Fiscal Policy

The aggregate demand curve shows the relationship between the price level and the corresponding level of GDP at which planned production equals planned purchases. If b represents the marginal propensity to consume and $a(P), I_{g}(P), G, T$, and $X_{n}(P)$ represent autonomous consumption, gross planned investment, government spending, total tax receipts, and net exports, respectively, then the AD curve takes the form: $Y=\left(\frac{1}{1-b}\right) \times\left[a(P)+b(Y-T)+I_{g}(P)+G+X_{n}(P)\right]$.

Holding the price level constant, it is apparent that a change in government expenditures of ΔG or taxes of ΔT will shift the AD curve according to the multipliers:

$$
\begin{aligned}
& \left(\frac{\Delta Y}{\Delta G}\right)_{P=\text { Constant }}=\left(\frac{1}{1-b}\right) \\
& \left(\frac{\Delta Y}{\Delta T}\right)_{P=\text { Constant }}=\left(\frac{-b}{1-b}\right) .
\end{aligned}
$$

Then, the horizontal shift in the AD curve is $\Delta Y_{P=\text { Constant }}=\left(\frac{1}{1-b}\right) \times \Delta G+\left(\frac{-b}{1-b}\right) \times \Delta T$.
For example, suppose that $b=.75, \Delta G=-\$ 2$ billion and $\Delta T=\$ 4$ billion. The resulting shift in the AD curve is $\Delta Y_{P=\text { Constant }}=\left(\frac{1}{1-.75}\right) \times-2+\left(\frac{-.75}{1-.75}\right) \times 4=(4 \times-2)+(-3 \times 4)=-\$ 20$ billion, a leftward shift of $\$ 20$ billion.

One implication of these spending and tax multipliers is that if the government raises taxes to match an increase in government spending (that is, $\Delta G=\Delta T$), the result is a rightward shift of AD equal to the change in spending: $\Delta Y_{P=\text { Constant }}=\left(\frac{1}{1-b}\right) \times \Delta G+\left(\frac{-b}{1-b}\right) \times \Delta T=\left(\frac{1}{1-b}\right) \times \Delta G+\left(\frac{-b}{1-b}\right) \times \Delta G=$ $\left(\frac{1-b}{1-b}\right) \times \Delta G=\Delta G$.

