domain $-2\pi \le x \le 2\pi$ using the command

$$plot(sin(x), x=-2*Pi...2*Pi);$$

Execute this command and sketch the result on the axes at right.

1b. More complicated trigonometric functions can also be used, but they are not always written in *Maple* as they would be in traditional mathematical notation. For example, the function $y = \sin^2 x$ would be plotted over the domain $-2\pi \le x \le 2\pi$ using the command

$$plot(sin(x)^2, x=-2*Pi..2*Pi);$$

(Note where the exponent goes!) Execute this command and sketch the result on the axes at right.

1c. The cosine function $\cos x$ is represented in *Maple* by $\cos(\mathbf{x})$, and the tangent function $\tan x$ by $\tan(\mathbf{x})$. So, the function $f(x) = \cos 5x + 3\sin 5x$ would be represented by

$$f:=x->cos(5*x)+3*sin(5*x);$$

execute this command followed by

$$plot(f(x), x=-Pi...Pi);$$

and sketch the result on the axes at right.

3a. Exponential functions in *Maple* are expressed using the ^ symbol just like any other exponent. For example, the function $y = 2^x$ would be plotted over the domain $-5 \le x \le 5$ using the command

$$plot(2^x, x=-5..5);$$

Execute this command and sketch the result on the axes at right.

3b. The special constant $e \approx 2.7$ is represented in *Maple* by **exp(1)**, and the function e^x is represented by **exp(x)**; for example, to graph $f(x) = 10e^{-x/3}$ execute the command

plot
$$(10*exp(-x/3), x=-2...2)$$
; and sketch the result on the axes at right.

4. In *Maple* the natural logarithm function ln(x) is represented by ln(x) whereas the logarithm of x with base b, $log_b(x)$, is denoted by log[b](x) (the b comes first!) Execute the command

to plot the functions ln(x) and $log_{1/2}(x)$ together on the same axes, and sketch the result on the axes at right. Label which graph is which!

