11.8 Conditional Probability and Expected Value

LEARNING OBJECTIVES

In Section 11.8 you will learn how to:

A. Compute conditional probabilities
B. Identify independent and dependent events
C. Compute expected values and decide the "fairness" of a game of chance

INTRODUCTION

In the movie Apollo 13 (1995, Tom Hanks, Kevin Bacon), the Saturn rocket loses one of its four boosters shortly after takeoff and a decision must be made. Should the flight be aborted or can it safely continue? Essentially, the people in flight control had to decide on the probability of successfully making orbit, given that one of the boosters had failed (intuitively we know the probability must be lower than if all four engines were functioning properly). When we compute the probability of an event, knowing a related event has already occurred, we are using conditional probability.

POINT OF INTEREST

Although many believe it to be a modern phenomenon, lotteries have existed for over 2000 years. The emperors of ancient Rome often raised public funds by sponsoring a lottery, as did other civilizations. Lotteries were even used in the colonial days of the United States, as authorized by the colonial congress to raise funds for improving public works such as roads, buildings, harbors, and churches. In 1776, the Continental Congress authorized a lottery to support the revolutionary army. Using the concept of expected value, we will see that lotteries are by their nature an "unfair" game, since the state makes a profit only if the game is slanted in its favor.

A. Computing Conditional Probabilities

To help understand the concept of conditional probability, consider the simple experiment of drawing two colored balls from a bag containing 5 red, 2 green, and 3 blue balls. If we draw one ball, replace it, then draw a second time (this is called drawing with replacement), the probability both are red is $\frac{1}{2} \cdot \frac{1}{2}=\frac{1}{4}$. If we do not replace the first ball, the probability both are red drops to $\frac{1}{2} \cdot \frac{4}{9}=\frac{2}{9}$, since one red was removed, leaving only 4 of 9 in the bag. When the probability of a second event E_{2}, depends on some first event E_{1}, we say they are dependent events. We will soon define this relationship more formally, but for now we use the idea as an indication the probability of E_{2} is no longer simply $\frac{n\left(E_{2}\right)}{n(S)}$. This dependency places certain conditions on the outcomes, hence the name conditional probability. For convenience, we will use the notation $P\left(E_{2} \mid E_{1}\right)$, which is understood to mean, "the probability of E_{2}, given that E_{1} has occurred." Many applications of conditional probability can be solved using tree diagrams, or counting outcomes and using the basic definition of probability.

EXAMPLE 1 - One card is randomly selected from a standard deck of 52 cards. What is the probability it is a Jack, given that it is a face card?

Solution: \quad For this exercise we have $E_{1}:\left(\right.$ a face card is drawn) and $E_{2}:($ a Jack is drawn). The value of $P\left(E_{2}\right)$ alone is $\frac{4}{52}$ since there are four Jacks in the deck. However, we already know a face card was drawn and there are only 12 of these. This means $P\left(E_{2} \mid E_{1}\right)=\frac{4}{12}=\frac{1}{3}$, a much higher probability.

NOW TRY EXERCISES 7 THROUGH 11D

Conditional probabilities can also be illustrated using Venn diagrams, as shown in Figure 11.28 where we see that since E_{1} :(face card) has already occurred, the chances of E_{2} :(Jack) are greatly increased.

Figure 11.28

EXAMPLE 2 - Again consider the experiment of drawing two colored balls, without replacement, from a bag containing 5 red, 2 green, and 3 blue balls. What is the probability the second ball is green if the first ball drawn is green?
Solution: \square Define E_{1} : a green ball is drawn and E_{2} : a second green ball is drawn. Because we're not replacing the first ball, the probability of E_{2} depends on E_{1}. To find $P\left(E_{2} \mid E_{1}\right)$, we reason that the value of $P\left(E_{1}\right)$ alone is $\frac{2}{10}=\frac{1}{5}$, since 2 of the 10 balls are green. However, there is one fewer green ball as we draw the second time, leaving 1 out of 9 , so $P\left(E_{2} \mid E_{1}\right)=\frac{1}{9}$.

For complex events or large sample spaces, computing $P\left(E_{2} \mid E_{1}\right)$ through direct reasoning becomes more difficult. However, by making some observations regarding the first two examples we can construct a formula for $P\left(E_{2} \mid E_{1}\right)$. Using Example 1 and the related diagram, we found $P\left(E_{2} \mid E_{1}\right)$ was $\frac{4}{12}$ by counting the number of elements in $E_{2} \bigcap E_{1}$ and dividing by the number of elements in E_{1}. In other words, $P\left(E_{2} \mid E_{1}\right)=\frac{n\left(E_{2} \cap E_{1}\right)}{n\left(E_{1}\right)}$ from the elementary definition of probability. Dividing the numerator and denominator of the right-hand expression by $n(S)$ yields this formula for conditional probability: $P\left(E_{2} \mid E_{1}\right)=\frac{P\left(E_{2} \bigcap E_{1}\right)}{P\left(E_{1}\right)}$.

CONDITIONAL PROBABILITY

Given sample space S and events E_{1} and E_{2} defined relative to S.
The probability of E_{2}, given that E_{1} has already occurred is

$$
P\left(E_{2} \mid E_{1}\right)=\frac{P\left(E_{2} \bigcap E_{1}\right)}{P\left(E_{1}\right)}
$$

EXAMPLE $3 \square$ Consider the experiment of rolling one die twice in succession. What is the probability the sum of both rolls is greater than 7 , given the first roll is a five?

WORTHY OF NOTE

As suggested by the discussion prior to Example 3, many conditional probabilities can be reasoned out using the elementary definition of probability and a tree diagram or organized list. For Example 3, the sample space is $S=\{(5,1),(5,2)$, $(5,3),(5,4),(5,5),(5,6)\}$ and four of the six yield a sum greater than 7 : $P\left(E_{2}\right)=\frac{4}{6}=\frac{2}{3}$. This probability is also illustrated by the tree diagram shown in the figure.

Solution:

Define E_{1} : first die is 5 and $E_{2}:$ sum >7. We have $P\left(E_{1}\right)=\frac{1}{6}$ directly and $P\left(E_{2} \cap E_{1}\right)=\frac{4}{36}=\frac{1}{9}$, since there are four ways to obtain a sum greater than 7 , with a first roll of $5:(5,3),(5,4),(5,5)$,
and (5, 6). Therefore, $P\left(E_{2} \mid E_{1}\right)=\frac{P\left(E_{2} \cap E_{1}\right)}{P\left(E_{1}\right)}=\frac{\frac{1}{9}}{\frac{1}{6}}=\frac{2}{3}$.
NOW TRY EXERCISES 21 THROUGH 26■

As illustrated by Examples 4 and 5, simple counting, using tables or data, and the quick-counting methods studied previously can all be used to help compute conditional probabilities.

EXAMPLE $4 \triangleright$ A survey is taken to gauge public opinion regarding government spending on defense. Part of the results are shown in the table, which show a distinct difference of opinion by age. Use the table to answer the questions that follow.

Age Group (years)	Favor an Increase	Oppose an Increase	Total
$18-45$	80	270	350
$46-80$	120	30	150
Total	200	300	500

If one person from the survey were randomly selected, what is the probability the voter felt (a) defense spending should be increased; (b) defense spending should be increased, given she is between 18 and 45 years of age; and (c) defense spending should be increased, given he is between 46 and 80 ?

Solution:
a. Since 200 of the 500 voters surveyed felt spending should be increased, $P($ increase spending $)=\frac{200}{500}=0.4$.
b. Define $E_{1}:(18 \leq$ age $\leq 45)$ and $E_{3}:($ increase spending $)$. Using the table, $P\left(E_{1}\right)=\frac{350}{500} \approx 0.7$ and $P\left(E_{3} \cap E_{1}\right)=\frac{80}{500}=0.16$, so $P\left(E_{3} \mid E_{1}\right)=\frac{0.16}{0.7} \approx 0.23$.
c. Define $E_{2}:(46 \leq$ age $\leq 80)$, giving $P\left(E_{2}\right)=0.3$. Again from the table, $P\left(E_{3} \cap E_{2}\right)=\frac{120}{500}=0.24$, so $P\left(E_{3} \mid E_{2}\right)=\frac{0.24}{0.3}=0.8$.
The support for increased defense spending is dramatically higher among the older group.

NOW TRY EXERCISES 27 AND 28■

Although the calculations can become unwieldy, the formula for conditional probability can be extended to include any number of dependent events, as when drawing cards from a standard deck without replacement.

EXAMPLE 5 Four cards are drawn without replacement from a well-shuffled deck of 52 cards. What is the probability that four Aces are drawn?

Solution: \square If we let A_{i} represent "an Ace is drawn," we can compute this probability using the FPC as $P\left(A_{1}\right) \cdot P\left(A_{2} \mid A_{1}\right) \cdot P\left(A_{3} \mid A_{2} \cap A_{1}\right) \cdot P\left(A_{4} \mid A_{3} \cap A_{2} \cap A_{1}\right)$. This means $P($ four Aces are drawn $)=\frac{4}{52} \cdot \frac{3}{51} \cdot \frac{2}{50} \cdot \frac{1}{49}$, or about 0.0000037 . This probability can actually by computed more efficiently using quick-counting: P (four Aces are drawn) $=\frac{{ }_{4} C_{4}}{{ }_{52} C_{4}}$ or about 0.0000037 .

NOW TRY EXERCISES 29 AND 30 -

B. Dependent and Independent Events

Although the notion of dependency and dependent events is often intuitive (we sense that one event depends on another), a more formal test can be helpful. Consider the experiment of rolling one die twice in succession, and define $E_{1}:\left(\right.$ a 5 is rolled) and $E_{2}:(\mathrm{a} 2$ is rolled). From our previous work we know $P\left(E_{1}\right)=\frac{1}{6}=P\left(E_{2}\right)$. To compute $P\left(E_{2} \mid E_{1}\right)$, we can use the chart for all 36 possibilities of two dice, which shows 1 occurrence of $(5,2)$ (5 rolled first, 2 rolled second) so $P\left(E_{2} \cap E_{1}\right)=\frac{1}{36}$. The computation for $P\left(E_{2} \mid E_{1}\right)$ is $\frac{\frac{1}{36}}{\frac{1}{6}}=\frac{1}{6}$, which is the same as $P\left(E_{2}\right)$! In other words, $P\left(E_{2} \mid E_{1}\right)=P\left(E_{2}\right)$. Upon reflection, we realize that the number rolled second does not depend on the first, and that E_{1} and E_{2} are independent events. In fact, these observations lead to our formal definition.

INDEPENDENT EVENTS

Given a sample space S and events E_{1} and E_{2} defined relative to S, If $P\left(E_{2} \mid E_{1}\right)=P\left(E_{2}\right)$,
then E_{1} and E_{2} are independent events, otherwise E_{1} and E_{2} are dependent.

The formula for conditional probability can be used to find an alternative test for independence that is often useful. If $P\left(E_{2} \mid E_{1}\right)=P\left(E_{2}\right)$, then $P\left(E_{2} \mid E_{1}\right)=\frac{P\left(E_{2} \bigcap E_{1}\right)}{P\left(E_{1}\right)}$ gives $P\left(E_{2}\right)=\frac{P\left(E_{2} \cap E_{1}\right)}{P\left(E_{1}\right)}$ by substitution, and leads to $P\left(E_{1}\right) P\left(E_{2}\right)=P\left(E_{2} \cap E_{1}\right)$ after multiplying both sides by $P\left(E_{1}\right)$. We conclude that if $P\left(E_{2} \cap E_{1}\right)=P\left(E_{1}\right) P\left(E_{2}\right)$, then E_{1} and E_{2} are independent events.

The formula for conditional probability can also be used to find an alternative form for $P\left(E_{2} \cap E_{1}\right)$. Multiplying both sides by $P\left(E_{1}\right)$ yields $P\left(E_{2} \cap E_{1}\right)=$ $P\left(E_{1}\right) \cdot P\left(E_{2} \mid E_{1}\right)$, which for Example 2 gives the probability that both balls drawn are green (instead of the probability the second ball drawn is green). With $P\left(E_{1}\right)=\frac{2}{10}$, and $P\left(E_{2} \mid E_{1}\right)=\frac{1}{9}$, we have $P\left(E_{2} \cap E_{1}\right)=P\left(E_{1}\right) P\left(E_{2} \mid E_{1}\right)=\left(\frac{2}{10}\right)\left(\frac{1}{9}\right)=\frac{1}{45}$.

WORTHY OF NOTE

No matter how many times a coin is flipped, each flip is independent of the other. As we've seen, the probability of flipping two heads in a row is $\frac{1}{2} \cdot \frac{1}{2}=\frac{1}{4}$. This is a simple illustration of the formula for independent events, since $P\left(E_{2} \cap E_{1}\right)=P\left(E_{2}\right) P\left(E_{1}\right)$ can be written as $P\left(H_{2} \cap H_{1}\right)=$ $P\left(H_{2}\right) P\left(H_{1}\right)$ and extended to include any number of flips (or any independent events).

EXAMPLE GAD Consider the spinner shown in the figure.
Define E_{1} :(first spin is 3) and E_{2} :(second spin is 7). Are E_{1} and E_{2} independent?

Solution:

- Using the FPC, the sample space for this experiment has 64 outcomes, 8 possibilities for the first spin and 8 for the second. E_{1} has the potential outcomes $(3,1),(3,2), \ldots$,
 $(3,7),(3,8)$, so $P\left(E_{1}\right)=\frac{1}{8}$. For E_{2} we have $(1,7),(2,7), \ldots,(7,7),(8,7)$, so $P\left(E_{2}\right)=\frac{1}{8}$. Since $E_{2} \cap E_{1}$ has the one common element $(3,7), P\left(E_{2} \cap E_{1}\right)=\frac{1}{64}$. Using the test for independence we have $P\left(E_{2}\right) P\left(E_{1}\right)=P\left(E_{2} \bigcap E_{1}\right)$, indicating that E_{1} and E_{2} are indeed independent events.

EXAMPLE 6BD Consider the spinner from Example 6A, and define the events E_{1} : first spin is greater than 2 , and E_{2} : sum of two spins is 5 . Are E_{1} and E_{2} independent?
Solution: \square On the spinner, six of the eight numbers are greater than 2 so $P\left(E_{1}\right)=\frac{3}{4}$. The possibilities for E_{2} are $(1,4),(2,3),(3,2)$, and $(4,1)$, and with $8 \cdot 8=64$ elements in the sample space, $P\left(E_{2}\right)=\frac{4}{64}=\frac{1}{16}$. Since only $(3,2)$ and $(4,1)$ satisfy $\left(E_{2} \cap E_{1}\right)$, we have $P\left(E_{2} \cap E_{1}\right)=$ $\frac{2}{64}=\frac{1}{32}$. Noting $\frac{3}{4} \cdot \frac{1}{16}=\frac{3}{64} \neq \frac{1}{32}, P\left(E_{2} \cap E_{1}\right) \neq P\left(E_{1}\right) P\left(E_{2}\right)$, so E_{1} and E_{2} are dependent.

NOW TRY EXERCISES 33 THROUGH 45

EXAMPLE 7 - The Graduate Department at Cahokia University is trying to establish a policy regarding the number of times a student should be allowed to take the entrance exam. Over a long period of time, data on pass/fail rates are collected and the results are shown in the table. (a) Find the probability of a student failing the first attempt and passing on the second, and (b) find the probability of a student failing the first two attempts and passing on the third.

First Attempt		Second Attempt		Third Attempt	
Pass	Fail	Pass	Fail	Pass	Fail
64%	36%	70%	30%	25%	75%

Solution: \square a. Define E_{1} :(fails on first attempt) and E_{2} :(passes on second attempt). Since E_{2} depends on $E_{1}, P\left(E_{1} \cap E_{2}\right)=$ $P\left(E_{1}\right) \cdot P\left(E_{2} \mid E_{1}\right)$. From the table, $P\left(E_{1}\right)=0.36$ and $P\left(E_{2} \mid E_{1}\right)=0.70 \Rightarrow P\left(E_{1} \cap E_{2}\right)=0.36(0.70)=0.252$.
b. Define E_{1} :(fails on first attempt), E_{2} :(fails on second attempt), and E_{3} :(passes on third attempt). The events are once again dependent meaning $P\left(E_{1} \cap E_{2} \cap E_{3}\right)=P\left(E_{1}\right) \cdot P\left(E_{2} \mid E_{1}\right)$. $P\left(E_{3} \mid E_{2} \cap E_{1}\right)$. From the table, $P\left(E_{3} \mid E_{2} \cap E_{1}\right)=0.25$, so $P\left(E_{1} \cap E_{2} \cap E_{3}\right)=0.36 \cdot 0.30 \cdot 0.25$, or about 0.027 . With so small a probability of passing on the third attempt, the

Graduate Department may decide to limit applicants to two attempts on the entrance exam.

C. Expected Values

Although people who play games of chance know the odds of winning favor the establishment, there is still a small hope of "winning the big one." But most are realistic enough to know that over a long period of time and repeated trials, there is a high expectation of losing. The concept of expected value, also called mathematical expectation, helps to quantify the expected return on a game of chance assuming it is played a large number of times.

Consider a simple game where you pay $\$ 0.50$ to roll one die, and win $\$ 0.85$ if you roll a 1 or 2, but lose your money otherwise. If you play this game many, many times, how much would expect to lose (or win)? The probability of losing on any one roll is $\frac{2}{3}$, while the probability of winning is $\frac{1}{3}$. So if you play this game 900 times (a large, arbitrarily chosen number), you could expect to lose an average of $\frac{2}{3} \cdot 900=600$ times and win an average of $\frac{1}{3} \cdot 900=300$ times. Your "winnings" at this point would be $\$ 0.85(300)+(-\$ 0.50)(600)=-\$ 45$ and if you average this loss over the 900 games, your expected loss (expected value) per game is $\frac{-45}{900}=0.05$ cents per roll. Using this example as a model, the basic idea can be extended to include other payoffs and other outcomes, or generalized to fit many different situations.

EXPECTED VALUE

If an experiment has two defined outcomes that occur with probabilities p_{1} and p_{2}, and if the value of each is v_{1} and v_{2}, respectively, then the expected value E of the experiment is given by

$$
E=p_{1} v_{1}+p_{2} v_{2}
$$

If $E=0$, the experiment is said to be fair (favoring neither player nor the establishment). The formula can be extended to cover any number of outcomes.

EXAMPLE 8AD A school board comes up with a novel idea to attract volunteers, and invites all parents to step up and spin a specially made spinner. If the spinner lands on an \bigcirc, there is no penalty or reward, the player simply spins again. If it lands on a target (©), the player must work one volunteer hour. If it lands on a frown, the player must commit to double-time
 (2 hr), but if it lands on a smile, the player wins 6 hr of domestic help from the board members themselves. From the prospective volunteer's point of view, what is the expected value of this game?
Solution: \square First we consider the respective probabilities: $P(\bigcirc)=\frac{1}{4}, P(\bigcirc)=\frac{1}{4}$, $P(\bigodot)=\frac{3}{8}$, and $P(\because)=\frac{1}{8}$. The value of each is $0,-1,-2$, and 6 volunteer hours, respectively. This means the expected value of the game is $E=(0)\left(\frac{1}{4}\right)+(-1)\left(\frac{1}{4}\right)+(-2)\left(\frac{3}{8}\right)+6\left(\frac{1}{8}\right)=-0.25$. Players can expect to commit to $0.25 \mathrm{hr}=15 \mathrm{~min}$ of volunteer work for
each spin. From the board's point of view, if the game is played 1000 times, they will gain $0.25(1000)=250 \mathrm{hr}$ of volunteer work.

If the expected value is 0 , neither the player nor the establishment (the one sponsoring the game or experiment) has an advantage, so the game is considered fair. Gaming houses generally operate on very small expected values, because the volume of people playing the games still makes them very profitable.

EXAMPLE 8BD With regard to Example 8A, what value should be assigned to the smiley face "()" if the board wanted the game to be fair?

Solution: \square Since we want a factor (or value) other than 6 for $\frac{1}{8}$, replace 6 with the variable V, set $E=0$ and solve: $(0)\left(\frac{1}{4}\right)+(-1)\left(\frac{1}{4}\right)+(-2)\left(\frac{3}{8}\right)+$ $V\left(\frac{1}{8}\right)=0$ gives $V=8$. The game will be fair if players win 8 hr for spinning a -).

Many amusement parks and game rooms have a "Claw Machine" that allows players to move a claw front and back and left and right until it is directly above a desired toy or stuffed animal. The player then drops the claw in hopes it will latch onto the object, lift it, and drop it into a chute that delivers the object to the player. In contrast to Example 8A, there is a cost to play the game that must be deducted from the
 value of any prize(s) won.

EXAMPLE 8CD For the Claw Machine described, the game delivers a $\$ 6$ prize 2.5% of the time, a $\$ 3$ prize 5% of the time and a $\$ 1.50$ bag of candy 20% of the time.
a. If it costs $\$ 1$ to play the game, what is the expected value for the player?
b. If the vendor wanted an expected value of $\$ 0.60$ profit, what should a patron be charged to play the game?
Solution: \square a. Pairing the value of each prize (minus the cost) with the likelihood of winning that prize yields $E=\$ 5(0.025)+\$ 2(0.05)+$ $\$ 0.50(0.20)-\$ 1(0.725)=-\$ 0.40$. If the game is played a large number of times, a player can expect to lose (or the vendor can expect to gain) $40 \notin$ each time it's played.
b. To find the necessary charge for an expected value of $-\$ 0.60$ (a vendor profit of $60 \notin$), we let V represent what the vendor should charge, set $E=-\$ 0.60$, then solve. This gives $-\$ 0.60=$ $\$ 5(0.025)+\$ 2(0.05)+\$ 0.50(0.20)-V(\$ 0.725)$, and after simplifying we obtain $-0.925=-0.725 \mathrm{~V}$, and find V is approximately $\$ 1.28$. For an expected value (profit) of $60 ¢$, about $\$ 1.28$ should be charged to play the game. However, it is more likely the vendor will charge $\$ 1.25$ and be satisfied with an expected value of $58.125 ¢$ (Why?).

$$
\begin{aligned}
E= & \left(V_{1}\right)\left(P_{1}\right)+\left(V_{2}\right)\left(P_{2}\right)+\left(V_{3}\right)\left(P_{3}\right)-(\text { cost of playing }) \\
& \times\left(1-P_{1}-P_{2}-P_{3}\right) .
\end{aligned}
$$

Let's assume the vendor wants to keep the charge to play the game at \$1, and increases the expected profit (lowers the expected value) by adjusting the probability a prize

Figure 11.29
 is won, instead offering less expensive prizes.
This yields the equation
$E=(5)\left(P_{1}\right)+(2)\left(P_{2}\right)+(0.5)\left(P_{3}\right)-(1)\left(1-P_{1}-P_{2}-P_{3}\right)$.
To investigate how various probabilities affect the expected value, we enter
$Y_{1}=5 A+2 B+0.50 C-1(1-A-B-C)$ on the $Y=$ screen, using the variables
A (ALPHA MATH),
Figure 11.30
B (ALPHA MATRX),
and C (alpha prgm).
See Figure 11.29.
Note that since A, B, and C are constants (although we will be changing their
 values), Y_{1} is a constant function. Let's begin by storing the probabilities frorn the original problem in A, B, and C (Figure 11.30). To find the expected value, we need only call up the current value of Y_{1}. As in previous Technology Highlights, this is done using vars $>$ Y-VARS ENTER (since 1:Function
is already highlighted) and ENTER (since $1: \mathbf{Y}_{1}$ is already highlighted).

For Example 8C, the calculator returns an expected value of -0.40 . To change any one (or all three) of the probabilities, simply store

Figure 11.31
 a new value in that location and recall Y_{1} using 2nd ENTER to find the new expected value. Note that changing $P_{1} \rightarrow \mathrm{~A}$ to $0.015, P_{2} \rightarrow B$ to 0.04 , and $P_{3} \rightarrow C$ to 0.125 comes very close to the vendor's goal of a 60ϕ expected profit (see Figure 11.31). Use these ideas to work the following exercises.
Exercise 1: Discuss how the equation
$Y_{1}=5 A+2 B+0.5 C-1(1-A-B-C)$ works. In particular, why do we subtract $1(1-A-B-C)$?

Exercise 2: If $P_{1} \rightarrow$ A must be fixed at 0.025 , find other (reasonable) possibilities for $P_{2} \rightarrow \mathrm{~B}$ and $P_{3} \rightarrow \mathrm{C}$ that will result in an expected value of approximately 25¢ for the vendor.
Exercise 3: If the vendor were to charge customers $\$ 1.50$ to play the game, what is the expected value using:
a. the costs and probabilities from Example 8C?
b. the costs and probabilities used in Exercise 2?
c. prizes costing $\$ 7.50, \$ 5.50$ and $\$ 3.50$ with probabilities of $0.03,0.06$ and 0.25 respectively?

11.8 EXERCISES

- CONCEPTS AND VOCABULARY

Fill in the blank with the appropriate word or phrase. Carefully reread the section if needed.

1. When the probability of an event E_{2}, depends on some first event E_{1}, we say E_{2} and E_{1} are \qquad events
2. "The probability of E_{2} occurring, given that E_{1} has already occurred" is written notationally as
\qquad
$P\left(E_{2} \mid E_{1}\right)=$ \qquad -.
3. In your own words, discuss how the formula for conditional probability was developed and explain why/how it works.
4. If an experiment has two outcomes with values V_{1} and V_{2}, and probabilities P_{1} and P_{2}, the expected value is $E=$ \qquad $+$
5. Discuss/explain how an independent event differs from a dependent event. Include two examples that illustrate the difference

D DEVELOPING YOUR SKILLS

Determine the following probabilities using direct reasoning, tree diagrams, or an organized list.
7. Two colored balls are drawn from a bag containing four blue, three red, and two orange balls. What is the probability both are blue if the two balls are drawn
a. with replacement
b. without replacement
8. Two cards are drawn from a standard deck of 52 playing cards. What is the probability they are both face cards if the cards are drawn
a. with replacement
b. without replacement
9. At a company party, two door prizes are to be awarded by drawing names from a hat. Every employee can enter twice and writes their name on two slips of paper for the drawing. If the group consists of three males and five females, what is the probability that females win both awards if the drawing is
a. done with replacement
b. done without replacement
10. A card is randomly selected from a standard deck. What is the probability the card is
a. a 7, given that it is a numbered card
b. a heart, given that it is a red card
c. a King, given that it is a face card
d. an even number, given it is a numbered card
11. One pool ball (see Exercise 36 from Section 11.6) is randomly drawn from a bag. Compute the probability the ball is
a. a multiple of 2 , given it is a striped ball
b. a 10 , given it is a striped ball
c. a 3, given it is a solid color
d. the cue ball, given it is white
12. Three colored balls are drawn from a bag containing four blue, three red and two orange balls. What is the probability the balls drawn are blue first, then red, then orange if the three balls are drawn
a. with replacement
b. without replacement
13. Three cards are drawn from a standard deck of 52 playing cards. What is the probability the cards drawn are face card first, numbered card second, then an Ace if the three cards are drawn
a. with replacement
b. without replacement
14. At a company party, three door prizes are to be awarded by drawing names from a hat. Every employee can enter three times and writes their name on three slips of paper for the drawing. If the group consists of three males and five females, what is the probability that females win all three awards if the drawing is
a. done with replacement
b. done without replacement
15. Two colored balls are drawn without replacement from a bag containing six green, four maroon, and two yellow balls. What is the probability the second ball drawn is
a. green, given the first ball was green
b. maroon, given the first ball was maroon
c. yellow, given the first ball was not yellow
d. green, given the first ball was not green
16. Chess is a game played with 16 pieces per player, a light-colored set for one player and a dark-colored set for the other. Each set contains eight pawns, which are front-line pieces, and two castles, two knights, two bishops, one Queen, and one King, which are all back-line pieces. All 32 pieces are placed in a bag and mixed, then two pieces are drawn without replacement. What is the probability the second piece
 drawn is a
a. pawn, given the first piece was a castle
c. dark piece, given the first piece was light
b. knight, given the first piece was also a knight
d. bishop, given the first piece was front-line
17. The practice of drawing straws was often used in ancient times to assign a task that was usually distasteful or dangerous. One person would take a number of straws (or some other like object) equal to the number of people, make sure that one of the straws was significantly shorter than the others, and grasp them in such a way that they all appeared to be the same length. One was then drawn by each member of the group. If
 there are 10 people,
a. What is the probability the second person draws a short straw given the first person drew a long straw?
b. What is the probability the third person draws a short straw given the first two people drew long straws?
18. In an alternative form of "drawing straws," an army captain needs to assign latrine duty to someone in her 10 -soldier squad. She writes a number between 1 and 10 inclusive on a legal pad, has her soldiers pick a number (with no repetitions), and will assign the duty to whomever picks her number.
a. What is the probability the second person picks the number given the first person did not?
b. What is the probability the fourth person picks the number given the first three people did not?

The game of Black Jack (also called " 21 ") is played with a standard deck of cards. Aces are worth either 1 or 11 points (player's option), face cards are worth 10 points, and numbered cards are worth face value. For instance, King $+7=17$ points, Ace $+5=6$ or 16 points, and Ace $+(10$ or face card $)=11$ or 21 points. The object of the game is to get exactly 21 (automatic winner) or as close to 21 as you can, without going over. Suppose a person is playing the game alone with a standard deck.
19. What is the probability the player will have
a. 20 points after the second card, given the first card is a 10 ?
20. What is the probability the player will have
a. 21 points after the second card, given the first card is an Ace?
b. $\quad 16$ to 20 points (inclusive) after the second card, given the first card is a 10 ?

Compute the value of $P\left(E_{2} \mid E_{1}\right)$ for the values of $P\left(E_{2} \cap E_{1}\right)$ and $P\left(E_{1}\right)$ given.
21. $P\left(E_{2} \cap E_{1}\right)=0.12$ and $P\left(E_{1}\right)=0.4$
22. $P\left(E_{2} \cap E_{1}\right)=0.15$ and $P\left(E_{1}\right)=0.6$
23. $P\left(F_{2} \cap F_{1}\right)=0.08$ and $P\left(F_{1}\right)=0.25$
24. $P\left(E_{2} \cap E_{1}\right)=0.10$ and $P\left(E_{1}\right)=0.3$
25. An experiment consists of rolling a die two times. What is the probability
a. the sum of both rolls is less than 8 , given the first roll was a 4.
b. the sum of both rolls is more than 9 , given the first roll was a 6 .
26. The spinner shown is spun twice in succession. What is the

Exercise 26 probability
a. the sum of both spins less than 12 , given the first spin was an 8 .
b. the sum of both spins is more than 6 , given a 2 was spun first
27. A poll is taken to measure public opinion concerning America's decision to return to the moon and develop a permanent presence there. The results are given in the table.

Age Group (years)	Favor a Lunar Presence	Oppose a Lunar Presence	Total
$18-29$	258	102	360
$30-49$	155	130	285
$50-89$	107	248	355
Total	520	480	1000

If one person from the survey were selected randomly, what is the probability he/she felt (a) America should not build a permanent presence on the moon; (b) America should not build a permanent presence, given the person is between 50 and 89 years of age; and (c) America should not build a permanent presence, given the person is between ages 18 and 29 .
28. A local dealership asks every customer that comes into their Customer Care Center to fill out a survey regarding the quality of service. The results are given in the table.

Value of Car	Excellent Service	Generally Good Service	Generally Poor Service	Total
$\$ 5,000-\$ 10,000$	76	74	30	180
$\$ 10,001-\$ 20,000$	52	93	75	221
$\$ 20,001-\$ 45,000$	22	23	55	100
Total	150	190	160	500

If one person from the survey were selected randomly, what is the probability he/she felt (a) service was excellent; (b) service was excellent, if their car was valued between $\$ 10,001$ and $\$ 20,000$; and (c) service was excellent, if their car was valued between $\$ 20,001$ and $\$ 45,000$.
29. The 16 balls from a game of pool are placed in a large bag and mixed thoroughly, then 4 balls are drawn without replacement. What is the probability that all 4 balls are striped balls?
30. The chess pieces from Exercise 16 are placed in a large bag and mixed, then five pieces are drawn without replacement. What is the probability of the following sequence: a dark piece is drawn, a dark piece is drawn, a dark piece is drawn, a light piece is drawn, a light piece is drawn.

- WORKING WITH FORMULAS

Bayes' theorem: $P\left(E_{2} \mid E_{1}\right)=\frac{P\left(E_{2}\right) \cdot P\left(E_{1} \mid E_{2}\right)}{P\left(E_{2}\right) \cdot P\left(E_{1} \mid E_{2}\right)+P\left(\bar{E}_{2}\right) \cdot P\left(E_{1} \mid \bar{E}_{2}\right)}$

If the probabilities represented by $P\left(E_{1} \mid E_{2}\right)$ and $P\left(E_{1} \mid E_{2}\right)$ are known (E_{2} represents $1-E_{2}$ or that the event that E_{2} does not occur), the conditional probability $P\left(E_{2} \mid E_{1}\right)$ can be found using Bayes' theorem. For example, consider the experiment of rolling two dice. If E_{1} represents doubles are rolled and E_{2} represents the sum is greater than or equal to 9, we then have $P\left(E_{1}\right)=\frac{1}{6}, P\left(E_{2}\right)=\frac{10}{36}, P\left(\bar{E}_{2}\right)=\frac{26}{36}$, and $P\left(E_{1} \mid E_{2}\right)=\frac{2}{10}$, since 2 of the 10 possibilities for E_{2} are doubles. In addition we know $P\left(E_{1} \mid \bar{E}_{2}\right)=\frac{4}{26}$ since there are four possibilities for doubles in the 26 rolls where the sum is less than 9 .
31. Use the values given in Bayes' theorem to calculate $P\left(E_{2} \mid E_{1}\right)$, the probability that the sum of the dice is greater than nine, given that doubles have been rolled.
32. Again considering the roll of two dice, let E_{1} represent the sum is a prime number and E_{2} the sum is 5 or less. Develop the values required for Bayes' theorem and use it to calculate $P\left(E_{2} \mid E_{1}\right)$.

- APPLICATIONS

Use the values indicated to determine if E_{1} and E_{2} are dependent or independent.
33. $P\left(E_{2} \cap E_{1}\right)=0.24, P\left(E_{1}\right)=0.48$, and $P\left(E_{2}\right)=0.52$
34. $P\left(E_{2} \cap E_{1}\right)=0.36, P\left(E_{1}\right)=0.8$, and $P\left(E_{2}\right)=0.45$
35. $P\left(E_{2} \cap E_{1}\right)=0.52, P\left(E_{1}\right)=0.8$, and $P\left(E_{2}\right)=0.65$
36. $P\left(E_{2} \cap E_{1}\right)=0.38, P\left(E_{1}\right)=0.62$, and $P\left(E_{2}\right)=0.61$

Find the value of E_{2} that will ensure E_{1} and E_{2} are independent.
37. $P\left(E_{2} \cap E_{1}\right)=0.35, P\left(E_{1}\right)=0.7$, and $P\left(E_{2}\right)=$ \qquad
38. $P\left(E_{2} \cap E_{1}\right)=0.144, P\left(E_{1}\right)=0.8$, and $P\left(E_{2}\right)=$ \qquad
39. $P\left(E_{2} \cap E_{1}\right)=0.096, P\left(E_{1}\right)=0.16$, and $P\left(E_{2}\right)=$ \qquad
40. $P\left(E_{2} \cap E_{1}\right)=0.42, P\left(E_{1}\right)=0.8$, and $P\left(E_{2}\right)=$
\qquad

State whether the events E_{1} and E_{2} given are dependent or independent. Justify your answer.
41. One die is rolled twice in succession.
a. $\quad E_{1}$: first roll is a 5
E_{2} : second roll is a 3
b. $\quad E_{1}$: first roll is greater than 3
E_{2} : sum of two rolls is less than 5
c. $\quad E_{1}$: first roll is greater than 4
E_{2} : second roll is less than 5
d. $\quad E_{1}$: first roll is less than 3
E_{2} : difference $E_{2}-E_{1}$ is positive
42. A 300-page book is opened to a random page number, then closed and opened randomly once again.
a. $\quad E_{1}$: first page number is less than 100
E_{2} : sum $E_{1}+E_{2}$ is greater than 250
c. $\quad E_{1}$: first page number is less than 25
E_{2} : second page number is more than 25
b. $\quad E_{1}$: first page number is odd
E_{2} : second page number is even
d. E_{1} : first page number is prime
E_{2} : second page number is divisible by three
43. The spinner shown to the left is spun twice in succession.
a. $\quad E_{1}$: first spin is a 2
E_{2} : second spin is a 2
b. $\quad E_{1}$: first spin is more than 2
E_{2} : sum of spins is less than 5
c. $\quad E_{1}$: first spin is less than 6
E_{2} : difference $E_{2}-E_{1}$ is negative
d. E_{1} : first spin is even
E_{2} : second spin is a six

44. Dependent events-

weather: Data was collected to study the relationship between weather conditions and accident rates. Use the data and the formula for conditional probability to verify

	Good Weather	Bad Weather	Total
Accident	0.01	0.05	0.06
No accident	0.72	0.22	0.94
Totals	0.73	0.27	1.00

45. Dependent events-options: Data were collected to study the relationship between the cost of options ordered by car owners and the cost of options ordered by truck owners. Use the data and the

	C < 1000	C > 1000	Total
Cars	150	250	400
Trucks	200	200	400
Totals	350	450	800

46. Probability of success: Neosho County is attempting to establish a policy regarding the number of times a student driver should be allowed to take/retake the written driver's test before being asked to wait 6 months prior to trying again. Data collected over the past 3 yr are shown in the table.
(a) Find the probability of a student failing the first time and passing the second time; and (b) find the probability of a student failing the first two times, and passing the test on the third attempt.

First Attempt		Second Attempt		Third Attempt	
Pass	Fail	Pass	Fail	Pass	Fail
72%	28%	65%	35%	52%	48%

47. Probability of success: Officials are assessing the results of the state bar exam for the past 4 yr , to decide if the standard for passing should be increased or decreased. Data collected over the past 4 yr are shown in the table. One important factor is the number of times the test is failed after each attempt. (a) Find the probability of a prospective lawyer failing the bar exam the first two times, will also fail the third time; and (b) find the probability that a prospective lawyer fails all three attempts at the bar exam.

First Attempt		Second Attempt		Third Attempt	
Pass	Fail	Pass	Fail	Pass	Fail
58%	42%	64%	36%	28%	72%

Compute the expected value for the probabilities P given and the values V assigned to each outcome.
48. cost to play: $\$ 6$
$V_{1}=\$ 25, V_{2}=\$ 12$
$P_{1}=0.08, P_{2}=0.15$
50. cost to play: 25ϕ $V_{1}=50 \phi, V_{2}=75 \phi$
$P_{1}=0.15, P_{2}=0.12$
52. cost to play: $\$ 0.50$
$V_{1}=\$ 1, V_{2}=\$ 2, V_{3}=\$ 3$
$P_{1}=0.08, P_{2}=0.05, P_{3}=0.03$
49. cost to play: $\$ 10$
$V_{1}=\$ 5, V_{2}=\$ 8$
$P_{1}=0.22, P_{2}=0.35$
51. cost to play: $\$ 2$
$V_{1}=\$ 8, V_{2}=\$ 10, V_{3}=\$ 12$
$P_{1}=0.15, P_{2}=0.12, P_{3}=0.04$
53. cost to play: $25 ¢$
$V_{1}=25 \phi, V_{2}=50 \phi, V_{3}=75 \phi$
$P_{1}=0.14, P_{2}=0.08, P_{3}=0.02$
54. Rolling a die: A single die is rolled, and a player is paid $50 \notin$ times the number showing. Find
a. the expected value for playing this game
b. what the house should charge for an expected value of 10ϕ in their favor
55. Drawing a card: A single card is drawn. If a numbered card is drawn, the player is paid $\$ 1$. If a face card, the player is paid $\$ 2$. If an Ace is drawn, the player is paid $\$ 4$. Find
a. the expected value for playing
b. the expected value for the house this game (rounded to the nearest penny) if they charge $\$ 1.50$ to play
56. Expected value-lottery tickets: The mayor of a city decides to conduct a lottery to raise money for some local projects. The town will sell 5000 tickets at $\$ 1$ each, and offer a $\$ 2500$ prize, a $\$ 1000$ prize, and a $\$ 500$ prize.
a. If you buy one ticket, what is your mathematical expectation?
b. Determine what the town should charge for tickets if they desire an expected value of 70ϕ.
57. Expected value—raffle tickets: The local Outdoor Club wants to raise money for some camping equipment and decides to operate a raffle. The club will sell 1000 raffle tickets for $\$ 0.75$ each, and offer a tent worth $\$ 350$, hiking boots worth $\$ 120$, and a backpack worth $\$ 75$ as prizes.
a. If you buy one ticket, what is your mathematical expectation?
b. Find what the club should charge for a ticket if they want an expected value of 50ф.
58. Expected value-spinning a spinner: Homes for the Homeless is trying to attract volunteers to support their program of building homes for families in need, and they decide to place the spinner shown at the center of a busy shopping mall. Interested passers-by are invited to have a spin. If the spinner lands on an (0), there is no penalty or reward, the player simply spins again. If it lands on an hourglass \mathbb{B}, the player must work one volunteer hour. If it lands on a fly the player must commit to double the time (2 hr),
 but if it lands on the sun the player wins a full 6 hr of free labor for home repairs or improvements.
a. From the volunteer's point of view, what is the expected value of this game?
b. What value should be assigned to the sun for this to be a fair game?
59. Expected value-ring toss: Many carnivals offer a ring toss game where players attempt to toss a quoit (a hardened circular rope) over the necks of bottles of various sizes. Ringing the thin neck bottles wins a $\$ 2$ prize, ringing the medium neck bottles wins a $\$ 5$ prize and ringing the thick necked bottles wins a $\$ 15$ stuffed animal. The carnival operators know the $\$ 15$ stuffed animal is won only 2% of the time, the $\$ 5$ prize is won 10% of the time, and the $\$ 2$ prize is won
 20% of the time.
a. If it costs $\$ 2$ to play the game, what is the expected value for the player?
b. If the carnival operators need an expected value of $84 \not \subset$, what should a player be charged to play?

Expected value-roulette: For Exercises 60 and 61, refer to Example 9 and the roulette table shown.
60. Max is back at the roulette table again and is continually wagering $\$ 1$ on the various possibilities offered by the wheel. Find the expected value of each game if he wagers,

a. the ball will land in a red slot
b. the ball will land on an odd number
c. the number will be between 1 and 18 inclusive
d. the number will be between 19 and 36 inclusive
61. Maxine is more adventurous than Max, and is continually wagering $\$ 1$ on the possibilities described below. Find the expected value of each game if her wager is a
a. split: betting on two numbers, placing her chip on the line between them. A "split" win pays $\$ 17$.
c. street: betting on three numbers, placing her chip to the right of the chosen row. A "street" win pays $\$ 11$.
b. corner: betting on four numbers, placing her chip on the corner of the four desired numbers. A "corner" win pays $\$ 8$.
d. column: betting on any one column, placing her chip at the bottom of the chosen column. A "column" win pays $\$ 2$.

- WRITING, RESEARCH, AND DECISION MAKING

62. Using the Internet, a telephone interview, or the resources of your local library, gather information regarding the expected value of any lottery games sponsored by your state or a neighboring state. In this context, respond to the view held by some politicians that a lottery is just another tax on the poor.
63. Many amusement parks and state fairs offer a game where a player pays $\$ 3$ to shoot a free throw and wins a $\$ 5$ prize (usually a rubber basketball) if they make the shot (prizes are usually limited to three since the game obviously favors a good shooter). Use a trial-anderror approach to find what free throw average carnival goers must have if this is to be a fair game.
64. Using Exercises 58 and 59 for ideas, create your own expected value problem. You can be as creative and imaginative as you like, or simply use games you encounter at amusement parks, game rooms, or state fairs. Have another student solve the problem and make comments.

- EXTENDING THE CONCEPT

65. Consider the spinner from Exercise 26, which is spun twice in succession. Carefully discuss/explain why the events in part (a) are dependent, while the events in Part (b) are independent.
a. $\quad E_{1}:$ first spin is a 3
E_{2} : sum of both spins is greater than 6
b. $\quad E_{1}$: first spin is a 3
E_{2} : sum of both spins is nine
66. Using a standard 52 -card deck of playing cards, fill in the related portions of the Venn diagram as labeled. Suppose one card is drawn. Use the diagram and direct reasoning to find the probability that the card is a heart, given the card drawn is a red, face card.

- MAINTAINING YOUR SKILLS

67. (8.5) Compute the value of ${ }_{8} P_{5}$, 5 !, and ${ }_{8} C_{5}$ and state the relationship between them.
68. (8.1) Expand and evaluate the summation: $\sum_{k=0}^{6} \frac{(-1)^{k+1}}{k^{2}+1}$
69. (2.1) Given the points $(-3,-4)$ and $(5,2)$ find
a. the distance between them
b. the midpoint between them
c. the slope of the line through them
70. (9.4) Solve $2|x+1|-3=7$ two ways:
a. using the definition of absolute value
b. graphically using a system
71. (5.3) Use a calculator to find the value of each expression, then explain the results.
a. $\quad \log 2+\log 5=$ \qquad
b. $\quad \log 20-\log 2=$ \qquad
72. (4.2) Use the rational roots theorem to solve the equation completely, given $x=-3$ is one root.

$$
x^{4}+x^{3}-3 x^{2}+3 x-18=0
$$

11.9 Probability and the Normal Curve-Applications for Today

LEARNING OBJECTIVES

In Section 11.9 you will learn how to:

A. Find the mean and standard deviation for a set of data
B. Apply standard deviations to a normal curve
C. Use the normal curve to make probability statements
D. Use z-scores to make probability statements

INTRODUCTION

In previous sections, we've made probability statements using counting methods, simple games, formulas, information from tables, and other devices. In this section, we learn to make such statements using observations drawn from a large set of data. Specific characteristic of a large population tend to be normally distributed, meaning a large portion of the sample will be average, with decreasing portions tending to be below average and above average. One example might be the grade distribution for a large college, which might be represented by the graph shown in Figure 11.32.

POINT OF INTEREST

Many human characteristics and abilities have a normal distribution and the graph of any large sample would resemble that of Figure 11.32. For example, the typing speed of a human will have a like distribution, with a select few being extremely

Figure 11.32

Average
fast ($150+$ words per minute), and an equally small number being very slow.

Section 8.8 (shown in this document as 11.8) Student Solutions

1. dependent
2. Answers will vary.
3. a) $\frac{25}{64}$
b) $\frac{3}{8}$
4.

a) $\frac{27}{2197}$
b) $\frac{72}{5225}$
17. a) $\frac{1}{9}$
b) $\frac{1}{8}$
21. 0.3
25. a) $\frac{1}{2}$
b) $\frac{1}{2}$
29. $\frac{1}{52}$
33. dependent
37. 0.5
41. a) independent
b) dependent
c) independent
d) dependent
45. dependent: $P\left(E_{1}\right) P\left(E_{2}\right) \neq P\left(E_{1}\right) \cap P\left(E_{2}\right)$
49. $-\$ 0.40$
53. $-\$ 0.10$
57. a) $-\$ 0.21$
b) $\approx \$ 1.05$
61. a) $\approx-\$ 0.053$
b) $\approx-\$ 0.053$
c) $\approx-\$ 0.053$
d) $\approx-\$ 0.053$
65. a) Answers will vary \quad b) Answers will vary
69.
a) 10 units
b) $(1,-1)$
c) $m=\frac{3}{4}$
67. ${ }_{8} P_{5}=6720 ; 5!=120 ;{ }_{8} C_{5}=56 ; \frac{{ }_{8} P_{5}}{{ }_{8} C_{5}}=5$!
3. $P\left(E_{1}\right) \cdot P\left(E_{2}\right)$
7.
a) $\frac{16}{81}$
b) $\frac{1}{6}$
11. a) $\frac{3}{7}$
b) $\frac{1}{7}$
c) 0
d) 1
15.
a) $\frac{5}{11}$
b) $\frac{3}{11}$
c) $\frac{2}{11}$
d) $\frac{6}{11}$
19. a) $\frac{5}{17}$
b) $\frac{4}{51}$
23. 0.32
27. a) 0.48
b) ≈ 0.70
c) ≈ 0.28
31. $\frac{1}{3}$
35. independent
39. 0.6
43. a) independent
b) dependent
c) dependent
d) independent
47. a) 0.72
b) 0.109
51. $\$ 1.50$
55. a) $\$ 1.46$
b) $-\$ 0.04$
59. a) $-\$ 0.16$
b) $\$ 3.00$
63. $\frac{3}{8}$ or 0.375
71. a) $x=-6, x=4$
b) $x=-6, x=4$

