Assignment 19: Improper Integrals (6.6) Please provide a handwritten response.

1a. The integrals $\int_{-1}^{1} \frac{1}{x} dx$ and $\int_{-1}^{1} \frac{1}{x^2} dx$ are both improper and divergent. Execute plot([1/x,1/x²],x=-1..1,-100..100); to sketch the functions $y = \frac{1}{r}$ and $y = \frac{1}{r^2}$ **80** { 60 over $-1 \le x \le 1$ and sketch the results on the 40 axes at right, labeling the graphs. 20-**1b.** To try to evaluate $\int_{-1}^{1} \frac{1}{x} dx$, execute -1 -0.8 -0.6 -0.4 0 0.4 0.6 0.8 -0.2 -20-3 -40 int(1/x,x=-1..1); -60 } and record the result below. Does Maple give -80 a value for this integral? Execute -100evalf(%); to determine if Maple can find a numeric answer.

1c. Likewise evaluate $\int_{-1}^{1} \frac{1}{x^2} dx$ by executing int (1/x^2, x=-1..1); and record the result below.

1d. Does *Maple* confirm that each of these integrals is divergent? Explain carefully below why *Maple* nevertheless gives very different results for them.

2b. Execute the command

int(1/sqrt(1+cos(x)), x=0..Pi);

and record the result below; does this integral converge?

2c. Repeat part **a** but with the command

int(1/(1+cos(x))^{.5},x=0..Pi);

and record the result below; does this integral converge?

2d. Repeat part a but with the command

int(1/(1+cos(x))^(1/2),x=0..Pi);

and record the result below; so, does this integral converge?

3a. To evaluate the integral $\int_0^\infty x e^{-2x} dx$ execute

int(x*exp(-2*x), x=0..infinity);

and record the result below.

3b. In the same way evaluate $\int_{0}^{\infty} x^{2} e^{-2x} dx$. Execute the command

plot([x*exp(-2*x),x²*exp(-2*x)],x=0..infinity); and explain how these two integrals could be the same.

4a. To evaluate the integral $\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx$ execute

and record the result below.

4b. In the same way evaluate $\int_{-\infty}^{\infty} \frac{1}{2+x^2} dx$ and $\int_{-\infty}^{\infty} \frac{1}{3+x^2} dx$. What conclusions can you draw?