1a. The integrals $\int_{-1}^{1} \frac{1}{x} d x$ and $\int_{-1}^{1} \frac{1}{x^{2}} d x$ are both improper and divergent. Execute
plot ([1/x, 1/x^2], x=-1..1,-100..100);
to sketch the functions $y=\frac{1}{x}$ and $y=\frac{1}{x^{2}}$ over $-1 \leq x \leq 1$ and sketch the results on the axes at right, labeling the graphs.

1b. To try to evaluate $\int_{-1}^{1} \frac{1}{X} d x$, execute

$$
\operatorname{int}(1 / x, x=-1 . .1) ;
$$

and record the result below. Does Maple give a value for this integral? Execute evalf(\%); to determine if Maple can find
 a numeric answer.

1c. Likewise evaluate $\int_{-1}^{1} \frac{1}{X^{2}} d x$ by executing int ($1 / \mathbf{x}^{\wedge} 2, \mathbf{x}=-1 \ldots 1$); and record the result below.

1d. Does Maple confirm that each of these integrals is divergent? Explain carefully below why Maple nevertheless gives very different results for them.

2a. Use the plot command to sketch the graph of $f(x)=\frac{1}{\sqrt{1+\cos x}}$ over $0 \leq x \leq \pi$ on the axes at right, and explain why the integral $\int_{0}^{\pi} \frac{1}{\sqrt{1+\cos x}} d x$ is improper.

2b. Execute the command

```
int(1/sqrt(1+cos(x)), x=0..Pi);
```

and record the result below; does this integral converge?

2c. Repeat part a but with the command

```
int(1/(1+\operatorname{cos(x) )^.5,x=0..Pi);}
```

and record the result below; does this integral converge?

2d. Repeat part a but with the command

$$
\operatorname{int}\left(1 /(1+\cos (x))^{\wedge}(1 / 2), x=0 \ldots P i\right) ;
$$

and record the result below; so, does this integral converge?

3a. To evaluate the integral $\int_{0}^{\infty} x e^{-2 x} d x$ execute

$$
\text { int }(x * \exp (-2 * x), x=0 \ldots \text { infinity }) ;
$$

and record the result below.

3b. In the same way evaluate $\int_{0}^{\infty} x^{2} e^{-2 x} d x$. Execute the command

$$
\operatorname{plot}\left(\left[x * \exp (-2 * x), x^{\wedge} 2 * \exp (-2 * x)\right], x=0 \ldots \text { infinity }\right) ;
$$

and explain how these two integrals could be the same.

4a. To evaluate the integral $\int_{-\infty}^{\infty} \frac{1}{1+x^{2}} d x$ execute
int(1/(1+x^2), x=-infinity..infinity);
and record the result below.

4b. In the same way evaluate $\int_{-\infty}^{\infty} \frac{1}{2+x^{2}} d x$ and $\int_{-\infty}^{\infty} \frac{1}{3+x^{2}} d x$. What conclusions can you draw?

