Assignment 20: Infinite Series (8.2–7) Please provide a handwritten response.

Name_____

To increase the number of decimal places displayed for this assignment, first execute the command Digits:=20;

1a. To find the partial sum S_{10} of the infinite

series
$$\sum_{k=1}^{\infty} \frac{1}{k^{0.9}}$$
 execute

$$sum(1/k^0.9, k=1..10);$$

and record the result in the table. By changing the **10** to **50**, etc. complete the second column of the table.

n	$S_n = \sum_{k=1}^n \frac{1}{k^{0.9}}$	$S_n = \sum_{k=1}^n \frac{5}{k^{1.1}}$
10		
50		
100		
500		
1000		

1b. Likewise modify the command in part **a** to find the partial sums of the infinite series $\sum_{k=1}^{\infty} \frac{5}{k^{1.1}}$ and complete the third column. Notice that in each row, the entry in the second column is smaller than that in the third; can this be the case for all n? Why?

1c. Add one more row to the bottom of the table corresponding to n = 5000 and fill it in; are the results consistent with your answer to part **b**? Execute the command **restart**; to reset *Maple* to its default values.

2a. The text explains that the harmonic series $\sum_{k=1}^{\infty} \frac{1}{k}$ diverges. To get an idea of how quickly

or slowly it does so, execute
s:=n->sum(1./k,k=1..n);
followed by

psums := [seq([n,s(n)],n=1..50)]:

to construct a list called **psums** of ordered pairs $\left(n, \sum_{k=1}^{n} \frac{1}{k}\right)$ where the "y-value" is the *n*th

partial sum of the harmonic series. Then execute plot([psums]); and roughly sketch the result on the axes at right.

2b. Repeat the last two commands in part **a** with **50** replaced by **500**; would you say that the partial sums are approaching ∞ quickly?

3a. To find the Taylor polynomial with $c = \frac{\pi}{2}$ and n = 4 for $\cos x$ execute **taylor(cos(x), x=Pi/2, 4)**; and record the result below; what do you think the final term means?

3b. We can remove this final term using the **convert** command; execute **tp:=convert(%,polynom)**; and enter the result below.

3c. Now plot the cosine function and the Taylor polynomial over $-\pi \le x \le 2\pi$ by executing

Sketch the result on the axes at right, labeling the graphs; on roughly what interval are the two graphs indistinguishable on your computer screen?

3d. Change the **4** in part **a** to **8** and then execute the commands in parts **a**–**c** once again. Sketch the graph of the new Taylor polynomial, label it, and answer the question in part **c** again.

3e. To measure the error in this Taylor approximation, execute

$$plot(cos(x)-tp,x=-Pi..2*Pi);$$

and sketch the result on the axes at right. How large (positive or negative) does the error become, and for what value(s) of *x* is the error greatest?

3f. By increasing n still further while keeping everything else the same, can we reduce the maximum error in part \mathbf{e} to less than 0.1? Experiment to find how large a value of n is needed.

3g. Try to answer part **f** with $\cos x$ changed to $\tan^{-1} x$ (denoted **arctan**(**x**)), c to 0 and the interval to $-1.5 \le x \le 1.5$. Can you find n large enough? Why?